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Abstract. — This paper is concerned with the algebraic and analytic q-
de Rham complexes attached to linear q-difference operators with Laurent
polynomial coefficients over the field of complex numbers. There is a natural
morphism from the former to the latter complex. Whether or not it is a quasi-
isomorphism, i.e., whether or not the induced morphisms on the corresponding
cohomology spaces are isomorphisms is the basic question considered in the
present paper. We study this question following three distinct approches. The
first one is based on duality, and leads to a direct connection between the
problem considered in the present paper and the convergence of formal series
solutions of q-difference equations. The second approach is sheaf theoretic,
based on growth considerations. The third one relies on the local analytic
theory of q-difference equations. The paper ends with an extension of our
results to variants of the above q-de Rham complexes when certain q-spiral of
poles are allowed. Our study includes the case |q| = 1.
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1. Introduction - Content of the paper

Let q be a nonzero complex number which is not a root of the unity and
let σq be the q-dilatation operator acting on a function f(x) of the complex
variable x by

(σqf)(x) := f(qx).
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x We consider a linear q-difference operator

L = an(x)σnq + · · ·+ a1(x)σq + a0(x)

with coefficients a0(x), a1(x), . . . , an(x) ∈ C[x, x−1] such that a0(x)an(x) 6= 0.
We let L act on f(x) as follows :

L(f)(x) = an(x)f(qnx) + · · ·+ a1(x)f(qx) + a0(x)f(x).

We attach to L its algebraic and analytic q-De Rham complexes respectively
given by

DRalg(L) = C[x, x−1]
•

L−→ C[x, x−1] and DRan(L) = O
•

L−→ O

where O is the ring of analytic functions over C× (the symbol • denotes the
term of degree 0). This paper is concerned with the cohomology spaces

H i
DRalg(L) := H i(DRalg(L)) and H i

DRan(L) := H i(DRan(L)).

The inclusion C[x, x−1] ↪→ O induces a morphism of complexes

(1.0.1) DRalg(L)→ DRan(L).

Whether or not this is a quasi-isomorphism, i.e., whether or not the induced
morphisms of cohomology spaces

(1.0.2) H i
DRalg(L)→ H i

DRan(L)

are isomorphisms is the basic question considered in the present paper. This is
a quantization of questions addressed by Deligne in [4, II.6] about connections
on algebraic varieties (see also Grothendieck’s [7]).

Along the way, we will study the dimensions of the above cohomology
spaces. We emphasize that the algebraic q-de Rham complex DRalg(L) has
finite dimensional cohomology spaces and that its Euler characteristic can be
computed explicitly (see Proposition 2.1 in Section 2). This finiteness prop-
erty is not necessarily true for DRan(L) when |q| = 1; we will come back to
this bellow.

A classical approach to study this kind of questions is to use perturbative
methods in Banach algebras theory. This has been done by Bézivin in [1]
when |q| 6= 1, inspired by anterior works of Malgrange and Ramis notably
about linear differential equations (see [10, 11] and the references therein).
We will not say much about this approach; instead, the aim of this paper is
to present alternative approaches, that we shall now describe.
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1.1. An approach via duality. — Whatever the method used to study the
morphism (1.0.1), it turns out that the conditions ensuring that (1.0.1) is a
quasi-isomorphism is closely related to the convergence of the formal solutions
of the dual q-difference operator

L∨ :=

n∑
i=0

q−iσ−iq ai(x).

The first part of this paper gives an a priori reason for this, inspired by
Chiarellotto’s work in [3] on p-adic differential equations. More precisely,
let us introduce the local analytic and formal q-De Rham complexes of L∨ at
0 respectively given by

DRan0 (L∨) = C({x})
•

L∨−−→ C({x}) and DRform0 (L∨) = C((x))
•

L∨−−→ C((x))

where C({x}) is the field of germs of analytic functions at 0 ∈ C and C((z))
is the field of formal Laurent series. The inclusion C({x}) ↪→ C((x)) induces

a morphism of complexes DRan0 (L∨) → DRform0 (L∨) and, hence, morphisms
of cohomology spaces

(1.0.3) H i(DRan0 (L∨))→ H i(DRform0 (L∨)).

We introduce similar complexes at ∞ :

DRan∞ (L∨) = C({x−1})
•

L∨−−→ C({x−1})

and

DRform∞ (L) = C((x−1))
•

L∨−−→ C((x−1)).

The inclusion C({x−1}) ↪→ C((x−1)) induces a morphism of complexes

DRan∞ (L∨)→ DRform∞ (L∨) and, hence, morphisms of cohomology spaces

(1.0.4) H i(DRan∞ (L∨))→ H i(DRform∞ (L∨)).

Our first result is :

Theorem 1.1. — The following properties are equivalent :

– the complex DRan(L) has finite dimensional cohomology spaces;
– the complexes DRan0 (L∨) and DRan∞ (L∨) have finite dimensional coho-

mology spaces.

If these spaces are finite dimensional, then their Euler characteristics are re-
lated by the formula

(1.1.1) χ(DRan(L))− χ(DRalg(L)) =

χ(DRform0 (L∨))− χ(DRan0 (L∨)) + χ(DRform∞ (L∨))− χ(DRan∞ (L∨))

and the following properties are equivalent
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– the morphisms (1.0.2) are isomorphisms;
– the morphisms (1.0.3) and (1.0.4) are isomorphisms.

In the above theorem, we have implicitly used the fact that DRform0 (L∨)

and DRform∞ (L∨) have finite dimensional cohomology spaces; this follows from
Bézivin’s [1, Proposition 2.7], which also gives an explicit formula for the Euler
characteristics of these complexes.

Here is a first consequence of Theorem 1.1 in the case |q| > 1 (the case
|q| < 1 can be deduced from the case |q| > 1 by viewing L as a q−1-difference
operator).

Corollary 1.2. — Assume that |q| > 1. The following properties are equiva-
lent :

(i) the morphisms (1.0.2) are isomorphisms;
(ii) L has no positive slope at 0 and ∞;

(iii) the irregularity numbers irr0(L) and irr∞(L) of L at 0 and ∞ are equal
to 0.

The slopes mentioned in Corollary 1.2 are the slopes of the Newton polygons
of L in the sense of Sauloy’s [14] for instance. The Newton polygon N0(L) of
L at 0 is the convex hull in R2 of

{(i, j) | i ∈ Z and j ≥ v0(an−i)},

where v0 denotes the x-adic valuation. This polygon is made of two vertical
half lines and of k vectors (r1, d1), . . . , (rk, dk) ∈ Z>0 × Z having pairwise

distinct slopes λ1 = d1
r1
, . . . , λk = dk

rk
, called the slopes L at 0. The integer ri

is called the multiplicity of λi. We define the irregularity number irr0(L) of L
at 0 as the sum of the positive slopes of the Newton polygon of L at 0 counted
with multiplicity, i.e.,

irr0(L) =
k∑
i=0

ri max{λi, 0}.

Notice that

irr0(L) = v0(a0)−min{v0(ai) | i ∈ {0, . . . , n}}.

We have similar notions and notations at ∞.
Here is a second consequence of Theorem 1.1 which is now concerned with

the case |q| = 1. It relies on a technical assumption introduced by Di Vizio in
[5].

Corollary 1.3. — Under the Assumption 3.3 stated in Section 3.3, the mor-
phisms (1.0.2) are isomorphisms.
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We emphasize that Assumption 3.3 is generically satisfied and has nothing
to do with the signs of the slopes of L. This is in strong contrast with the case
|q| 6= 1. This is very similar to the differences between complex differential
equations and their p-adic counterparts.

We also have the following consequences of Theorem 1.1 concerning the
Euler characteristics of DRan(L) and DRalg(L).

Corollary 1.4. — If |q| > 1, then the complexes DRan(L) and DRalg(L)
have finite dimensional cohomology and their Euler characteristics are given
by

χ(DRan(L)) = v0(a0(x))− deg(an(x))

and

χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

So,

χ(DRan(L))− χ(DRalg(L)) = irr0(L) + irr∞(L).

Corollary 1.5. — Assume that |q| = 1 and that the Assumption 3.3 stated
in Section 3.3 is satisfied. Then, the complexes DRan(L) and DRalg(L) have
finite dimensional cohomology and their Euler characteristics are given by

χ(DRan(L)) = χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

Note that if |q| = 1 but that Assumption 3.3 is not satisfied, then
H1(DRan(L)) may be infinite dimensional; see Section 3.4 for an example.

1.2. A sheaf theoretic approach based on growth considerations.
— When |q| 6= 1, the slopes of L involved in Corollary 1.2 are intimately
related to the growth of the solutions of L. The following question is thus
natural : is there a direct proof of the fact that (1.0.2) is an isomorphism
if L has no positive slopes relying on growth considerations ? A positive
answer is given in Section 4. Our starting point is the interpretation the q-de
Rham cohomology spaces H i

DRan(L) and H i
DRalg

(L) as the hypercohomology

of complexes of sheaves on the curve Eq = C×/qZ:

H i
DRan(L) = Hi(Eq,DRan(L)) and H i

DRalg(L) = Hi(Eq,DRan,mod(L))

where DRan(L) is the “analytic q-de Rham complex of sheaves” and where

DRan,mod(L) is the “moderate analytic q-de Rham complex of sheaves” of L
introduced in Sections 4.1 and 4.2 respectively. More precisely,

DRan(L) = Aan
•

L−→ Aan.
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where Aan = π∗(OC×) is the direct image by the projection π : C× → Eq of
the sheaf OC× of analytic functions on C×. Moreover,

DRan,mod(L) = Aan,mod
•

L−→ Aan,mod

whereAan,mod is the subsheaf ofAan whose sections have moderate growth at 0
and∞; see Section 4.2 for the precise definition. The inclusion Aan,mod ↪→ Aan
induces a morphism

(1.5.1) DRan,mod(L)→ DRan(L)

and the fact that the morphisms (1.0.2) are isomorphisms is equivalent to
the fact that (1.5.1) is a quasi-isomorphism. It turns out that it is possible
to prove that the latter morphism is indeed a quasi-isomorphism if L has no
positive slope by using simple growth considerations.

Unfortunately, we have not been able to find a similar proof in the case
|q| = 1.

1.3. An approach relying on the local structure of q-difference equa-
tions. — In Sections 6 and 7, we give alternative proofs of Corollaries 1.2,
1.3, 1.4 and 1.5 based on the fact that any q-difference module is, analyti-
cally at 0, the successive extension of “simple” q-difference modules, namely
of q-difference modules attached to q-difference operators of the form

σrq − cxs

for some c ∈ C×, r ∈ Z≥1 and s ∈ Z (when |q| = 1, we assume that Assump-
tion 3.3 stated in Section 3.3 is satisfied). The spirit of this proof is closed to
Deligne’s [4, II.6].

1.4. The q-de Rham complexes with q-spirals of poles. — In the
last section of the paper, we extend our results to more general q-de Rham
complexes, when rational functions more general than Laurent polynomials
are allowed.

1.4.1. The algebraic case. — A finite subset S of C× being given, we denote
by C[x, x−1]qZS the localization of C[x, x−1] at qZS, i.e.,

(1.5.2) C[x, x−1]qZS = C[x, x−1][{(x− s)−1 | s ∈ qZS}].
It is natural to wonder whether the complex

(1.5.3) C[x, x−1]qZS
•

L−→ C[x, x−1]qZS

has finite dimensional cohomology. If S = ∅, the answer is positive since
(1.5.3) coincides with DRalg(L) in this case; unfortunately, if S 6= ∅, then the
H1 of (1.5.3) may be infinite dimensional (see Example 8.1 in Section 8.1).
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However, a natural filtration of C[x, x−1]qZS is given by the sequence of

sub-C[x, x−1]-algebras (C[x, x−1]qZS,d)d≥0 where

C[x, x−1]qZS,d = {f(x) ∈ C[x, x−1]qZS |
f(x) has at most poles of order d on qZS}.

For any d ∈ Z≥0, we attach to L the complex

DRalg(L, qZS, d) = C[x, x−1]qZS,d
•

L−→ C[x, x−1]qZS,d

and denote the corresponding cohomology spaces by

H i
DRalg(L, q

ZS, d) := H i(DRalg(L, qZS, d)).

We have :

Theorem 1.6. — The complex DRalg(L, qZS, d) has finite dimensional co-
homology spaces and its Euler characteristic is given by

χ(DRalg(L, qZS, d)) = χ(DRalg(L))− ndm
= v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L)− ndm

where m = ](S mod qZ).

1.4.2. The analytic case and a comparison theorem. — We consider the
C[x, x−1]-algebra O[qZS],d of meromorphic functions on C× having finitely

many poles, all in qZS and of order ≤ d. For any d ∈ Z≥0, we attach to L the
complex

DRan(L, [qZS], d) = O[qZS],d
•

L−→ O[qZS],d

and denote the corresponding cohomology spaces by

H i
DRan(L, [qZS], d) := H i(DRan(L, [qZS], d)).

The inclusion
C[x, x−1]qZS,d ↪→ O[qZS],d

induces a morphism of complexes

DRalg(L, qZS, d)→ DRan(L, [qZS], d)

and, hence, morphisms of cohomology spaces

(1.6.1) H i
DRalg(L, q

ZS, d)→ H i
DRan(L, [qZS], d).

Theorem 1.7. — The morphisms (1.6.1) are isomorphisms if and only if the
morphisms (1.0.2) are isomorphisms.

Theorem 1.8. — The following properties are equivalent :

– the complex DRan(L, [qZS], d) has finite dimensional cohomology spaces;
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– the complex DRan(L) has finite dimensional cohomology spaces.

If these spaces are finite dimensional, then their Euler characteristics are re-
lated by the formula

χ(DRan(L, [qZS], d))− χ(DRalg(L, qZS, d))

= χ(DRan(L))− χ(DRalg(L)),

so
χ(DRan(L, [qZS], d)) = χ(DRan(L))− ndm

1.5. Organization of the paper. — In Section 2, we show that DRalg(L)
has finite dimensional cohomology spaces and we compute its Euler charac-
teristic. Section 3.1 is devoted to the proof of Theorem 1.1. This proof uses
some general results about the effect of (algebraic or topological) duality on
the cohomology of complexes of vector spaces; these results are recalled in
Appendix A. Corollaries 1.2 and 1.4 (resp. Corollaries 1.3 and 1.5) are then
proved in Section 3.2 (resp. Section 3.3). In Section 3.4, we give an example
of L and q (necessarily of norm 1) such that H1(DRan(L)) is infinite dimen-
sional. Section 4 contains a sheaf theoretic proof of the implication (ii)⇒ (i)
of Corollaries 1.2 relying on simple growth considerations. Section 5 is an
interlude on q-difference systems : we introduce the q-de Rham complexes
attached to q-difference systems and we make a link beteween the properties
of the q-de Rham complex of a q-difference operator and the properties of the
q-de Rham complex of the associated system. In Sections 6 and 7, we give al-
ternative proofs of Corollaries 1.2, 1.3, 1.4 and 1.5 relying on the local analytic
classification of q-difference modules. In Section 8, we study the complexes
DRalg(L, qZS, d) and DRan(L, [qZS], d); we prove Theorems 1.6, 1.7 and 1.8.

2. Study of the complex DRalg(L)

Proposition 2.1. — The complex DRalg(L) has finite dimensional cohomol-
ogy and its Euler characteristic is given by

χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

Proof. - For any `−, `+ ∈ Z, let V`−,`+ be the finite dimensional sub-C-

vector space of C[x, x−1] given by

V`−,`+ = {P ∈ C[x, x−1] | `− ≤ v0(P ) ≤ deg(P ) ≤ `+}.
The operator L induces a C-linear morphism

L : V`−,`+ → V`−+d−,`++d+

where
d− = min{v0(a0), . . . , v0(an)}
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and
d+ = max{deg(a0), . . . ,deg(an)}.

We claim that, for `− small enough and `+ large enough, the following
morphism of complexes is a quasi-isomorphism :

(2.1.1) V`−+1,`+−1
•

��

L // V`−+d−+1,`++d+−1

��
V`−,`+
•

L // V`−+d−,`++d+

,

where the vertical arrows are the inclusions. Indeed, (2.1.1) is a quasi-
isomorphism if and only if the C-linear morphism

(2.1.2) V`−,`+/V`−+1,`+−1 → V`−+d−,`++d+/V`−+d−+1,`++d+−1

induced by L is an isomorphism. Setting, for any i ∈ {0, . . . , n},

ai(x) =

d+∑
j=d−

ai,jx
j ,

we have, for any f(x) =
∑`+

j=`−
fjx

j ∈ V`−,`+ ,

L(f)(x) =

n∑
i=0

(

d+∑
j=d−

ai,jx
j)(

`+∑
j=`−

fjq
ijxj) =

d++`+∑
m=d−+`−

bmx
m

where

bm =
n∑
i=0

∑
α+β=m

ai,αfβq
iβ.

In particular,

bd−+`− = p`−

n∑
i=0

ai,d−q
i`−

and

bd++`+ = p`+

n∑
i=0

ai,d+q
i`+ .

This clearly implies that (2.1.2) is an isomorphism if and only if
∑n

i=0 ai,d−q
i`−

and
∑n

i=0 ai,d+q
i`+ are nonzero; this holds true if `− is small enough and if `+

is large enough. This justifies our claim.
Since DRalg(L) is the inductive limit of the complexes

(2.1.3) V`−,`+
•

L−→ V`−+d−,`++d+
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as `− → −∞ and `+ → +∞, we deduce that DRalg(L) is quasi-isomorphic to
(2.1.3) for `− small enough and `+ large enough. It follows that DRalg(L) has
finite dimensional cohomology and that

χ(DRalg(L)) = χ(2.1.3) = dimC V`−,`+ − dimC V`−+d−,`++d+ = d− − d+.

We conclude the proof by noticing that

d− − d+ = min{v0(a0), . . . , v0(an)} −max{deg(a0), . . . ,deg(an)}
= v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

because

irr0(L) = v0(a0)−min{v0(ai) | i ∈ {0, . . . , n}}
and

irr∞(L) = −deg(an) + max{deg(ai) | i ∈ {0, . . . , n}}.
�

We refer to [13, Proposition 2.5.4] for a similar result for q-difference mod-
ules.

3. Proofs of Theorem 1.1, Corollaries 1.2, 1.3, 1.4 and 1.5 via
duality

3.1. Proof of Theorem 1.1. — We let A0 (resp. A∞) be the ring of germs
at 0 (resp. ∞) of analytic functions on a punctured neighborhood of 0 (resp.
∞). We let K0 = C({x}) (resp. K∞ = C({x−1})) be the field of germs of
meromorphic functions at 0 (resp. ∞). We have the C-linear isomorphism

φ : O/C[x, x−1]
∼−→ A0/K0 ⊕A∞/K∞(3.0.1)

f + C[x, x−1] 7→ (f +K0, f +K∞)

and the commutative diagram

O/C[x, x−1]

φ ∼=
��

L // O/C[x, x−1]

φ∼=
��

A0/K0 ⊕A∞/K∞
L⊕L // A0/K0 ⊕A∞/K∞

,

whence an isomorphism

(3.0.2) Hk(DRan(L)/DRalg(L))

∼= Hk(A0/K0
•

L−→ A0/K0)⊕Hk(A∞/K∞
•

L−→ A∞/K∞).
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In order to prove the first assertion of Theorem 1.1, it is thus sufficient to
prove that

A0/K0
•

L−→ A0/K0 (resp. A∞/K∞
•

L−→ A∞/K∞)

has finite dimensional cohomology if and only ifDRform0 (L∨)/DRan0 (L∨) (resp.

DRform∞ (L∨)/DRan∞ (L∨)) has finite dimensional cohomology. Let us prove this
equivalence at 0, the proof at∞ being similar. In this respect, we can and will
assume that the coefficients of L are in C[x]. We have a C-linear isomorphism

A0/K0
∼= H0/H[0] with H0 = A0/O0 and H[0] = K0/O0

where O0 = C{x} is the ring of germs of analytic functions at 0 (resp. ∞).
Since L has coefficients in C[x], L acts on H[0] and H0, and these actions
induce the action of L on A0/K0 above.

On the one hand, we have the C-linear isomorphism

ϕ : H∗[0]
∼−→ C[[t]]

u 7→
∑
k≥0

u(x−k−1)tk,

where H∗[0] denotes the dual of H[0], and the isomorphism of complexes

(3.0.3) H∗[0]
•

ϕ ∼=

��

L∗ // H∗[0]

ϕ∼=

��
C[[t]]
•

L∨ // C[[t]]

,

where L∗ denotes the dual of the C-linear map L : H[0] → H[0]. Since

C[[t]]
•

L∨−−→ C[[t]] has finite dimensional cohomology (see [1, Proposition 2.3]),

the isomorphism (A.0.1) ensures that H[0]
•

L−→ H[0] has finite dimensional co-

homology as well and that

χ(C[[t]]
•

L∨−−→ C[[t]]) = −χ(H[0]
•

L−→ H[0]).

On the other hand, we can and will identify H0 (as a C-vector space) to the
C-vector space of holomorphic functions on C× ∪ {∞} vanishing at ∞. We
endow H0 with its usual structure of Fréchet space (see [8, Chapter 4, Part 1,
2, Example f)] for instance) and denote by H ′0 its topological dual. Note that
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L acts continuously on H0. We have the C-linear isomorphism

ψ : H ′0
∼−→ C{t}

u 7→
∑
k≥0

u(z−k−1)tk,

and the isomorphism of complexes

(3.0.4) H ′0
•

ψ ∼=
��

L∗ // H ′0

ψ∼=
��

C{t}
•

L∨ // C{t}

.

The first part of Lemma A.3 applied to

N = H0
•

L−→ H0

implies that H0
•

L−→ H0 has finite dimensional cohomology if and only if

C{t}
•

L∨−−→ C{t} has finite dimensional cohomology and that, in this case,

we have

χ(C{t}
•

L∨−−→ C{t}) = −χ(H0
•

L−→ H0).

That we can apply Lemma A.3 necessitates some explanations. Firstly, H0

is a Fréchet space, so any closed subspace of H0 is Fréchet as well, and the
first hypothesis of Lemma A.3 is satisfied. Secondly, we have to prove that, if

C{t}
•

L∨−−→ C{t} has finite dimensional cohomology, then H0
•

L−→ H0 has finite

dimensional cohomology as well. To prove this, we recall that we can identify
H0 (as a C-vector space) to the C-vector space of holomorphic functions on
C× ∪ {∞} vanishing at ∞. So, we can identify H0 with the topological dual
C{t}′ of the locally convex topological C-vector space C{t}, an isomorphism
being given by

φ : H0
∼−→ C{t}′∑

k≥1
akx

−k mod O0 7→

∑
k≥0

bkt
k 7→

∑
k≥0

ak+1bk

 .
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We have the following isomorphism of complexes

H0
•

φ ∼=
��

L // H0

φ∼=
��

C{t}′
•

L∨∗ // C{t}′

.

The first part of Lemma A.3 ensures that, if the complex C{t}
•

L∨−−→ C{t}

has finite dimensional cohomology, then H0
•

L−→ H0 has finite dimensional

cohomology as well, as expected.
Using what precedes, we see that the following properties are equivalent:

– DRform0 (L∨)/DRan0 (L∨) has finite dimensional cohomology;
– DRan0 (L∨) has finite dimensional cohomology;

– H0
•

L−→ H0 has finite dimensional cohomology;

– H0/H[0]
•

L−→ H0/H[0] has finite dimensional cohomology;

– A0/K0
•

L−→ A0/K0 has finite dimensional cohomology.

(For the first equivalence, we have used the fact that DRform0 (L∨) has finite
dimensional cohomology according to [1, Proposition 2.3].) We have a similar
statement at ∞. Therefore, DRan(L)/DRalg(L) has finite dimensional coho-

mology if and only if DRform0 (L∨)/DRan0 (L∨) and DRform∞ (L∨)/DRan∞ (L∨)
have finite dimensional cohomology and, in this case, we have

χ(DRan(L)/DRalg(L)) =

χ(DRform0 (L∨)/DRan0 (L∨)) + χ(DRform∞ (L∨)/DRan∞ (L∨)).

The first part of Theorem 1.1 follows from this and from the fact that the

complexes DRalg(L), DRform0 (L∨) and DRform∞ (L∨) have finite dimensional
cohomology spaces (see Proposition 2.1 for the first complex, and [1, Propo-
sition 2.3] for the latter two complexes).
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Let us now prove the second part of Theorem 1.1. Putting (3.0.3) and
(3.0.4) together, we obtain the following morphisms of complexes

C[[t]]
•

L∨ // C[[t]]

H∗[0]
•

ϕ ∼=
OO

L∗ // H∗[0]

ϕ∼=

OO

H ′0
•

ι
OO

L∗ // H ′0

ι

OO

C{t}
•

ψ−1 ∼=
OO

L∨ // C{t}

ψ−1∼=

OO

,

where ι is given by the restriction. The map ϕ ◦ ι ◦ψ−1 is simply the inclusion
i : C{t} ↪→ C[[t]]. So

C[[t]]
•

L∨ // C[[t]]

C{t}
•

i

OO

L∨ // C{t}

i

OO
,

is a quasi-isomorphism if and only if

(3.0.5) H∗[0]
•

L∗ // H∗[0]

H ′0
•

ι
OO

L∗ // H ′0

ι

OO

is a quasi-isomorphism. But, if DRform0 (L∨)/DRan0 (L∨) has finite dimensional
cohomology, we have already seen that the hypotheses of Lemma A.3 are
satisfied by

M = H[0]
•

L−→ H[0], N = H0
•

L−→ H0
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and ϕ = j : H[0] ↪→ H0 the inclusion. Therefore, (3.0.5) is a quasi-isomorphism
if and only if

(3.0.6) H[0]
•

��

L // H[0]

��
H0
•

L // H0

is a quasi-isomorphism and this concludes the proof of the theorem.

3.2. Proof of Corollaries 1.2 and 1.4. — We assume that |q| > 1. Ac-

cording to [1, Proposition 2.7], DRform0 (L∨)/DRan0 (L∨) has finite dimensional
cohomology,

(3.0.7) H1(DRform0 (L∨)/DRan0 (L∨)) = 0

(3.0.8) dimH0(DRform0 (L∨)/DRan0 (L∨)) =

max{−v0(ai) | i ∈ {1, · · · , n}}+ v0(a0) = irr0(L).

We have a similar result at ∞.
Using Theorem 1.1, we obtain that DRan(L)/DRalg(L) has finite dimen-

sional cohomology and that

χ(DRan(L)/DRalg(L)) = irr0(L) + irr∞(L).

But, according to Proposition 2.1 proven in Section 2, DRalg(L) has finite
dimensional cohomology and its Euler characteristic is given by

χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L),

so DRan(L) has finite dimensional cohomology as well and the equality
χ(DRan(L)/DRalg(L)) = χ(DRan(L)) − χ(DRalg(L)) concludes the proof of
Corollary 1.4.

Moreover, Theorem 1.1 ensures that the morphisms (1.0.2) are isomor-
phisms if and only if the morphisms (1.0.3) and (1.0.4) are isomorphisms if and

only if H i(DRform0 (L∨)/DRan0 (L∨)) = 0 and H i(DRform∞ (L∨)/DRan∞ (L∨)) =
0 for i ∈ {0, 1} if and only if (in virtue of (3.0.7) and (3.0.8)) irr0(L) =
irr∞(L) = 0. This concludes the proof of Corollary 1.2.

3.3. Proof of Corollary 1.3. — We assume that q has norm 1 but is not
a root of the unity.

Consider a q-difference operator

P = bn(x)σnq + · · ·+ b1(x)σq + b0(x)
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with coefficients b0(x), b1(x), . . . , bn(x) ∈ K0 = C({x}) such that b0(x)bn(x) 6=
0. Let d ≥ 1 be the least common denominator of the slopes of P at 0 and
let qd be a d-th root of q. We can see P as the qd-difference operator Pd with
integral slopes at 0 given by

Pd = bn(xdd)σ
dn
qd

+ · · ·+ b1(x
d
d)σ

d
qd

+ b0(x
d
d)

where xdd = x. Following [5, Section 2.2], to any slope λ of Pd at 0, we
associate a characteristic polynomial char(Pd, λ;X) ∈ C[X] whose complex
roots are called the exponents of the slope λ of Pd. The set of these exponents
is denoted by Exp0(Pd, λ) ⊂ C×.

Definition 3.1 ([5, Definition 2.5]). — We say that P is admissible at 0 if,

for any slope λ of Pd at 0, for any two a, b ∈ Exp0(Pd, λ) such that ab−1 6∈ qZ≤0

d ,
the series ∑

k≥0

xk

1− qkdab−1

has a nonzero radius of convergence.
We say that P is very admissible at 0 if (σq − 1)P is admissible at 0.

Proposition 3.2. — We make the following two assumptions :

– the series
∑

k≥0
xk

(q;q)k
has a nonzero radius of convergence, where

(q; q)k = (1− q)(1− q2) · · · (1− qk);
– P is very admissible at 0.

Then, for any f(x) ∈ C((x)) :

P (f(x)) = g(x) ∈ K0 ⇒ K0.

Proof. - If g = 0, this follows from [5, Corollary 2.11]. If g 6= 0, then we
have M(f(x)) = 0 where M is the q-difference operator given by

M = (σq − g(qx)/g(x))P.

The fact that P is very admissible at 0 implies that M is admissible at 0 and
the result follows from [5, Corollary 2.11] again. �

Of course, we have similar notions and facts at ∞. We now make the
following assumption :

Assumption 3.3. — We assume that

– q has norm 1 but is not a root of the unity;

– the series
∑

k≥0
xk

(q;q)k
has a nonzero radius of convergence, where

(q; q)k = (1− q)(1− q2) · · · (1− qk);
– L∨ (or, equivalently, L) is very admissible at 0;
– L∨ (or, equivalently, L) is very admissible at ∞.
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Proposition 3.2 (and its variant at ∞) ensures that

H0(DRform0 (L∨)/DRan0 (L∨)) = H0(DRform∞ (L∨)/DRan∞ (L∨)) = 0.

Moreover, as in the case |q| > 1, we have

H1(DRform0 (L∨)/DRan0 (L∨)) = H1(DRform∞ (L∨)/DRan∞ (L∨)) = 0.

(The proof of [1, Proposition 2.3] works as soon as q is not a root of the unity.)
Now, Corollary 1.3 follows immediately from Theorem 1.1.

Moreover, according to Proposition 2.1 proven in Section 2, DRalg(L) has
finite dimensional cohomology and its Euler characteristic is given by

χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L),

so DRan(L) has finite dimensional cohomology as well and

χ(DRan(L)) = χ(DRalg(L)) = v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

3.4. An example with infinite dimensional H1(DRan(L)). — Consider

q ∈ C× such that the series
∑

k≥0
xk

1−q−k is divergent. Consider the operator

L = qσq − 1; so L∨ = σ−1q − 1. We claim that H1(DRan(L)) is infinite dimen-

sional. According to Theorem 1.1, it is sufficient to prove that H1(DRan0 (L∨))
is infinite dimensional. It is thus sufficient to find an infinite dimensional
sub-C-vector space of K0 which is in direct sum with L∨(K0). We claim that

V = SpanC{(1− sz)−1 | s ∈ Z≥2}

is such a sub-C-vector space of K0. Indeed, consider g(x) =
∑

k≥0 gkx
k ∈

V ∩ L∨(K0) and f(x) =
∑

k≥0 fkx
k ∈ K0 such that

g(x) = L∨(f(x)) = f(q−1x)− f(x).

We have fk = gk
q−k−1 . If g(x) is nonzero then |bk| tends to +∞ as k tends to

+∞; since
∑

k≥0
xk

1−q−k is divergent, this implies that
∑

k≥0 fkx
k is divergent,

whence a contradiction. So g(x) = 0, as expected.

4. A moderate sheaf theoretic proof of (ii)⇒ (i) in Corollary 1.1

In this section, we assume that |q| > 1 and we give another proof of the fact
that, if L has no positive slopes at 0 and ∞, then the morphisms (1.0.2) are
isomorphisms. This new proof is more analytic in nature than the one given
in the previous Section and based on growth considerations.
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4.1. First step : the analytic q-De Rham cohomology as hyperco-
homology of sheaves. — We consider the quotient Eq = C×/qZ and we
denote by π : C× → Eq the corresponding quotient map. We endow Eq with
its structure of Riemann surface.

We denote by OC× the sheaf of analytic functions on C× and we let

Aan = π∗(OC×)

be the sheaf on Eq whose sections over U ⊂ Eq are the analytic functions on
π−1(U).

Proposition 4.1. — The sheaf Aan is acyclic.

Proof. - First note that, for i ≥ 1, Riπ∗(Aan) = 0. Indeed, this is the
sheaf associated to the presheaf U 7→ H i(π−1(U),OC×). If ζ = π(a) ∈ Eq

and if U = π(D(a, ε)) is a small neighborhood of ζ, then π−1(U) is the
disjoint union of small discs and these small discs are Stein, whence
H i(π−1(U),OC×) = 0 and, hence, Riπ∗(Aan) = 0 as claimed. It follows
that H i(C×,OC×) = H i(Eq,Aan) (see [9, Chapter III, Exercise 8.1]) and,
C× being Stein, we have H i(C×,OC×) = 0. �

We consider the complex of sheaves on Eq given by

DRan(L) = Aan
•

L−→ Aan.

Since Aan is acyclic with global sections O, we get :

Corollary 4.2. — We have

Hi(Eq,DRan(L)) = H i
DRan(L).

4.2. Second step : the algebraic q-De Rham cohomology as hyper-
cohomology of sheaves (moderate analytic q-de Rham cohomology).
— We let Aan,mod be the subsheaf of Aan whose sections have moderate
growth at 0 and ∞. A section of Aan,mod on an open subset U of Eq is an
f ∈ Aan(U) such that, for any relatively compact subset K of U , there exist
CK,0, NK,0 such that, for all x ∈ π−1(K) ∩D(0, 1),

|f(x)| ≤ CK,0|x|NK,0

and there exist CK,∞, NK,∞ such that, for all x ∈ π−1(K) ∩C \D(0, 1),

|f(x)| ≤ CK,∞|x|NK,∞ .

Proposition 4.3. — The sheaf Aan,mod is acyclic with global sections
C[x, x−1].
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Let us first prove some preliminary results. We denote by Adiff,mod the
sheaf on Eq defined as follows : a section of Adiff,mod on an open subset U of

Eq is a C∞ function(1) f : π−1(U)→ C with moderate growth at 0 and∞, i.e.,
such that, for any relatively compact subset K of U , there exist CK,0, NK,0

such that, for all x ∈ π−1(K) ∩D(0, 1),

|f(x)| ≤ CK,0|x|NK,0

and there exist CK,∞, NK,∞ such that, for all x ∈ π−1(K) ∩C \D(0, 1),

|f(x)| ≤ CK,∞|x|NK,∞ .

Lemma 4.4. — For any g ∈ Adiff,mod(Eq), there exists f ∈ Adiff,mod(Eq)

such that ∂(f) = g.

Proof. - For any g ∈ Adiff,mod(Eq), there exist g0 ∈ Adiff,mod(Eq) with

support in D(0, 1) and g∞ ∈ Adiff,mod(Eq) with support in C\D(0, 1/2) such

that g = g0 + g∞. So, by linearity of the ∂-equation, it is sufficient to treat
the case when g has support in D(0, 1) or C\D(0, 1/2). Using the the change
of variable x→ 1/(2x), we see that it is sufficient to treat the case when g has
support in D(0, 1). Since, for any n ∈ Z, we have xn∂(f) = ∂(xnf), we can
moreover assume that g is bounded at 0. We consider

f(x) =

∫
C

g(ζ)

x− ζ
dζ ∧ dζ =

∫
D(0,1)

g(ζ)

x− ζ
dζ ∧ dζ,

which is well-defined for any x ∈ C. We claim that this f has the expected
properties. Since g is bounded and since, for x ∈ D(0, 2),∫
D(0,1)

1

|x− ζ|
|dζ ∧ dζ| ≤

∫
D(x,3)

1

|x− ζ|
|dζ ∧ dζ| =

∫
D(0,3)

1

|w|
|dw ∧ dw| <∞

and, for x 6∈ D(0, 2),∫
D(0,1)

1

|x− ζ|
|dζ ∧ dζ| ≤

∫
D(0,1)

|dζ ∧ dζ| <∞,

we see that f(x) is bounded as well. It remains to prove that f is C∞ on C×

and satisfies ∂(f) = g. Consider x0 ∈ C× and choose ε > 0 small enough so
that 0 6∈ D(x0, 2ε). We consider a decomposition g = g1 + g2 where g2 is a C∞
function on C× which is 0 on D(x0, ε) and g1 is a C∞ function on C which is
0 on C \D(x0, 2ε). So f = f1 + f2 where

fi(x) =

∫
D(0,η)

gi(ζ)

x− ζ
dζ ∧ dζ

(1)Here and in what follows, by C∞ function we mean a C∞ function of the real variables
u, v where x = u + iv.
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for an arbitrary η > 1 such that D(x0, ε) ⊂ D(0, η). We have

f2(x) =

∫
D(0,η)\D(x0,ε)

g2(ζ)

x− ζ
dζ ∧ dζ

and, for x ∈ D(x0, ε/2) and ζ ∈ D(0, η)\D(x0, ε), we have |g2(ζ)x−ζ | ≤ ||g2||∞2ε−1.

It follows that f2 is holomorphic on D(x0, ε/2), i.e., f2 is C∞ and satisfies
∂(f2) = 0 on D(x0, ε/2). Moreover, since g1 is C∞ on C with compact
support, it is classical that f1 is C∞ and satisfies ∂(f1) = g1 on D(x0, ε/2).
Hence, f is C∞ on D(x0, ε/2) and ∂(f) = g on D(x0, ε/2). �

Lemma 4.5. — We have the exact sequence

(4.5.1) 0→ Aan,mod → Adiff,mod ∂−→ Adiff,mod → 0.

Proof. - The only non trivial point is the surjectivity of Adiff,mod ∂−→
Adiff,mod. Since, for any ζ ∈ Eq, the natural map Adiff,mod(Eq) →
(Adiff,mod)ζ is surjective, the result is a direct consequence of Lemma 4.4. �

Lemma 4.6. — The sheaf Adiff,mod is fine, and, hence, acyclic.

Proof. - This is a direct consequence of the existence of C∞ partitions of
the unity subordinated to any open covering of C×. These partitions of the
unity are bounded and, hence, are global sections of Adiff,mod. �

Proof of Proposition 4.3. - Combining Lemma 4.5 and Lemma 4.6, we get
that (4.5.1) is an acyclic resolution of Aan,mod, so

Hi(Eq,Aan,mod) = H i(Adiff,mod(Eq)
•

∂−→ Adiff,mod(Eq))

and the result follows from Lemma 4.4. �

We will use the following immediate consequence of Proposition 4.3. Con-
sider the complex of sheaves on Eq given by

DRan,mod(L) = Aan,mod
•

L−→ Aan,mod.

Corollary 4.7. — We have

Hi(Eq,DRan,mod(L)) = H i
DRalg(L).
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4.3. Third and last step. — In the following proofs, we use the notations

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
− a0
an
− a1
an
− a2
an
· · · −an−2

an
−an−1

an

 ∈ GLn(C(x))

and p = an. Moreover, we consider the matricial q-difference operator

∇ = p(σq −A)

acting on

F (x) = (f1(x), f2(x), . . . , fn(x))>

by

∇(F )(x) = p(x)(F (qx)−A(x)F (x)).

Lemma 4.8. — Let ζ ∈ Eq and g ∈ (Aan,mod)ζ . If L has no positive slope,

then any f ∈ (Aan)ζ such that L(f) = g actually belongs to (Aan,mod)ζ .

Proof. - We will only prove that f has moderate growth at 0, the proof at
∞ being similar. The functions

F (x) = (f(x), f(qx), . . . , f(qn−1x))> and G(x) = (0, . . . , 0, g(x))>

satisfy ∇(F ) = G. Of course, G has moderate growth at 0. We have to prove
that F has moderate growth at 0.

The hypothesis relative to the slopes of L ensures that A−1 has analytic
coefficients near 0.

Let a ∈ ζ. It is easily seen that there exist M ∈ R>0, n0, N,NG ∈ Z>0,
with N ≥ NG, η ∈]0, 1[, such that:

– for all x ∈ ∪j∈Z≤−n0D(aqj , ηqj), |A(x)−1| ≤M ,

– for all x ∈ ∪j∈Z≤−n0D(aqj , ηqj), |A(x)−1G(x)/p(x)| ≤ |x|−NG ,

– for all x ∈ ∪j∈Z≤−n0D(aqj , ηqj), M |q|−N + |x|N−NG ≤ 1, and,

– for all x ∈ D(aq−n0 , ηq−n0), |F (x)| ≤ |x|−N .

We claim that |F (x)| ≤ |x|−N for all x ∈ ∪j∈Z≤−n0D(aqj , ηqj). In order
to prove this, we set Fj = F|D(aq−j ,ηq−j) and we will prove by induction on

j ≥ n0 that |Fj(x)| ≤ |x|−N for all x ∈ D(aq−j , ηq−j). The result is true for
j = n0. Assume that it is true for j = n0, . . . , n0 + k for some k ≥ 0. Then,
the equality

Fn0+k+1(x) = A(x)−1Fn0+k(qx)−A(x)−1G(x)/p(x)

implies

|Fn0+k+1(x)| ≤M |qx|−N + |x|−NG = |x|−N (M |q|−N + |x|N−NG) ≤ |x|−N .
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�

Lemma 4.9. — Let ζ ∈ Eq. For any g ∈ (Aan)ζ , there exists f ∈ (Aan)ζ
such that g − L(f) belongs to (Aan,mod)ζ .

Proof. - Consider

G(x) = (0, . . . , 0, g(x))>.

We have to prove that there exists F ∈ (Aan)nζ such that G − ∇(F ) belongs

to (Aan,mod)nζ . Indeed, such an F has the form

F (x) = (f(x), f(qx), . . . , f(qn−1x))>

and f(x) is such that g − L(f) belongs to (Aan,mod)ζ .
Let a ∈ C× such that ζ = π(a). Let ε > 0 be such that G ∈

Aan(π(D(a, ε)))n, and such that the eventual zeroes of p and the even-
tual poles of A and A−1 in ∪j∈ZD(aqj , εqj) belong to ζ.

Let N > 0 be such that {aqj | j ∈ Z, |j| ≥ N} does not contain any zero
of p or pole of A or A−1.

We let G0 be the function defined by G0 = G on ∪j≤−ND(aqj , εqj) and
G0 = 0 on ∪j≥−N+1D(aqj , εqj). We let G∞ be the function defined by
G∞ = G on ∪j≥ND(aqj , εqj) and G∞ = 0 on ∪j≤N−1D(aqj , εqj). We consider
the decomposition G = G0 + G∞ + (G − G0 − G∞). Since G − G0 − G∞
belongs to (Aan,mod)nζ , it is sufficient to prove that there exists F0 ∈ (Aan)nζ
and F∞ ∈ (Aan)nζ such that ∇(F0) = G0 and ∇(F∞) = G∞. But, it is
easily seen that the unique function F∞ such that F∞|∪j≤ND(aqj ,εqj) = 0 and

∇(F∞) = G∞ has the required properties. We have a similar construction for
F0. �

Lemma 4.10. — If L has no positive slope, then the morphism of complexes
DRan,mod(L) → DRan(L) given by the inclusion of sheaves Aan,mod ↪→ Aan
is a quasi-isomorphism.

Proof. - The statement means that the morphism of complexes

DRan,mod(L)→ DRan(L)

induces isomorphisms

(4.10.1) Hk(DRan,mod(L))→ Hk(DRan(L))

on the cohomology sheaves for k = 0, 1.
For k = 0, this means that, for any ζ ∈ Eq and any f ∈ (Aan)ζ such that

L(f) = 0, we have f ∈ (Aan,mod)ζ . This is a direct consequence of Lemma 4.8.



24 J. ROQUES

The fact that (4.10.1) is injective for k = 1 follows from Lemma 4.8 again.
Moreover, it follows from Lemma 4.9 that, for any ζ ∈ Eq, any element of
H1(DRan(L))ζ is an equivalence class that can be represented by an element

of (Aan,mod)ζ , whence the surjectivity of (4.10.1) for k = 1. �

We are now ready to conclude the proof of the fact that (ii)⇒ (i) in Corol-

lary 1.2. Indeed, Lemma 4.10 ensures that the morphism DRan,mod(L) →
DRan(L) given by the inclusion of sheaves Aan,mod ↪→ Aan induces an iso-
morphism

Hk(Eq,DRan,mod(L)) ∼= Hk(Eq,DRan(L)).

Corollary 4.2 and Corollary 4.7 conclude the proof.

5. Equations vs systems

So far, we have considered (scalar) q-difference operators. In the next sec-
tion, we will consider matricial q-difference operators. The present section in-
troduces some notations and contains basic results about matricial q-difference
operators.

5.1. Matricial q-difference operators. — A matrix A ∈ GLn(C(x)) and
a Laurent polynomial p ∈ C[x, x−1] such that pA ∈ Mn(C[x, x−1]) being
given, we consider the matricial q-difference operator

∇A,p = p(σq −A)

acting on

F (x) = (f1(x), f2(x), . . . , fn(x))>

by

∇A,p(F )(x) = p(x)(F (qx)−A(x)F (x)).

We attach to ∇A,p its algebraic q-De Rham complex given by

DRalg(∇A,p) = C[x, x−1]n

•

∇A,p−−−→ C[x, x−1]n

and its analytic q-De Rham complex given by

DRan(∇A,p) = On

•

∇A,p−−−→ On.

This corresponding cohomology spaces are denoted by

H i
DRalg(∇A,p) := H i(DRalg(∇A,p)) and H i

DRan(∇A,p) := H i(DRan(∇A,p)).

Remark 5.1. — We consider p(σq − A) instead of σq − A because we want
an operator acting on C[x, x−1] and O.
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5.2. From q-difference operators to matricial q-difference operators.
— To a given q-difference operator

L = an(x)σnq + · · ·+ a1(x)σq + a0(x)

with coefficients in an(x), . . . , a1(x), a0(x) ∈ C[x, x−1] such that a0(x)an(x) 6=
0, we attach the matrix

(5.1.1) AL =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
− a0
an
− a1
an
− a2
an
· · · −an−2

an
−an−1

an

 ∈ GLn(C(x))

and the operator

∇L = ∇AL,an = an(σq −AL).

Note that a function f(x) satisfies L(f)(x) = 0 if and only if

F (x) = (f(x), f(qx), . . . , f(qn−1x))>

satisfies ∇L(F )(x) = 0. Conversely, a function

F (x) = (f1(x), f2(x), . . . , fn(x))>

satisfies ∇L(F )(x) = 0 if and only if f(x) = f1(x) satisfies L(f)(x) = 0 and

F (x) = (f1(x), f2(x), . . . , fn(x))> = (f(x), f(qx), . . . , f(qn−1x))>.

Therefore, the map

f(x) 7→ (f(x), f(qx), . . . , f(qn−1x))>

induces an isomorphism

H0
DRalg(L)→ H0

DRalg(∇L).

Actually, we have :

Lemma 5.2. — The complex DRalg(L) has finite dimensional cohomology if
and only if DRalg(∇L) has finite dimensional cohomology. In this case, we
have

dimH0
DRalg(∇L) = dimH0

DRalg(L)

and

dimH1
DRalg(∇L) = (n− 1)length(an) + dimH1

DRalg(L)

where length(an) = deg(an)− v0(an).
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Proof. - We consider the morphism of complexes given by

C[x, x−1]

ϕ

��

L // C[x, x−1]

ψ
��

C[x, x−1]n
∇L // an(x)C[x, x−1]n−1 ⊕C[x, x−1]

where

ϕ : f 7→ (f(x), f(qx), . . . , f(qn−1x))> and ψ : f 7→ (0, . . . , 0, f)>.

We claim that this is a quasi-isomorphism. Indeed, the fact that ϕ induces
an isomorphism on the H0 is a consequence of the discussion preceding the
Lemma. It remains to prove that ψ induces an isomorphism on the H1. For

F (x) = (f1(x), f2(x), . . . , fn(x))> ∈ C[x, x−1]n,

we have

∇L(F )(x) = (an(x)(f1(qx)− f2(x)), . . . , an(x)(fn−1(qx)− fn(x)), ∗)>.

It follows that, for any G = (g1, . . . , gn−1, gn)> ∈ C[x, x−1]n, there exists an
F (x) ∈ C[x, x−1]n such that

∇L(F )(x) = (an(x)g1(x), . . . , an(x)gn−1(x), ∗)>.

So, G − ∇L(F ) is in the image of ψ and, hence, ψ is surjective on the H1.
Moreover, assume that

(5.2.1) ψ(f) = ∇L(F (x))

= (an(x)(f1(qx)−f2(x)), . . . , an(x)(fn−1(qx)−fn(x)), anfn(x)+· · ·+a0(x)f0(x))>

for some f ∈ C[x, x−1] and F (x) ∈ C[x, x−1]n. Setting g(x) = f1(x), we
have fi(x) = g(qi−1x) and f(x) = anfn(x) + an−1fn−1(x) + · · ·+ a0(x)f0(x) =
L(g)(x). So ψ(f) is in the image of L and ψ is injective on the H1.

It follows that

H1
DRalg(∇L) ∼= H1(C[x, x−1]n

•

∇A,p−−−→ an(x)C[x, x−1]n−1 ⊕C[x, x−1])⊕ V

∼= H1
DRalg(L)⊕ V

where V is a complement of an(x)C[x, x−1]n−1 in C[x, x−1]n−1, whence the
desired result. �

With variants of the previous proof, we obtain the following results.

Lemma 5.3. — Lemma 5.2 remains true when the algebraic q-de Rham co-
homology is replaced by the analytic q-de Rham cohomology.
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Lemma 5.4. — Let R be a C[x, x−1]〈σq, σ−1q 〉-module. Assume that the mul-
tiplication by an(x) gives a bijection R→ R. Then, the complexes

R
•

L−→ R and Rn
•
∇L−−→ Rn

are quasi-isomorphic.

6. Proofs of Corollaries 1.2 and 1.4 via the local structure of
q-difference equations

In this section, we assume that |q| > 1 and we give proofs of Corollaries 1.2
and 1.4 using basic results about the local analytic structure of q-difference
systems at 0.

6.1. Proof of Corollary 1.2. — We are going to prove that (ii) ⇒ (i) in
Corollary 1.2; the rest of the proof of Corollary 1.2 is a consequence Corollary
1.4 that will be proved in the next Section. We assume that L has no positive
slope. We have to prove that the complex

O/C[x, x−1]
•

L−→ O/C[x, x−1]

has trivial cohomology. Starting as in Section 3.1, we see that it is equivalent
to prove that the complexes

A0/K0
•

L−→ A0/K0 and A∞/K∞
•

L−→ A∞/K∞

have trivial cohomology. Let us prove this for the first complex, the proof for
the second complex being similar. According to Lemma 5.4, it is equivalent
to prove that the complex

(6.0.1) (A0/K0)
n

•

∇L−−→ (A0/K0)
n

has trivial cohomology. According to [6, Section 6], there exists F ∈
GLn(C({x})) such that

(6.0.2) F [A] = F (qx)A(x)F (x)−1 =


A1 . . . . . . . . .

0
. . . Ui,j

...

0 0
. . .

...
0 0 0 Ak


where each Ai ∈ GLri(C(x)) is the companion matrix (5.1.1) associated to
the q-difference operator σriq − cixsi for some ci ∈ C×, ri ∈ Z>0 and si ∈ Z
and where each Ui,j belongs to Matri,rj (M(C)). We can and will moreover

assume that ci 6∈ qZ≤−1 . The si/ri are the slopes of L, so the si are ≤ 0.
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The fact that the complex (6.0.1) has trivial cohomology is equivalent to
the fact that each

(A0/K0)
ri

•

σq−Ai−−−−→ (A0/K0)
ri

has trivial cohomology, and, according to Lemma 5.4, this is equivalent to the
fact that

A0/K0
•

σ
ri
q −cixsi−−−−−−→ A0/K0

has trivial cohomology. Thus, the following lemma concludes the proof of
Corollary 1.2.

Lemma 6.1. — For any r ∈ Z≥1, λ ∈ Z≥0 and c ∈ C× \ qZ≤−1, the complex

A0/K0
•

xλσrq−c−−−−−→ A0/K0

has trivial cohomology.

Proof. — Replacing q by qr, we can assume that r = 1. We set

P = xλσq − c.

We have to prove that the following morphism is a quasi-isomorphism

(6.1.1) K0
•

��

P // K0

��
A0
•

P // A0

,

where the vertical arrows are the inclusion.
Let us first assume that λ > 0. Up to replacing x by c1/sx for some s-th

root c1/s of c, we can and will assume that c = 1. We consider the morphisms
of complexes

(6.1.2) C{x}
•

i

��

P // C{x}

i

��
A0
•

P // A0

and C{x}
•

P // C{x}

A0
•

r
OO

P // A0

r

OO

where i : C{x} ↪→ A0 is the inclusion and r : A0 → C{x} is given, for any
f(x) =

∑
k∈Z akx

k ∈ A0, by

r(f(x)) =
∑
k≥0

akx
k.
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We claim that i is an equivalence of homotopy, and that r is an inverse up
to homotopy of i; in particular, this implies that i is a quasi-isomorphism.
Indeed, we have r ◦ i = idC{x}. Moreover, we consider the C-linear map

H : A0 → A0 defined, for any f(x) =
∑

k∈Z akx
k ∈ A0, by

H(f) =
∑
k≤−1

bkx
k

where

−bk = ak + qk−λak−λ + qk−λqk−2λak−2λ + qk−λqk−2λqk−3λak−3λ + · · · .

A straightforward calculation shows that

H ◦ P = idA0 −i ◦ r

This proves our claim.
The proof in the case λ = 0 is similar by considering

H(f) =
∑
k≤−1

ak
qk − c

xk.

Using similar arguments, one can prove that

(6.1.3) C{x}
•

j

��

P // C{x}

j

��
C({x})
•

P // C({x})

,

where j : C{x} ↪→ C({x}) is the inclusion, is a quasi-isomorphism.
The fact that (6.1.2) and (6.1.3) are quasi-isomorphisms imply that (6.1.1)

is a quasi-isomorphism.

6.2. Proof of Corollary 1.4. — Using the notations of Section 6.1, we see
that it is sufficient to prove that the complexes

(6.1.4) A0/K0
•

σ
ri
q −cixsi−−−−−−→ A0/K0

have finite dimensional cohomology with Euler characteristics max{0, si} (in-
deed, using (3.0.2), this implies that the Euler characteristic ofDRan(L)/DRalg(L)
is equal to the sum of the Euler characteristics of the complexes (6.1.4), i.e.,

to
∑k

i=1 max{0, si}, plus a similar term at ∞; this gives irr0(∇) + irr∞(∇) as
expected). Therefore, the following two lemmas conclude the proof.
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Lemma 6.2. — For r ∈ Z≥1, s ∈ Z and c ∈ C×, consider the complex

(6.2.1) A0
•

σrq−cxs−−−−→ A0.

We have :

– the H0 of (6.2.1) has dimension
• s if s > 0;
• 1 if (s = 0 and c ∈ qZ);
• 0 if s < 0 or (s = 0 and c 6∈ qZ);

– the H1 of (6.2.1) has dimension
• 0 if s > 0 or (s = 0 and c 6∈ qZ);
• 1 if (s = 0 and c ∈ qZ);
• −s si s < 0.

In particular, the complex (6.2.1) has finite dimensional cohomology and its
Euler characteristic is s.

Proof. - This is inspired by [15, Lemmas 4.7 and 4.8] and [12, Section 2.3.1
and 3.2]. Replacing q by qr, we can and will assume that r = 1. We set

P = σq − cxs.

Note that f =
∑

k∈Z fkx
k ∈ A0 satisfies P (f) = 0 if and only if, for all

k ∈ Z,

qkfk = cfk−s,

if and only if, for all k, j ∈ Z,

fk−js = qkj−s
j(j−1)

2 c−jfk.

On the one hand, this formula shows that, if s < 0, then
∑

k≥0 fkx
k is divergent

except if f = 0; so, H0((6.2.1)) = 0 in this case. On the other hand, the same
formula shows that, if s > 0, then H0((6.2.1)) has dimension s, a basis being
given by the series ∑

j∈Z
qkj−s

j(j−1)
2 c−jxk−js

for k ∈ {0, . . . , s− 1}.
The case s = 0 is easy and left to the reader.
It remains to study H1((6.2.1)).
We first assume that s > 0. Note that the C-linear automorphism f(x) 7→

f(c−1/sx) of A0 conjugates σq − cxs to σq − xs. So, we can and will assume
that c = 1.

We first consider the case s = 1. In order to prove that H1((6.2.1)) = 0, it
is sufficient to prove the following two properties :
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1. for any g =
∑

k≥0 bkx
k ∈ C{x}, there exists f =

∑
k≥0 akx

k ∈ C{x}
such that P (f) = g;

2. for any g =
∑

k≤0 bkx
k holomorphic on C× ∪ {∞}, there exists f =∑

k≤0 akx
k holomorphic on C× ∪ {∞} such that P (f) = g.

Let us prove 1. Let us first note that the series

γn(x) =
∑
j≥0

q−n(j+1)q−
j(j+1)

2 xn+j

satisfies

P (γn) = xn.

Therefore, for any g =
∑

k≥0 bkx
k ∈ C{x}, the series given by

f(x) =
∑
n≥0

bnγn(x) =
∑
k≥0

akx
k

with

ak =
∑
n≤k

bnq
−n(k−n+1)q−

(k−n)(k−n+1)
2 = q−

k(k+1)
2

∑
n≤k

bnq
n(n−1)

2

satisfies

P (f) = g.

Moreover, if A,B > 0 are such that |bn| ≤ ABn for all n ≥ 0, then |ak| ≤∑k
n=0AB

n. It follows that f(x) ∈ C{x}. This concludes the proof of 1.
Let us prove 2. Let us first note that the series

δn(x) = −
∑
j≤−1

q−n(j+1)q−
j(j+1)

2 xn+j

satisfies

P (δn) = xn.

Therefore, for any g =
∑

k≤0 bkx
k holomorphic over C× ∪ {∞}, the series

f(x) =
∑
n≤0

bnδn(x) =
∑
k≤0

akx
k

with

ak =
∑

n≥k+1

bnq
−n(k−n+1)q−

(k−n)(k−n+1)
2 = q−

k(k+1)
2

∑
n≥k+1

bnq
n(n−1)

2

satisfies

P (f) = g.

Moreover, if A,B > 0 are such that |bn| ≤ ABn for all n ≥ 0, then |ak| ≤∑k
n=0AB

n. It follows that f(x) ∈ C{x−1}. The functional equation P (f) = g
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implies that f is actually holomorphic over C×∪{∞}. This concludes the proof
of 2.

We now consider the case s ≥ 1. We have

A0 =
s−1⊕
i=0

xiA′0

where A′0 is the subring of A0 made of the functions of xs. Note that each
xiA′0 is stable by σq − cxs, so

H1(A0
•

σq−cxs−−−−→ A0) ∼=
s−1⊕
i=0

H1(xiA′0
•

σq−xs−−−−→ xiA′0).

Moreover, for any i ∈ {0, . . . , s− 1}, we have the isomorphism of complexes

A0
•

ϕ ∼=
��

qiσqs−x // A0

ϕ∼=
��

xiA′0
•

σq−xs // xiA′0

,

where ϕ is the C-linear isomorphism given by

ϕ : A0
∼−→ xiA′0

f(x) 7→ xif(xs).

It follows from the case s = 1 treated previously that

H1(xiA′0
•

σq−xs−−−−→ xiA′0) = 0,

whence the desired result.
The case s = 0 is easy and left to the reader.
It remains to study the case s < 0. As in the case s > 0, we can and will

assume that c = 1.
We first study the case s = −1. We consider the q-Borel-Ramis transfor-

mation defined by

Bq,1 : A0
∼−→ E(6.2.2) ∑

n∈Z
fnx

n 7→
∑
n∈Z

fn

qn(n−1)/2
xn.

where E is the set of φ(x) =
∑

n∈Z φnx
n ∈ A0 such that :

– for all A > 0, we have φn = O(Anq−n(n−1)/2) as n→ −∞;

– there exists B > 0, such that φn = O(Bnq−n(n−1)/2) as n→ +∞.
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It gives rise to the isomorphism of complexes

(6.2.3) A0
•

Bq,1 ∼=
��

1−xσq // A0

Bq,1∼=
��

E
•

×(1−x)// E

.

Proving that

h1(A0
•

1−xσq−−−−→ A0) = 1

is thus equivalent to proving that

h1(E
•

×(1−x)−−−−−→ E) = 1.

The latter equality follows directly from the fact that the image of the bottom
arrow in (6.2.3) is the set of φ ∈ E such that φ(1) = 0. It remains to justify
this description of this image. Let φ ∈ E be such that φ(1) = 0. We have to
prove that

γ(x) =
φ(x)

1− x

belongs to E. Note that

γ(x) =
∑
n∈Z

γnx
n where γn =

∑
k≤n

φk.

On the one hand, for any A > 0, there exists C > 0 such that, for all
n ∈ Z≤0, |φn| ≤ CAn|q−n(n−1)/2|. So, for n ∈ Z≤0,

|γn| ≤
∑
k≤n
|φk|

≤ CAn |q|−n(n−1)/2
∑
l≤0

Al |q|−l(2n+l−1)/2

≤ C ′An |q|−n(n−1)/2

where

C ′ = C
∑
l≤0

Al |q|−l(l−1)/2 <∞.
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On the other hand, the equality φ(1) = 0 implies γn = −
∑
k>n

φk. Let B,C >

0 be such that, for all n ∈ Z≥0, |φn| ≤ CBn|q−n(n−1)/2|. So, for n ∈ Z≥0,

|γn| ≤
∑
k>n

|φk|

≤ CBn |q|−n(n−1)/2
∑
l>0

Bl |q|−l(2n+l−1)/2

≤ C ′Bn |q|−n(n−1)/2

where

C ′ = C
∑
l>0

Bl |q|−l(l−1)/2 <∞.

Therefore, γ belongs to E as expected.
The case s ≤ −1 can be deduced from the case s = −1 as we did above to

deduce the case s ≥ 1 from the case s = 1. �

Lemma 6.3. — For r ∈ Z≥1, s ∈ Z and c ∈ C×, the complex

(6.3.1) K0
•

σrq−cxs−−−−→ K0

has finite dimensional cohomology and its Euler characteristic is min{0, s}.

Proof. - See [12, Section 3.2]. �

7. Proofs of Corollaries 1.3 and 1.5 via the local structure of
q-difference equations

Of course, Corollary 1.5 follows from Corollary 1.3. Section 6.2 can be easily
modified in order to obtain a proof of Corollary 1.3 by using the following two
facts. Firstly, that there exists an F ∈ GLn(C({x})) satisfying (6.0.2) is still
true according to [6, Section 6] (provided that Assumption 3.3 is satisfied).
Secondly, we need a variant of Lemma 6.1 under Assumption 3.3; such a
variant is given by:

Lemma 7.1. — For any r ∈ Z≥1, λ ∈ Z≥1 and c ∈ C× \ qZ≤−1 such that∑
k≥0

xk

1−qkc has a nonzero radius of convergence if λ = 0, the complex

A0/K0
•

xλσrq−c−−−−−→ A0/K0

has trivial cohomology.
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The proof of this lemma is an obvious variant of the proof of Lemma 6.1
and is thus left to the reader.

8. The q-de Rham complex with q-spirals of poles. Proofs of
Theorems 1.6, 1.7 and 1.8

In what follows, we use the notations of Section 1.4.

8.1. An example. — We have mentioned in Section 1.4 that

C[x, x−1]qZS
•

L−→ C[x, x−1]qZS

may have infnite dimensional H1 if S 6= ∅; here is an example.

Example 8.1. — Consider L = σq−1 and S = {1} and assume that q is not
a root of the unity. We claim that the H1 of (1.5.2) is infinite dimensional
in this case. In order to prove this, it is sufficient to prove that the infinite
dimensional sub-C-vector space of C[x, x−1]qZS given by

V = SpanC{(x− 1)−k | k ∈ Z≥1}

is in direct sum with L(C[x, x−1]qZS). Assume at the contrary that

V ∩ L(C[x, x−1]qZS) contains a nonzero element g(x) and consider f(x) ∈
C[x, x−1]qZS such that

g(x) = L(f(x)) = f(qx)− f(x).

This functional equation together with the fact that g(x) has a pole at 1 imply
that f(x) has at least one pole on qZ. Let qi+ be the greater power of q which
is a pole of f(x); then qi+ is a pole of f(qx) − f(x) = g(x), so i+ = 0. Let
qi− be the least power of q which is a pole of f(x); then qi−−1 is a pole of
f(qx)− f(x) = g(x), so i− = 1. The inequality i− > i+ is absurd. The reader
interested in equations of the form f(qz)− f(z) = g(z) with f(x), g(x) ∈ C(x)
is referred to [2] and to the references therein.

8.2. Proof of Theorem 1.6. — Without loss of generality, we can and will
assume that, for any s, s′ ∈ S, we have s′/s 6∈ qZ\{0}. For any i, j ∈ Z≥0 such
that i ≤ j, we consider the sub-C-vector space of C[x, x−1]qZS given by

Ei,j = {f(x) ∈ C[x, x−1]qZS | the poles of f(x) belong to q{i,...,j}S}.

It isn easily seen that L induces a C-linear morphism

L : Ei,j → Ei−n,j .
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We claim that, if an(x) does not vanish on qi−nS and if a0(x) does not vanish
on qjS, then the following morphism of complexes is a quasi-isomorphism :

(8.1.1) Ei−1,j−1
•

��

L // Ei−n−1,j−1

��
Ei,j
•

L // Ei−n,j

,

where the vertical arrows are the inclusions. Indeed, (8.1.1) is a quasi-
isomorphism if and only if the C-linear morphism

(8.1.2) Ei,j/Ei−1,j−1 → Ei−n,j/Ei−n−1,j−1

induced by L is an isomorphism. In order to prove the injectivity of (8.1.2),
we have to prove that any f(x) ∈ Ei,j such that L(f(x)) ∈ Ei−n−1,j−1 actually
belongs to Ei−1,j−1, i.e., that such an f(x) has no pole on qiS ∪ qjS. Assume
at the contrary that f(x) has a pole at some qis ∈ qZS then an(x)f(qnx)
has a pole at qi−ns but none of a0(x)f(x), . . . , an−1(x)f(qn−1x) has a pole
at qi−ns, therefore L(f(x)) has a pole at qi−ns and this contradicts the fact
that L(f(x)) ∈ Ei−n−1,j−1. Similarly, assume at the contrary that f(x) has
a pole at some qjs ∈ qZS then a0(x)f(x) has a pole at qjs but none of
a1(x)f(qx), . . . , an(x)f(qnx) has a pole at qjs, therefore L(f(x)) has a pole
at qjs and this contradicts the fact that L(f(x)) ∈ Ei−n−1,j−1. The fact
that (8.1.2) is an isomorphism now follows from the fact that Ei,j/Ei−1,j−1
and Ei−n,j/Ei−n−1,j−1 are finite dimensional C-vector spaces having the same
dimensions.

Since DRalg(L,S, d) is the inductive limit of the complexes

(8.1.3) Ei,j
•

L−→ Ei−n,j

as i → −∞ and j → +∞, we deduce that DRalg(L) is quasi-isomorphic to
(8.1.3) for i small enough and j large enough. It remains to prove that (8.1.3)
has finite dimensional cohomology and to compute its Euler characteristic.
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To this purpose, consider the exact sequence of complexes :

(8.1.4) C[x, x−1]
•

��

L // C[x, x−1]

��
Ei,j
•

��

L // Ei−n,j

��
Ei,j/C[x, x−1]

•

L // Ei−n,j/C[x, x−1]

But, according to Proposition 2.1, the top complex in (8.1.4) has finite dimen-
sional cohomology with Euler characteristic

v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L).

The bottom complex in (8.1.4) has finite dimensional cohomology with Euler
characteristic

dimCEi,j/C[x, x−1]− dimCEi−n,j/C[x, x−1]

= (j − i+ 1)dm− (j − i+ n+ 1)dm = −ndm.

Therefore, the middle complex in (8.1.4) has finite dimensional cohomology
and its Euler characteristic is equal to

v0(a0(x))− deg(an(x))− irr0(L)− irr∞(L)− ndm.

8.3. Proof of Theorem 1.7. — The morphisms (1.6.1) are isomorphisms
if and only if the quotient complex

(8.1.5) DRan(L, [qZS], d)/DRalg(L, qZS, d) =

O[qZS],d/C[x, x−1]qZS,d
•

L−→ O[qZS],d/C[x, x−1]qZS,d

has trivial cohomology. But, the inclusion O ↪→ O[qZS],d induces an isomor-
phism

O/C[x, x−1] ∼= O[qZS],d/C[x, x−1]qZS,d.

It follows that (8.1.5) has trivial cohomology if and only if the complex

DRan(L)/DRalg(L) = O/C[x, x−1]
•

L−→ O/C[x, x−1]

has trivial cohomology if and only if the morphisms (1.0.2) are isomorphisms.
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8.4. Proof of Theorem 1.8. — Arguing as in the proof of Theorem 1.7, we
see that the quotient complex DRan(L, [qZS], d)/DRalg(L, qZS, d) has finite
dimensional cohomology if and only if DRan(L)/DRalg(L) has finite dimen-
sional cohomology and that, in this case,

χ(DRan(L, [qZS], d)/DRalg(L, qZS, d)) = χ(DRan(L)/DRalg(L)).

Since DRalg(L, qZS, d) and DRalg(L) have finite dimensional cohomology,
we get that DRan(L, [qZS], d) has finite dimensional cohomology if and only
DRan(L) has finite dimensional cohomology and that, in this case,

χ(DRan(L, [qZS], d))− χ(DRalg(L, qZS, d))

= χ(DRan(L))− χ(DRalg(L)).

A

Cohomology and duality

This appendix contains results about the effect of duality on cohomology.
These results are well-known but we have not been able to find suitable ref-
erences with complete proofs with the exact hypotheses we need. The results
and proofs below are straightforward extensions of results and proofs in Serre’s
[16].

A.1. Algebraic duality. — Consider a complex

M : · · · f−2−−→M−1
f−1−−→M0

•

f0−→M1
f1−→ · · ·

of C-vector spaces. Its dual is

M∗ : · · ·
f∗1−→M∗1

f∗0−→M∗0
•

f∗−1−−→M∗−1
f∗−2−−→ · · ·

Then H i(M∗) and H−i(M)∗ are isomorphic, more precisely a C-linear iso-
morphism is given by

H i(M∗) = ker(f∗−i−1)/ im(f∗−i)
∼−→ (ker(f−i)/ im(f−i−1))

∗ = H−i(M)∗

u mod im(f∗−i) 7→ ˜u| ker(f−i)(A.0.1)

where ˜u| ker(f−i) is the map induced by u on ker(f−i)/ im(f−i−1).
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Moreover, this isomorphism is natural in the sense that, for any morphism
ϕ :M→N , we have the commutative diagram :

H i(N ∗)

Hi(ϕ∗)
��

// H−i(N )∗

H−i(ϕ)∗

��
H i(M∗) // H−i(M)∗

where the horizontal arrows are given by (A.0.1). In particular, we see that ϕ
is a quasi-isomorphism if and only if ϕ∗ is a quasi-isomorphism.

A.2. Topological duality. — Consider a complex

M : · · · f−2−−→M−1
f−1−−→M0

•

f0−→M1
f1−→ · · ·

of topological C-vector spaces (the Mi are topological C-vector spaces and the
fi are linear continuous). Its topological dual is

M′ : · · ·
f∗1−→M ′1

f∗0−→M ′0
•

f∗−1−−→M ′−1
f∗−2−−→ · · ·

where M ′i is the topological dual of Mi.
We have a C-linear morphism (where H−i(M) is endowed with its quotient

structure)

H i(M′) = ker(f∗−i−1)/ im(f∗−i) → (ker(f−i)/ im(f−i−1))
′ = H−i(M)′

u mod im(f∗−i) 7→ ˜u| ker(f−i)(A.0.2)

where ˜u| ker(f−i) is the map induced by u on ker(f−i)/ im(f−i−1).
Moreover, this morphism is natural in the sense that, for any morphism ϕ :

M→N of complex of topological C-vector spaces, we have the commutative
diagram :

H i(N ′)

Hi(ϕ∗)
��

// H−i(N )′

H−i(ϕ)∗

��
H i(M′) // H−i(M)′

where the horizontal arrows are given by (A.0.2).

Lemma A.1. — Assume that

– for any subspace V of M−i, the restriction morphism M ′−i → V ′ is sur-
jective (according to [8, Corollary 1, Chapter 2, 6, p.55], this holds true
if Mi is locally convex);

– f−i is a homomorphism (in the sense of [8, Definition 2, Chapter 1, 3,
p.16]).
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Then, (A.0.2) is a C-linear isomorphism.

Proof. — Let us prove that (A.0.2) is injective. Let u mod im(f∗−i) be in
the kernel of (A.0.2). Then, u ∈ ker(f∗−i−1) ⊂ M ′−i vanishes on ker(f−i). So
u induces ũ ∈ (M−i/ ker(f−i))

′. Moreover, since f−i is a homomorphism, it

induces an isomorphism of topological C-vector spaces f̃−i : M−i/ ker(f−i)→
im(f−i). Then, w := ũ ◦ f̃−i

−1
∈ im(f−i)

′ satisfies u = w ◦ f−i. Now any
extension v ∈ M ′−i of w satisfies u = f∗−i(v) ∈ im(f∗−i) and this concludes the
proof of the injectivity of (A.0.2).

The proof of the surjectivity is easy and left to the reader.

In what follows, we use the terminology “LF” from [8, Definition 4, Chap.
4, Part 1, 5, p. 146]

Lemma A.2. — Let E,F be two (LF)-topological C-vector spaces and let
f : E → F be continuous linear. If im(f) has finite codimension in F , then f
is an homomorphism and im(f) is closed in F .

Proof. — Since the quotient of a (LF)-topological C-vector spaces by a closed
subspace is a (LF)-topological C-vector spaces, up to replacing E by E/ ker(f)
and f by the map E/ ker(f)→ F induced by f , we can and will assume that f
is injective. Let Z be a supplement of im(f) in F . Since Z is Hausdorff finite
dimensional, E ×Z endowed with the product topology is a (LF)-topological
C-vector spaces. Consider the surjective continuous linear map g : E×Z → F ,
(x, y) 7→ f(x) + y. According to [8, Theorem 2, 1), Chap. 4, Part 1, 5, p.
148], g is an homomorphism in the sense of [8, Definition 2, Chapter 1, 3,
p.16] meaning that the map E/ ker(g) → F induced by g is an isomorphism
of topological C-vector spaces. But g is injective, so g is an isomorphism
of topological C-vector spaces, so im(f) = g(E × {0}) is closed in F and
g|E×{0} : E × {0} → im(f), (x, 0) 7→ f(x) is an isomorphism of topological
C-vector spaces, whence the result.

Lemma A.3. — Consider a complex

N : · · · g−2−−→ N−1
g−1−−→ N0

•

g0−→ N1
g1−→ · · ·

of (LF)-topological C-vector spaces (the Ni are topological C-vector spaces
and the gi are linear continuous). Assume that

– the ker(gi) are (LF)-topological C-vector spaces;
– N has finite dimensional cohomology.

Consider a complex

M : · · · f−2−−→M−1
f−1−−→M0

•

f0−→M1
f1−→ · · ·
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of vector spaces and a morphism ϕ : M → N . Then, ϕ∗ : N ′ → M∗ is a
quasi-isomorphism if and only if ϕ is a quasi-isomorphism.

Proof. — We have the commutative diagram

H i(N ′)

Hi(ϕ∗)
��

∼= // H−i(N )′

H−i(ϕ)∗

��
H i(M∗)

∼= // H−i(M)∗

where the top (resp. bottom) horizontal arrow is given by (A.0.2) (resp.
(A.0.1)). The fact that the top arrow is an isomorphism follows from Lemma
A.1 and Lemma A.2. Moreover, H−i(N ) is finite dimensional (by hypothesis)
and Hausdorff (because im(g−i−1) is closed in ker(g−i) in virtue of Lemma
A.2), so H i(N )′ = H i(N )∗. Therefore, we get that ϕ∗ is a quasi-isomorphism
if and only if, for all i ∈ Z, H−i(ϕ)∗ : H−i(N )∗ → H−i(M)∗ is an isomorphism
if and only if, for all i ∈ Z, if H−i(ϕ) : H−i(M)→ H−i(N ) is an isomorphism
if and only if ϕ is a quasi-isomorphism.
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