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Abstract. — This paper is concerned with the algebraic and analytic ¢-
de Rham complexes attached to linear g-difference operators with Laurent
polynomial coefficients over the field of complex numbers. There is a natural
morphism from the former to the latter complex. Whether or not it is a quasi-
isomorphism, i.e., whether or not the induced morphisms on the corresponding
cohomology spaces are isomorphisms is the basic question considered in the
present paper. We study this question following three distinct approches. The
first one is based on duality, and leads to a direct connection between the
problem considered in the present paper and the convergence of formal series
solutions of g¢-difference equations. The second approach is sheaf theoretic,
based on growth considerations. The third one relies on the local analytic
theory of g¢-difference equations. The paper ends with an extension of our
results to variants of the above ¢g-de Rham complexes when certain g-spiral of
poles are allowed. Our study includes the case |g| = 1.
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1. Introduction - Content of the paper

Let ¢ be a nonzero complex number which is not a root of the unity and
let o, be the g-dilatation operator acting on a function f(z) of the complex
variable x by

(04f)(x) == f(g).



ON THE ALGEBRAIC AND ANALYTIC ¢-DE RHAM COMPLEXES 3

x We consider a linear g-difference operator
L =ap(x)oy + -+ a1(x)og + ao(x)

with coefficients ag(z),a1(z), ..., an(r) € Clx, 271 such that ag(x)a,(z) # 0.
We let L act on f(x) as follows :

L(f)(z) = an(x) f(¢"x) + - + a1(z) f(qz) + ao(2) f (z).

We attach to L its algebraic and analytic ¢-De Rham complexes respectively
given by
DR™(L) = Clz,2~'] & Clz,2™"] and DR (L)=0 %0

where O is the ring of analytic functions over C* (the symbol e denotes the
term of degree 0). This paper is concerned with the cohomology spaces

U pais(L) == H(DR™(L)) and  Hpgan (L) := H'(DR*(L)).
The inclusion C[z, 27 !] < O induces a morphism of complexes
(1.0.1) DR™(L) — DR (L).

Whether or not this is a quasi-isomorphism, i.e., whether or not the induced
morphisms of cohomology spaces

(1.0.2) o pats (L) = Hppan (L)

are isomorphisms is the basic question considered in the present paper. This is
a quantization of questions addressed by Deligne in [4, I1.6] about connections
on algebraic varieties (see also Grothendieck’s [7]).

Along the way, we will study the dimensions of the above cohomology
spaces. We emphasize that the algebraic ¢-de Rham complex DR9(L) has
finite dimensional cohomology spaces and that its Fuler characteristic can be
computed explicitly (see Proposition 2.1 in Section 2). This finiteness prop-
erty is not necessarily true for DR**(L) when |¢q| = 1; we will come back to
this bellow.

A classical approach to study this kind of questions is to use perturbative
methods in Banach algebras theory. This has been done by Bézivin in [1]
when |g| # 1, inspired by anterior works of Malgrange and Ramis notably
about linear differential equations (see [10, 11] and the references therein).
We will not say much about this approach; instead, the aim of this paper is
to present alternative approaches, that we shall now describe.



4 J. ROQUES

1.1. An approach via duality. — Whatever the method used to study the
morphism (1.0.1), it turns out that the conditions ensuring that (1.0.1) is a
quasi-isomorphism is closely related to the convergence of the formal solutions
of the dual g-difference operator

n
LY = Zqiiaqﬂ'ai(aj).
=0

The first part of this paper gives an a priori reason for this, inspired by
Chiarellotto’s work in [3] on p-adic differential equations. More precisely,
let us introduce the local analytic and formal ¢-De Rham complexes of LY at
0 respectively given by

DR§(LY) = C({x}) *= C({#}) and  DRJ"™(LY) = O((x)) *= C((x))

where C({x}) is the field of germs of analytic functions at 0 € C and C((z))
is the field of formal Laurent series. The inclusion C({z}) < C((z)) induces
a morphism of complexes DRE"(LY) — DRgorm(LV) and, hence, morphisms
of cohomology spaces

(1.0.3) HY(DREV(LV)) — H'(DR{"™(LY)).
We introduce similar complexes at oo :

DRE(LY) = C({z ™)) LS ey

and
DRE™(L) = C((z™")) = C((z™")).
The inclusion C({z~!}) < C((#7!)) induces a morphism of complexes
DR™(LY) = DRIZ™(LV) and, hence, morphisms of cohomology spaces
(1.0.4) HY(DR™(LY)) — HY(DRIo™(L")).
Our first result is :

Theorem 1.1. — The following properties are equivalent :

— the complex DR (L) has finite dimensional cohomology spaces;
— the complexes DRI (LY) and DR (LY) have finite dimensional coho-
mology spaces.

If these spaces are finite dimensional, then their Fuler characteristics are re-
lated by the formula

(1.1.1) x(DR™(L)) — x(DR"(L)) =
X(DRET™(LY)) = x(DRG™(LY)) + X(DRE™(LY)) = x (DR (L))

and the following properties are equivalent
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— the morphisms (1.0.2) are isomorphisms;
— the morphisms (1.0.3) and (1.0.4) are isomorphisms.

In the above theorem, we have implicitly used the fact that DRI™(LV)

and DRC{grm(LV) have finite dimensional cohomology spaces; this follows from
Bézivin’s [1, Proposition 2.7], which also gives an explicit formula for the Euler
characteristics of these complexes.

Here is a first consequence of Theorem 1.1 in the case |¢| > 1 (the case
lg| < 1 can be deduced from the case |¢| > 1 by viewing L as a ¢~ !-difference
operator).

Corollary 1.2. — Assume that |q| > 1. The following properties are equiva-
lent :

(i) the morphisms (1.0.2) are isomorphisms;
(i) L has no positive slope at 0 and oco;
(iii) the irregularity numbers irrg(L) and irroo(L) of L at 0 and co are equal
to 0.

The slopes mentioned in Corollary 1.2 are the slopes of the Newton polygons
of L in the sense of Sauloy’s [14] for instance. The Newton polygon Ny(L) of
L at 0 is the convex hull in R? of

{(i,7) | i € Z and j > vo(an—i)},

where vy denotes the z-adic valuation. This polygon is made of two vertical

half lines and of k vectors (ri,di),...,(rk,dr) € Zso X Z having pairwise
distinct slopes A\ = ‘Z—i, ce A = f—:, called the slopes L at 0. The integer r;

is called the multiplicity of \;. We define the irregularity number irro(L) of L
at 0 as the sum of the positive slopes of the Newton polygon of L at 0 counted
with multiplicity, i.e.,

k
irrg(L) = Zri max{\;,0}.
=0

Notice that
irrg(L) = vo(ag) — min{vg(a;) | i € {0,...,n}}.

We have similar notions and notations at oc.

Here is a second consequence of Theorem 1.1 which is now concerned with
the case |¢| = 1. It relies on a technical assumption introduced by Di Vizio in
[5].

Corollary 1.3. — Under the Assumption 3.3 stated in Section 3.3, the mor-
phisms (1.0.2) are isomorphisms.
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We emphasize that Assumption 3.3 is generically satisfied and has nothing
to do with the signs of the slopes of L. This is in strong contrast with the case
lg| # 1. This is very similar to the differences between complex differential
equations and their p-adic counterparts.

We also have the following consequences of Theorem 1.1 concerning the
Euler characteristics of DR*(L) and DR™9(L).

Corollary 1.4. — If |q| > 1, then the compleves DR (L) and DR (L)
have finite dimensional cohomology and their Euler characteristics are given

by
X(DR (L)) = vo(ao(x)) — deg(an())
and
X(DR“lg(L)) = vg(ap(x)) — deg(an(z)) — irrg(L) — irreo(L).
So,
X(DRY™(L)) — x(DR™(L)) = irrg(L) + irreo (L).

Corollary 1.5. — Assume that |q| = 1 and that the Assumption 5.3 stated
in Section 3.3 is satisfied. Then, the complexes DR™(L) and DRY(L) have
finite dimensional cohomology and their Euler characteristics are given by

X(DR™(L)) = x(DR™(L)) = vo(ao(x)) — deg(an(x)) — irro(L) — irrec(L).

Note that if |¢] = 1 but that Assumption 3.3 is not satisfied, then
HY'(DR® (L)) may be infinite dimensional; see Section 3.4 for an example.

1.2. A sheaf theoretic approach based on growth considerations.
— When |g| # 1, the slopes of L involved in Corollary 1.2 are intimately
related to the growth of the solutions of L. The following question is thus
natural : is there a direct proof of the fact that (1.0.2) is an isomorphism
if L has no positive slopes relying on growth considerations ? A positive
answer is given in Section 4. Our starting point is the interpretation the g-de
Rham cohomology spaces HY pan (L) and Hjj patg (L) as the hypercohomology
of complexes of sheaves on the curve E, = C*/¢%:

Hippen (L) = H(Ey, 2%°"(L)) and Hi pu, (L) = H (Eq, 22" (L))

where 2% (L) is the “analytic ¢-de Rham complex of sheaves” and where
2%°"°4(L) is the “moderate analytic ¢-de Rham complex of sheaves” of L
introduced in Sections 4.1 and 4.2 respectively. More precisely,

@%an(L) :A(Z’I’L £>Aan
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where A" = m,(Ocx) is the direct image by the projection 7 : C* — E, of
the sheaf Ocx of analytic functions on C*. Moreover,

@%an,mod(L) :Aan,mod £>Aan,mod

where A% ig the subsheaf of A" whose sections have moderate growth at 0
and co; see Section 4.2 for the precise definition. The inclusion A%mod <, An
induces a morphism

(1.5.1) 2%°"m(L) — 9 (L)

and the fact that the morphisms (1.0.2) are isomorphisms is equivalent to
the fact that (1.5.1) is a quasi-isomorphism. It turns out that it is possible
to prove that the latter morphism is indeed a quasi-isomorphism if L has no
positive slope by using simple growth considerations.

Unfortunately, we have not been able to find a similar proof in the case

lq| = 1.

1.3. An approach relying on the local structure of ¢-difference equa-
tions. — In Sections 6 and 7, we give alternative proofs of Corollaries 1.2,
1.3, 1.4 and 1.5 based on the fact that any g¢-difference module is, analyti-
cally at 0, the successive extension of “simple” g-difference modules, namely
of g-difference modules attached to g-difference operators of the form

r s
O'q Cx

for some ¢ € C*, r € Z>; and s € Z (when |g| = 1, we assume that Assump-
tion 3.3 stated in Section 3.3 is satisfied). The spirit of this proof is closed to
Deligne’s [4, 11.6].

1.4. The ¢-de Rham complexes with g-spirals of poles. — In the
last section of the paper, we extend our results to more general g-de Rham
complexes, when rational functions more general than Laurent polynomials
are allowed.

1.4.1. The algebraic case. — A finite subset S of C* being given, we denote
by Clz, 2™, zs the localization of Clz, z™'] at ¢%8, i.e.,

(1.5.2) Clz,2 Y,zs = Clz,2 7 [{(z — s)7' | s € ¢%S}].

It is natural to wonder whether the complex

(1.5.3) Clz, 2 Y25 = Cla,a ™z

has finite dimensional cohomology. If S = (), the answer is positive since
(1.5.3) coincides with DR¥I(L) in this case; unfortunately, if S # (), then the
H! of (1.5.3) may be infinite dimensional (see Example 8.1 in Section 8.1).
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However, a natural filtration of Clx,z~!] 42s is given by the sequence of
sub-Clz, 2~ !]-algebras (C[z, 2 ] 25 4)a>0 where
C[l}mil]qzs,d = {f(JI) € C[xvxil}qzs |
f(z) has at most poles of order d on ¢Z2S}.
For any d € Z>(, we attach to L the complex
DR(L,¢%S,d) = Clz,2 " 254 = Clz,2 254

and denote the corresponding cohomology spaces by
braia(L,q*S, d) := H'(DR"(L,¢"S, d)).
We have :

Theorem 1.6. — The complex DR“ZQ(L,qZS,d) has finite dimensional co-
homology spaces and its Fuler characteristic is given by
X(DR™(L,q%S.d)) = X(DR"(L)) — ndm

= vo(ap(z)) — deg(an(x)) — irrg(L) — irroe (L) — ndm
where m = #(S mod ¢%).

1.4.2. The analytic case and a comparison theorem. — We consider the
Clxz, 7 1]-algebra O42s),0 of meromorphic functions on C* having finitely

many poles, all in ¢Z8 and of order < d. For any d € Z>q, we attach to L the
complex

an L

DR™(L,[q”S],d) = Oyzs,4 — Opzs).a

and denote the corresponding cohomology spaces by
HiDR‘m (Lv [qZS]> d) = HZ(DRan(La [qZ8]7 d))
The inclusion
C[.CU, l‘il]qz&d — (D)[qZS},d

induces a morphism of complexes

DR™(L,q*S,d) = DR™(L, [¢*S], d)
and, hence, morphisms of cohomology spaces
(1.6.1) ot (L, q2S,d) — Hppan (L, (¢S], d).

Theorem 1.7. — The morphisms (1.6.1) are isomorphisms if and only if the
morphisms (1.0.2) are isomorphisms.

Theorem 1.8. — The following properties are equivalent :
— the complex DR (L, [¢%S], d) has finite dimensional cohomology spaces;
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— the complex DR (L) has finite dimensional cohomology spaces.

If these spaces are finite dimensional, then their Euler characteristics are re-
lated by the formula

X(DR™ (L, [¢%S),d)) — x(DR™(L,q*S,d))
= x(DR™(L)) = x(DR"(L)),

X(DR™(L, [¢8],d)) = X(DR™(L)) — ndm

1.5. Organization of the paper. — In Section 2, we show that DR9(L)
has finite dimensional cohomology spaces and we compute its Euler charac-
teristic. Section 3.1 is devoted to the proof of Theorem 1.1. This proof uses
some general results about the effect of (algebraic or topological) duality on
the cohomology of complexes of vector spaces; these results are recalled in
Appendix A. Corollaries 1.2 and 1.4 (resp. Corollaries 1.3 and 1.5) are then
proved in Section 3.2 (resp. Section 3.3). In Section 3.4, we give an example
of L and ¢ (necessarily of norm 1) such that H'(DR% (L)) is infinite dimen-
sional. Section 4 contains a sheaf theoretic proof of the implication (i7) = (i)
of Corollaries 1.2 relying on simple growth considerations. Section 5 is an
interlude on g¢-difference systems : we introduce the ¢-de Rham complexes
attached to ¢-difference systems and we make a link beteween the properties
of the ¢-de Rham complex of a g-difference operator and the properties of the
g-de Rham complex of the associated system. In Sections 6 and 7, we give al-
ternative proofs of Corollaries 1.2, 1.3, 1.4 and 1.5 relying on the local analytic
classification of g¢-difference modules. In Section 8, we study the complexes
DRYI(L,q%S,d) and DR (L, [¢%S],d); we prove Theorems 1.6, 1.7 and 1.8.

2. Study of the complex DRYI(L)

Proposition 2.1. — The complex DR™9(L) has finite dimensional cohomol-
ogy and its Fuler characteristic is given by

x(DRY(L)) = vo(ao(x)) — deg(an (x)) — irrg(L) — irreg (L).
Proof. - For any (_,{, € Z, let V,_,, be the finite dimensional sub-C-
vector space of C[z, 21| given by
Vi o, ={P €Clz,a ]| (- <v(P) < deg(P) < {4}
The operator L induces a C-linear morphism
L:Ve oo = Vo 4d_ui+dy

where
d_ = min{vg(ag),...,vo(an)}
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and
d4+ = max{deg(ap), . .., deg(a,)}.
We claim that, for /_ small enough and ¢4 large enough, the following
morphism of complexes is a quasi-isomorphism :

(2.1.1) Vi 1,01 Ve vd 410 4di—1 5
[ ]
J’ L
Vi_ e, Vi_td_p+ds
[ ]

where the vertical arrows are the inclusions. Indeed, (2.1.1) is a quasi-
isomorphism if and only if the C-linear morphism

(2.1.2) Vo oo /Ve s1,-1 = Vi ta_yvd /Ve_+d_+104+dy—1

induced by L is an isomorphism. Setting, for any ¢ € {0,...,n},
dy
a;i(z) = Z a; ja’,
j=d_

we have, for any f(x) = Z?ig_ fiz? €Vi_y,,

n d+ . Z+ .. . d++e+
L)) =D (Y a@) (D fig7a?) = D bpa™
i=0 j=d_ j=0_ m=d_+0_
where
n
b= Y aiafsq”.
=0 a+L=m

In particular,

n
i
ba_ o = Dpe_ E aid_q"
=0
and

n
14
bd++€+ = Dey Z Qi dy ql +.
1=0

This clearly implies that (2.1.2) is an isomorphism if and only if " ja; 4 g
and Y7 aid, ¢*“+ are nonzero; this holds true if /_ is small enough and if £,
is large enough. This justifies our claim.

Since DR®9(L) is the inductive limit of the complexes

L
(213) VE_,£+ — W_er_ ,f++d+
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as {_ — —oo and £, — 400, we deduce that DRI (L) is quasi-isomorphic to
(2.1.3) for £_ small enough and ¢, large enough. It follows that DR9(L) has
finite dimensional cohomology and that

X(DR™(L)) = x(2.1.3) = dim¢ Vp_ ¢, — dimc Vy_ta_ ¢, +a, = d— — ds.
We conclude the proof by noticing that

d_ — dy = min{vg(agp),...,vo(a,)} — max{deg(ap),...,deg(ay)}
=vo(ap(x)) — deg(an(x)) — irrg(L) — irreo(L).

because
irrg(L) = vo(ap) — min{vg(a;) | i € {0,...,n}}
and
irro (L) = — deg(ay,) + max{deg(a;) | i € {0,...,n}}.
g

We refer to [13, Proposition 2.5.4] for a similar result for g-difference mod-
ules.

3. Proofs of Theorem 1.1, Corollaries 1.2, 1.3, 1.4 and 1.5 via
duality

3.1. Proof of Theorem 1.1. — We let Ay (resp. A ) be the ring of germs
at 0 (resp. oo) of analytic functions on a punctured neighborhood of 0 (resp.
). We let Ko = C({z}) (resp. Koo = C({x'})) be the field of germs of
meromorphic functions at 0 (resp. oo). We have the C-linear isomorphism
(3.0.1) ¢:0/Clr,z '] = Ay/Ko® Aso/ Koo

F+Cla™] = (f+ Ko f+ Kx)

and the commutative diagram

0/Clz, 7] 0/Clz,z7 ] ,

ol =

Ao/ Ko ® Aso/ Koo 225 Ag/ Ko @ A/ Koo

whence an isomorphism
(3.0.2) HY(DR™(L)/DRY(L))
~ HF(Ag/Ko 2 Ao/ Ko) ® H* (Ao /Koo 2 Aso/Koo).



12 J. ROQUES

In order to prove the first assertion of Theorem 1.1, it is thus sufficient to
prove that

Ao/Ko % Ao/Ko (resp. Aso/Koo 25 Ase/Koo)

has finite dimensional cohomology if and only if DR} (LY)/DRA™ (L") (resp.

DRIZ™(LV)/DR™(L")) has finite dimensional cohomology. Let us prove this
equivalence at 0, the proof at oo being similar. In this respect, we can and will
assume that the coefficients of L are in Clz]. We have a C-linear isomorphism

Ao/KO = HO/H[O} with Hy = A()/Oo and H[O] e K()/OQ

where Oyp = C{z} is the ring of germs of analytic functions at 0 (resp. o).
Since L has coefficients in C[z], L acts on Hg and Hp, and these actions
induce the action of L on A/ K above.

On the one hand, we have the C-linear isomorphism

¢ Hpgy = CI[t]]
u Zu(wik*l)tk,

where H, EB] denotes the dual of Hy, and the isomorphism of complexes

(3.0.3) Hiy ——Hyy
vi% =l

where L* denotes the dual of the C-linear map L : Hjgy — Hpj. Since
C[[t]] , C[[t]] has finite dimensional cohomology (see [1, Proposition 2.3]),

the isomorphism (A.0.1) ensures that H L Hp has finite dimensional co-

homology as well and that

X(C[[t]] == ClH) = —x(Hg = Hig).

On the other hand, we can and will identify Hy (as a C-vector space) to the
C-vector space of holomorphic functions on C* U {oco} vanishing at co. We
endow Hj with its usual structure of Fréchet space (see [8, Chapter 4, Part 1,
2, Example f)] for instance) and denote by H|, its topological dual. Note that
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L acts continuously on Hy. We have the C-linear isomorphism

~

1/J:H6 —  C{t}

u»—>z_k1

k>0
and the isomorphism of complexes
) L /
(3.0.4) H) ——— H|

TN |

city L ol

The first part of Lemma A.3 applied to

N =Hy & Hy

implies that HO L Hp has finite dimensional cohomology if and only if

C{t} C{t} has finite dimensional cohomology and that, in this case,

we have

X(C{t} = C{t}) = ~x(Ho = Ho).

That we can apply Lemma A.3 necessitates some explanations. Firstly, Hy
is a Fréchet space, so any closed subspace of Hy is Fréchet as well, and the
first hypothesis of Lemma A.3 is satisfied. Secondly, we have to prove that, if

C{t} r, C{t} has finite dimensional cohomology, then Hg L, Hy has finite

dlmensmnal cohomology as well. To prove this, we recall that we can identify
Hj (as a C-vector space) to the C-vector space of holomorphic functions on
C* U {oo} vanishing at co. So, we can identify Hy with the topological dual
C{t} of the locally convex topological C-vector space C{t}, an isomorphism
being given by

~

qb:Ho — C{t}/

Zakx_k mod Oy +— Z by t? — Zak+1bk

k>1 k>0 k>0
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We have the following isomorphism of complexes

Hy —~— H,

oo |

city L5 iy

The first part of Lemma A.3 ensures that, if the complex C{t} LN C{t}

has finite dimensional cohomology, then Hg L Hy has finite dimensional
°

cohomology as well, as expected.
Using what precedes, we see that the following properties are equivalent:

— DR{™(LY)/DR&"(L") has finite dimensional cohomology;
— DRE™(LY) has finite dimensional cohomology;

— Hy L Hy has finite dimensional cohomology;

— Ho/Hj) L Hy/Hg) has finite dimensional cohomology;

— Ap/Ky L Ap/ Ky has finite dimensional cohomology.

(For the first equivalence, we have used the fact that DRgorm (L) has finite
dimensional cohomology according to [1, Proposition 2.3].) We have a similar
statement at co. Therefore, DR (L)/DR™9(L) has finite dimensional coho-

mology if and only if DR{”"™(LY)/DRS" (L") and DRLZ™(LY)/ DR (L)
have finite dimensional cohomology and, in this case, we have

X(DR™(L)/DR™(L)) =
X(DR§™(LY)/DRG™(LY)) + x(DREI™(LY) /DRI (L))

The first part of Theorem 1.1 follows from this and from the fact that the
complexes DR (L), DRI”™ (L) and DRLZ™ (L") have finite dimensional
cohomology spaces (see Proposition 2.1 for the first complex, and [1, Propo-
sition 2.3] for the latter two complexes).
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Let us now prove the second part of Theorem 1.1. Putting (3.0.3) and
(3.0.4) together, we obtain the following morphisms of complexes

c[f)] == (1]

)

Y =~
* L* *
Hyp —— Hp

S
1%
R

= 1p_1

cit) L cit)

where ¢ is given by the restriction. The map ¢ oro01 ™! is simply the inclusion
i: C{t} — CJ[[t]]. So

* L *

is a quasi-isomorphism. But, if DRgOTm (LY)/DRE™(LY) has finite dimensional
cohomology, we have already seen that the hypotheses of Lemma A.3 are
satisfied by

M = Hy = Hg), N = Hy = Hy
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and ¢ = j : Hyg) < Hy the inclusion. Therefore, (3.0.5) is a quasi-isomorphism
if and only if

(3.0.6) Hyy —=> Hy

is a quasi-isomorphism and this concludes the proof of the theorem.

3.2. Proof of Corollaries 1.2 and 1.4. — We assume that |¢| > 1. Ac-
cording to [1, Proposition 2.7], DRgorm(Lv)/DRgn (L) has finite dimensional
cohomology,

(3.0.7) HY(DRI""™(LY)/DR"(LY)) = 0

(3.0.8) dim H'(DR{”™(LY)/DRE"(L")) =
max{—vo(a;) | i € {1, - ,n}} +vo(ag) = irro(L).
We have a similar result at oo.

Using Theorem 1.1, we obtain that DR (L)/DR™9(L) has finite dimen-
sional cohomology and that

X(DR™(L)/DR™(L)) = irro(L) + irreo(L).

But, according to Proposition 2.1 proven in Section 2, DRI(L) has finite
dimensional cohomology and its Euler characteristic is given by

X(DR™(L)) = vo(ao(x)) — deg(an(x)) — irrg(L) — irreo (L),

so DR* (L) has finite dimensional cohomology as well and the equality
X(DR™(L)/DR™I(L)) = x(DR* (L)) — x(DR™9(L)) concludes the proof of
Corollary 1.4.

Moreover, Theorem 1.1 ensures that the morphisms (1.0.2) are isomor-
phisms if and only if the morphisms (1.0.3) and (1.0.4) are isomorphisms if and
only if HY(DR™™(LY)/DRS"(LY)) = 0 and H'(DRLZ™(LY)/DR™(LV)) =
0 for i € {0,1} if and only if (in virtue of (3.0.7) and (3.0.8)) irro(L) =
irroo (L) = 0. This concludes the proof of Corollary 1.2.

3.3. Proof of Corollary 1.3. — We assume that ¢ has norm 1 but is not
a root of the unity.
Consider a ¢-difference operator

P = bn(x)ag + -+ bi(z)og + bo(x)
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with coefficients by(z), b1(z),...,by(x) € Ko = C({x}) such that by(x)b,(x) #
0. Let d > 1 be the least common denominator of the slopes of P at 0 and
let g4 be a d-th root of ¢. We can see P as the g4-difference operator Py with
integral slopes at 0 given by

Py =bp(z)od + - + by (x)o? + bo(z)

where a:fil = z. Following [5, Section 2.2], to any slope A of P; at 0, we
associate a characteristic polynomial char(Py, \; X) € C[X]| whose complex
roots are called the exponents of the slope A of P;. The set of these exponents
is denoted by Expg(Py, A) C C*.

Definition 3.1 ([5, Definition 2.5]). — We say that P is admissible at 0 if,

for any slope X of Py at 0, for any two a,b € Expy(Py, \) such that ab~! & quo
the series

7

I
_ k=1
>0 1 —qjab
has a nonzero radius of convergence.
We say that P is very admissible at 0 if (04 — 1)P is admissible at 0.

Proposition 3.2. — We make the following two assumptions :
— the series Zk>0ﬁ has a mnonzero radius of convergence, where

(@@r=01-a)1-¢*) - (1-d");
— P is very admissible at 0.

Then, for any f(z) € C((x)) :
P(f(z)) = g(z) € Ko = Ko.

Proof. - 1If g = 0, this follows from [5, Corollary 2.11]. If g # 0, then we
have M(f(x)) =0 where M is the ¢-difference operator given by

M = (g — g(qz)/g(x))P.

The fact that P is very admissible at 0 implies that M is admissible at 0 and
the result follows from [5, Corollary 2.11] again. O

Of course, we have similar notions and facts at co. We now make the
following assumption :

Assumption 3.3. — We assume that
— q has norm 1 but is not a root of the unity;
— the series Zkzo ﬁ has a mnonzero radius of convergence, where
(Gar=01-a)1-¢*) - (1-d");
— LY (or, equivalently, L) is very admissible at 0;
— LY (or, equivalently, L) is very admissible at oo.
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Proposition 3.2 (and its variant at co) ensures that
HY(DR{™™(LY)/DR§"(LY)) = HY(DRL™(LY)/DRL(LY)) = 0.
Moreover, as in the case |q| > 1, we have
H'(DR{™™(LY)/DR§"(L)) = H'(DRL™(LY)/DRZ(L)) = 0.

(The proof of [1, Proposition 2.3] works as soon as ¢ is not a root of the unity.)
Now, Corollary 1.3 follows immediately from Theorem 1.1.

Moreover, according to Proposition 2.1 proven in Section 2, DRI (L) has
finite dimensional cohomology and its Euler characteristic is given by

X(DR™(L)) = vo(ap(z)) — deg(an(z)) — irrg(L) — irreo (L),
so DR (L) has finite dimensional cohomology as well and

X(DRY™(L)) = x(DR™(L)) = vg(ag(z)) — deg(an(x)) — irrg(L) — irreo (L).

3.4. An example with infinite dimensional H!(DR®(L)). — Consider
g € C* such that the series Zkzo % is divergent. Consider the operator
L =qog—1;s0 LY = o, " —1. We claim that H'(DR®"(L)) is infinite dimen-
sional. According to Theorem 1.1, it is sufficient to prove that H'(DR"(L"))

is infinite dimensional. It is thus sufficient to find an infinite dimensional
sub-C-vector space of K\ which is in direct sum with LY(Kj). We claim that

V = Spanc{(l —s2)7! | s € Z>o}

is such a sub-C-vector space of Ko. Indeed, consider g(z) = >, grak €
VN LY(Kp) and f(z) =30 frx® € Ko such that

g(z) = LY (f(2)) = f(¢"'z) - f(z).

We have fi, = q_%’“_l. If g(z) is nonzero then |by| tends to +oo as k tends to

+00; since Y ;g % is divergent, this implies that >, frz® is divergent,

whence a contradiction. So g(z) = 0, as expected.

4. A moderate sheaf theoretic proof of (ii) = (i) in Corollary 1.1

In this section, we assume that |¢| > 1 and we give another proof of the fact
that, if L has no positive slopes at 0 and oo, then the morphisms (1.0.2) are
isomorphisms. This new proof is more analytic in nature than the one given
in the previous Section and based on growth considerations.
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4.1. First step : the analytic ¢-De Rham cohomology as hyperco-
homology of sheaves. — We consider the quotient E;, = C*/ ¢% and we
denote by 7 : C* — E, the corresponding quotient map. We endow E, with
its structure of Riemann surface.

We denote by Ocx the sheaf of analytic functions on C* and we let

A" =1, (Ocx)
be the sheaf on E; whose sections over U C E, are the analytic functions on
T H(U).
Proposition 4.1. — The sheaf A is acyclic.

Proof. - First note that, for i > 1, R'm.(A™) = 0. Indeed, this is the
sheaf associated to the presheaf U — H (7 1(U),O¢x). If ( = w(a) € E,
and if U = 7w(D(a,¢)) is a small neighborhood of ¢, then 7= 1(U) is the
disjoint union of small discs and these small discs are Stein, whence
Hi(m=Y(U),0cx) = 0 and, hence, Rim,(A") = 0 as claimed. It follows
that HY(C*,0¢x) = H'(Eg, A%) (see [9, Chapter III, Exercise 8.1]) and,
C* being Stein, we have H(C*,O¢x) = 0. O

We consider the complex of sheaves on E, given by
DA (L) = A™ L, pon,
Since A" is acyclic with global sections Q, we get :
Corollary 4.2. — We have
H'(Eq, 2%°™(L)) = Hpygan (L).
4.2. Second step : the algebraic ¢-De Rham cohomology as hyper-
cohomology of sheaves (moderate analytic ¢-de Rham cohomology).
— We let A»™m°d be the subsheaf of A whose sections have moderate
growth at 0 and co. A section of A%™°? on an open subset U of E, is an

f € A(U) such that, for any relatively compact subset K of U, there exist
Ck 0, Nk, such that, for all z € 77 1(K) N D(0,1),

|f ()] < Crola| V0
and there exist Ck o, Nk 0o such that, for all z € 77 1(K) N C\ D(0,1),

|f(2)] < Ot ool Vo,

Proposition 4.3. — The sheaf A% s acyclic with global sections
Clz,z7 Y.
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Let us first prove some preliminary results. We denote by A%/fmod the
sheaf on E, defined as follows : a section of Adiff:mod on an open subset U of
E,isaC® function”) f : 771(U) — C with moderate growth at 0 and oo, i.e.,
such that, for any relatively compact subset K of U, there exist Ck o, Nk
such that, for all z € 771(K) N D(0,1),

|/ ()] < Ol
and there exist C o, Nk 0o such that, for all z € 7= 1(K) N C\ D(0,1),
[f(@)] < Cr ool Moo,

Lemma 4.4. — For any g € A%TMd(E,), there exists f € A%S/mod(E,)
such that (f) = g.

Proof. - For any g € A%//mod(E ) there exist go € A%//Md(E,) with
support in D(0,1) and go, € A%//mod(E,) with support in C\ D(0,1/2) such
that ¢ = go + goo. S0, by linearity of the O-equation, it is sufficient to treat
the case when ¢ has support in D(0,1) or C\ D(0,1/2). Using the the change
of variable z — 1/(2x), we see that it is sufficient to treat the case when g has
support in D(0,1). Since, for any n € Z, we have 2"9(f) = d(2"f), we can
moreover assume that g is bounded at 0. We consider

cr—(C D0, T —C
which is well-defined for any x € C. We claim that this f has the expected
properties. Since g is bounded and since, for x € D(0,2),

1 _ 1 _ 1
L) ]MAMg/ﬁ md@AM:Z; L \dw A d) <

(mﬂx—ﬂ mwﬂ — (] (mHM
and, for z ¢ D(0,2),

/] 1\@Am3/ 1d¢ A | < oo,

mmﬂx—d (

we see that f(z) is bounded as well. It remains to prove that f is C>° on C*
and satisfies 9(f) = g. Consider 29 € C* and choose ¢ > 0 small enough so
that 0 & D(x0,2¢). We consider a decomposition g = g; + go where go is a C*®
function on C* which is 0 on D(zg, €) and g; is a C* function on C which is
0 on C\ D(xo,2¢). So f = fi1 + f2 where

mwz/ 9 g p i
D(0,m)

)

r—=C

(W Here and in what follows, by C* function we mean a C* function of the real variables
u,v where x = u + iv.
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for an arbitrary n > 1 such that D(xp,e) C D(0,n). We have

92(0 s
- I25) qe A d
(%) /D(o,m\D(xo,e)w—C CAde

and, for x € D(xg,€/2) and ¢ € D(0,n)\D(zo,€), we have |g;7£?| < ||g2|]oc2e .
It follows that fo is holomorphic on D(xg,€/2), i.e., fo is C* and satisfies
d(f2) = 0 on D(xg,€/2). Moreover, since g; is C*° on C with compact
support, it is classical that f; is C* and satisfies d(f1) = g1 on D(zg,€/2).
Hence, f is C* on D(xg,¢/2) and 9(f) = g on D(wg,€/2). O

Lemma 4.5. — We have the exact sequence

(4.5.1) 0 — Aanmod _, gdiffmod 9, pdiffmod _, ()

Proof. - The only non trivial point is the surjectivity of Adif fmod
Adiff:mod — GQince, for any ¢ € E,, the natural map Adlff’mad(Eq)
(.Adif f ’mOd)C is surjective, the result is a direct consequence of Lemma 4.4. [J

Ll

Lemma 4.6. — The sheaf A% fmod s fine, and, hence, acyclic.

Proof. - This is a direct consequence of the existence of C* partitions of
the unity subordinated to any open covering of C*. These partitions of the
unity are bounded and, hence, are global sections of A%ffmod

Proof of Proposition 4.3. - Combining Lemma 4.5 and Lemma 4.6, we get
that (4.5.1) is an acyclic resolution of A%™°? 5o

Hi(Eq’Aan,mod) — Hi(Adiff,mod(Eq) i Adiff,mod(Eq))

and the result follows from Lemma 4.4. [

We will use the following immediate consequence of Proposition 4.3. Con-
sider the complex of sheaves on E, given by

g%an,mod(L) :Aan,mod £>Aan,mod'

Corollary 4.7. — We have
H' (Eq, 22™"Y(L)) = Hp paty (L)
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4.3. Third and last step. — In the following proofs, we use the notations
0 1 o .- 0 0
0 0 1 - 0 0
A= : : € GLy(C(2))
0 0 o .- 0 1
—% _& 6 ., _8n=2 _ On-1
Qn an an an an

and p = a,. Moreover, we consider the matricial g-difference operator
V =p(o, — A)
acting on
F(z) = (fu(x), fa(x), ..., fulz))"
by
V(F)(z) = p(z)(F(qz) — A(z)F(2)).
Lemma 4.8. — Let ( € E, and g € (Aa"’m"d)g. If L has no positive slope,
then any f € (A™)¢ such that L(f) = g actually belongs to (AP,

Proof. - We will only prove that f has moderate growth at 0, the proof at
oo being similar. The functions

F(z) = (f(x), f(gz), ..., f(g"'2))" and G(z) = (0,...,0,9(x))"
satisfy V(F') = G. Of course, G has moderate growth at 0. We have to prove
that F' has moderate growth at 0.

The hypothesis relative to the slopes of L ensures that A~! has analytic
coeflicients near 0.

Let a € (. It is easily seen that there exist M € R~q, ng, N, Ng € Z~o,
with N > Ng, n €]0, 1], such that:

— for all o € Ujez._, D(ag’/,ng’), |A(z)~ 1\ <M,

— for all v € Ujez._,, Dl(ag’,ng’), |A(z) "' G(x)/p(z)] < |z[~Ne,

— for all z € UjezganD(an,nqj), M|q|=™ + |z|N~Ne <1, and,

— for all z € D(ag=™,ng~™), |F(x)| < |z|~.

We claim that |F(z)| < |z|~ for all x € UjezginOD(aqj,nqj). In order
to prove this, we set Fj = F|p(qq—ing—s) and we will prove by induction on
j > no that |Fj(z)| < |z|™" for all z € D(ag™7,mg™7). The result is true for
j = ng. Assume that it is true for j = ng,...,ng + k for some k& > 0. Then,
the equality

Frg+it1(z) = A(@) ™ Frgrr(qz) — Ae) 7 G(2) /p(x)

)

implies

| Fages1 (2)] < Mlga| ™ + |2[7N¢ = |27V (Mg] ™ + |2V N¢) < Ja| 7.
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0

Lemma 4.9. — Let C € Eq. For any g € (Aa")o there erists f c (‘A(m)f
such that g — L(f) belongs to (A*mod)..

Proof. - Consider
G(z) = (0,...,0,g(x))".
We have to prove that there exists F' € (A*")¢ such that G — V(F') belongs
to (Aa”’”wd)?. Indeed, such an F' has the form

F(z) = (f(2), f(gz),.... f(d" ")) "
and f(z) is such that g — L(f) belongs to (A¥med)..

Let a € C* such that ¢ = w(a). Let € > 0 be such that G €
A (m(D(a,€)))”, and such that the eventual zeroes of p and the even-
tual poles of A and A~! in UjezD(aq’,eq’) belong to (.

Let N > 0 be such that {aq’ | j € Z, |j| > N} does not contain any zero
of p or pole of A or A~ L.

We let Gy be the function defined by Gy = G on UjS_ND(aqj,eqj) and
Go = 0 on Uj>_ni1D(ag’,eq?). We let Goo be the function defined by
Gso = G on szND(aqj, €¢’) and Go = 0 on UjSN,lD(aqj, €¢’). We consider
the decomposition G = Gy + Goo + (G — Gy — G). Since G — Gy — G
belongs to (A‘m’"wd)?, it is sufficient to prove that there exists Fy € (A")¢
and Foo € (A")¢ such that V(Fy) = Gy and V(Fix) = Ge. But, it is
easily seen that the unique function F, such that FOO|Uj§ND(aqj7qu) =0 and

V(Fs) = G has the required properties. We have a similar construction for
Fy. O

Lemma 4.10. — If L has no positive slope, then the morphism of complexes
DROUL) — DR™(L) given by the inclusion of sheaves A™™™mod < Aon
s a quasi-isomorphism.

Proof. - The statement means that the morphism of complexes
PR L) — D% (L)
induces isomorphisms
(4.10.1) HE (D4 L)) — W (227 (L))

on the cohomology sheaves for k =0, 1.
For k = 0, this means that, for any ( € E; and any f € (A%")¢ such that
L(f) = 0, we have f € (A¥»™d).. This is a direct consequence of Lemma 4.8.
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The fact that (4.10.1) is injective for k = 1 follows from Lemma 4.8 again.
Moreover, it follows from Lemma 4.9 that, for any ¢ € E,4, any element of
HY (D% (L)), is an equivalence class that can be represented by an element
of (A9mmod) . whence the surjectivity of (4.10.1) for k=1. O

We are now ready to conclude the proof of the fact that (i) = (7) in Corol-
lary 1.2. Indeed, Lemma 4.10 ensures that the morphism Z2%™°4(L) —
D% (L) given by the inclusion of sheaves A%™°d < A induces an iso-
morphism

]I-]Ik(Eq, DR L)) = Hk(Eq, DA (L)).
Corollary 4.2 and Corollary 4.7 conclude the proof.

5. Equations vs systems

So far, we have considered (scalar) g-difference operators. In the next sec-
tion, we will consider matricial g-difference operators. The present section in-
troduces some notations and contains basic results about matricial ¢-difference
operators.

and

5.1. Matricial ¢-difference operators. — A matrix A € GL,,(C(z))
) being

a Laurent polynomial p € C[z,z~!] such that pA € M, (C[z,z}]
given, we consider the matricial g-difference operator
Vap=plog—A)
acting on
F(z) = (fi(e), f2(x), .., ful2))"
by
Vap(F)(z) = p(x)(F(gr) — A(z)F(z)).
We attach to V4, its algebraic ¢-De Rham complex given by
v
DRY(V 4,) = Clz,z™1]" =% Clz, 21"

and its analytic ¢-De Rham complex given by
DR™(V.4,) = 0" Yar, gn,
This corresponding cohomology spaces are denoted by
Hi pas(Vayp) = H(DR™(V 4,)) and Hppan(Vay) = H(DR™(Vap)).

Remark 5.1. — We consider p(o, — A) instead of 04 — A because we want
an operator acting on Clz,z7!] and Q.
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5.2. From ¢-difference operators to matricial ¢-difference operators.
— To a given g-difference operator

L =an(x)oy] + -+ a1(x)og + ao(x)

with coefficients in a,(z),...,a1(z),ap(z) € Clz,r~!] such that ag(z)a,(v) #
0, we attach the matrix

0 1 0 0 0

0 0 1 0 0
(11 Ap=1| i i : : € GL(C(x))

0 0 o - 0 1

~% a4 ., _On=2  On-d
an [« 2 an an an

and the operator
Vi=Va,a, =an(og—AL).
Note that a function f(x) satisfies L(f)(z) = 0 if and only if
F(z) = (f(2), f(gz), ..., f(¢""x))"
satisfies V1 (F')(z) = 0. Conversely, a function
F(z) = (fi(), fa(@), .., ful@)
satisfies V(F)(x) = 0 if and only if f(z) = fi(x) satisfies L(f)(z) = 0 and
F(z) = (fi(), fo(@), . fa(@) " = (F(@), F(q2), . f(g" " o))
Therefore, the map
f@) = (f(2), flgz),..., f(g" "))
induces an isomorphism
HY, parg (L) = HY 5ty (V7).
Actually, we have :

Lemma 5.2. — The complex DR™I(L) has finite dimensional cohomology if
and only if DRY(V 1) has finite dimensional cohomology. In this case, we
have

dim HY 51, (V) = dim HY 5., (L)
and
dim H}, paty (V) = (n — 1)length(ay,) + dim H}, pay (L)
where length(a,) = deg(a,) — vo(an).
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Proof. - We consider the morphism of complexes given by

L Clz, 2]

‘| |»

Clz,z71? Ve an(z)Clz, 271" & Clz, 2]

where

o f e (f(2), flgx),. . f(@" )T and = f = (0,...,0, /)"

We claim that this is a quasi-isomorphism. Indeed, the fact that ¢ induces
an isomorphism on the H is a consequence of the discussion preceding the
Lemma. It remains to prove that ¢ induces an isomorphism on the H'. For

F(z) = (fi(2), fa(2),- .., ful2))" € Cla,a™']",

we have

Vi(F)(2) = (an(@)(fi(gz) = f2(2)); -, an (@) (fa-1(gx) — fu(x)), ).
It follows that, for any G = (g1,...,9n-1,9n) € Clz,27!]", there exists an
F(z) € Clz,z7!]" such that

Vi(F)(z) = (an(x)g1(2), . . ., an(x)gn1(z), %) .

So, G — V(F) is in the image of v and, hence, v is surjective on the H!.
Moreover, assume that
(5.2.1) (f) = VL(F(z))
= (an(2)(f1(gz)—f2(2)), - - s an(@) (fa-1(g2) = fu(@)); an fu(@)+- - +ao(2) fo(x)) T
for some f € Clz,z7!] and F(x) € Clz,z~!". Setting g(z) = fi(z), we

have fi(z) = g(¢" tx) and f(2) = anfn(®) + an_1fo1(x) +---+ao(z) fo(z) =
L(g)(z). So ¥(f) is in the image of L and %) is injective on the H'.

It follows that

HY o (V1) = HY(Clz, 27" 22 4, (2)Clz, 27" & Clz, 2 ) & V

> [} pag(L) &V

where V is a complement of a,(x)C[z,z~1]""! in C[z,z7!]""!, whence the
desired result. [J

With variants of the previous proof, we obtain the following results.

Lemma 5.3. — Lemma 5.2 remains true when the algebraic g-de Rham co-
homology is replaced by the analytic g-de Rham cohomology.
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Lemma 5.4. — Let R be a Clz, z™(0q,0,")-module. Assume that the mul-
tiplication by an(x) gives a bijection R — R. Then, the complexes
RLY R and R"YL R

are quasi-isomorphic.

6. Proofs of Corollaries 1.2 and 1.4 via the local structure of
g-difference equations

In this section, we assume that |¢| > 1 and we give proofs of Corollaries 1.2
and 1.4 using basic results about the local analytic structure of g-difference
systems at 0.

6.1. Proof of Corollary 1.2. — We are going to prove that (i) = (i) in
Corollary 1.2; the rest of the proof of Corollary 1.2 is a consequence Corollary
1.4 that will be proved in the next Section. We assume that L has no positive
slope. We have to prove that the complex

Q/Clz,z™ 1] EN 0Q/Clz,z7

has trivial cohomology. Starting as in Section 3.1, we see that it is equivalent
to prove that the complexes

Ay/Ko 5 Ag/Ko and Ao/ Koo 2 Ase /Koo

have trivial cohomology. Let us prove this for the first complex, the proof for
the second complex being similar. According to Lemma 5.4, it is equivalent
to prove that the complex

(6.0.1) (Ao/Ko)" 55 (Ao/Ko)"

has trivial cohomology. According to [6, Section 6], there exists F €
GL,(C({z})) such that

(6.0.2) F[A] = F(qz)A(z)F(z)~ ' =
0 0 0 A

where each A; € GL,,(C(z)) is the companion matrix (5.1.1) associated to

the g-difference operator oyl — ¢ for some ¢; € C*, r; € Z~g and s; € Z

and where each U; ; belongs to Mat,, ,, (M(C)). We can and will moreover
assume that ¢; & qZS—l. The s;/r; are the slopes of L, so the s; are < 0.
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The fact that the complex (6.0.1) has trivial cohomology is equivalent to
the fact that each

(Ao/Ko)" T2 (Ag/Ko)"

has trivial cohomology, and, according to Lemma 5.4, this is equivalent to the
fact that

t—cxti

Ao/KO Uq—) Ao/KO

has trivial cohomology. Thus, the following lemma concludes the proof of
Corollary 1.2.

Lemma 6.1. — For anyr € Z>1, A € Z>o and ¢ € C* \ ¢%<-1, the complex

AqyT

Ao/ Ko =% Ao/ Ko

has trivial cohomology.

Proof. — Replacing ¢ by ¢", we can assume that » = 1. We set
P= :L’)‘O'q —c.

We have to prove that the following morphism is a quasi-isomorphism

(6.1.1) Ko~ Ky,

]

Ay —— Ap

where the vertical arrows are the inclusion.

Let us first assume that A > 0. Up to replacing z by ¢'/*z for some s-th
root ¢'/* of ¢, we can and will assume that ¢ = 1. We consider the morphisms
of complexes

(6.1.2) C{z} —L~C{z} and C{z}—L>C{z}
Ao P A(] AO F AO

where i : C{z} — Ay is the inclusion and r : Ag — C{x} is given, for any
f(@) =3 1ez apx® € Ag, by

r(f(x)) = Z apz®.
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We claim that ¢ is an equivalence of homotopy, and that r is an inverse up
to homotopy of i; in particular, this implies that i is a quasi-isomorphism.
Indeed, we have r o i = idg(,). Moreover, we consider the C-linear map

H: Ay — Ag defined, for any f(z) = ..z apz® € Ay, by

H(f)= ) b

where

k—X k—X_k—2\ k—X_k—2X\_k—3X

by =ar+q  Cag_x+ ¢ ¢ Tag_an +q ¢ T ag_3n+ -+

A straightforward calculation shows that
HoP =idy, —ior

This proves our claim.
The proof in the case A = 0 is similar by considering

H(f)= Y ——ak.

k
—c
k<—1 q

Using similar arguments, one can prove that

P

(6.1.3) Clx) Clz} |

| Lj

Cc({z}) == Cc({z})

where j : C{x} — C({z}) is the inclusion, is a quasi-isomorphism.
The fact that (6.1.2) and (6.1.3) are quasi-isomorphisms imply that (6.1.1)
is a quasi-isomorphism. O

6.2. Proof of Corollary 1.4. — Using the notations of Section 6.1, we see
that it is sufficient to prove that the complexes

(6.1.4) Ao/ Ko TE4 A0 T Ky

have finite dimensional cohomology with Euler characteristics max{0, s;} (in-
deed, using (3.0.2), this implies that the Euler characteristic of DR (L)/DR¥ (L)
is equal to the sum of the Euler characteristics of the complexes (6.1.4), i.e.,

to Zle max{0, s;}, plus a similar term at oo; this gives irrg(V) + irro (V) as
expected). Therefore, the following two lemmas conclude the proof.
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Lemma 6.2. — Forr € Z>1, s € Z and c € C*, consider the complex
(6.2.1) Ag 2 Ay,
We have :
— the HY of (6.2.1) has dimension
e s ifs>0;

e 1if (s=0 andcc q?);

e 0ifs<0or(s=0andcdq?);
— the H' of (6.2.1) has dimension

e 0ifs>0o0r(s=0andcdq?);

e 1if (s=0andccq?);

e —5s s15<0.

In particular, the complex (6.2.1) has finite dimensional cohomology and its
FEuler characteristic is s.

Proof. - This is inspired by [15, Lemmas 4.7 and 4.8] and [12, Section 2.3.1
and 3.2]. Replacing ¢ by ¢", we can and will assume that » = 1. We set

P=o0,—ca®.

Note that f = > ,cz fra® € Ao satisfies P(f) = 0 if and only if, for all
ke,

qkfk = ka—sa
if and only if, for all k,j € Z,
frjs = q" ¢ fi.
On the one hand, this formula shows that, if s < 0, then ) | k>0 frz® is divergent

except if f = 0; so, H°((6.2.1)) = 0 in this case. On the other hand, the same
formula shows that, if s > 0, then H°((6.2.1)) has dimension s, a basis being

given by the series
S e

JEZ

751'(1'2*1)

for k € {0,...,s —1}.

The case s = 0 is easy and left to the reader.

It remains to study H'((6.2.1)).

We first assume that s > 0. Note that the C-linear automorphism f(x) —
f(c_l/sx) of Ay conjugates o, — cx® to 0, — x°. So, we can and will assume
that ¢ = 1.

We first consider the case s = 1. In order to prove that H'((6.2.1)) = 0, it
is sufficient to prove the following two properties :
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L. for any g = > ;5 bpx® € C{x}, there exists f = > k>0 arr® € C{x}
such that P(f) = g;
2. for any g = > 5 brr® holomorphic on C* U {00}, there exists f =
> k<0 apx® holomorphic on C* U {oo} such that P(f) = g.
Let us prove 1. Let us first note that the series
=S¢ n(i+1) =25 pnt
j=0
satisfies
P(yp) = 2",
Therefore, for any g = Zkzo bk € C{x}, the series given by
= Y banle) = gt
n>0 £>0

with

_ (k=n)(k—n+1) _ k(k+1) n(n—1)
ap = Z bnq ™ n(k— n+1) 2 =q 5 Z bng =
n<k n<k

satisfies
P(f) =g
Moreover, if A, B > 0 are such that |b,| < AB" for all n > 0, then |aj| <

Zﬁ:o AB™. Tt follows that f(x) € C{z}. This concludes the proof of 1.
Let us prove 2. Let us first note that the series

=3 gty S
j<—1
satisfies
P(5,) = z™.
Therefore, for any g = >, bz holomorphic over C* U {oo}, the series

= Z bpon(z) = Z apz®

n<0 k<0
with
C Y e 5
n>k+1 nSEL
satisfies
P(f)=g.

Moreover, if A, B > 0 are such that |b,| < AB" for all n > 0, then |aj| <
ZZ:O AB™. Tt follows that f(x) € C{z~!}. The functional equation P(f) =g
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implies that f is actually holomorphic over C*U{oo}. This concludes the proof
of 2.
We now consider the case s > 1. We have

s—1

L A/

A = P4
i=0

where A{ is the subring of Ay made of the functions of z°. Note that each
z' A}, is stable by o, — cz?®, so

s—1
H' (Ag == Ag) = (P H' (2" A = 27 A)).
° =0 °

Moreover, for any i € {0,...,s — 1}, we have the isomorphism of complexes

q'ogs—x

A Aoy

@lg ~
S
/

i 79T
.

©

where ¢ is the C-linear isomorphism given by
0:A) = z'Af
fl@) = a'f(z®).

It follows from the case s = 1 treated previously that
H'(z' Al 2% 27 AL) = 0

whence the desired result.

The case s = 0 is easy and left to the reader.

It remains to study the case s < 0. As in the case s > 0, we can and will
assume that ¢ = 1.

We first study the case s = —1. We consider the g-Borel-Ramis transfor-
mation defined by

~

(6.2.2) BQJ : AO — F
n f” n
Do fua Y ot
neZ neZ

where E is the set of ¢(x) = Y, .z dn2™ € Ag such that :

— for all A > 0, we have ¢, = O(A"q "("~D/2) as n — —o0;
— there exists B > 0, such that ¢, = O(B"¢q ™"~ 1/2) as n — +o0.
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It gives rise to the isomorphism of complexes

(6.2.3) Ay — A

Proving that

W (Ag —25 Ag) = 1

is thus equivalent to proving that

The latter equality follows directly from the fact that the image of the bottom
arrow in (6.2.3) is the set of ¢ € E such that ¢(1) = 0. It remains to justify
this description of this image. Let ¢ € E be such that ¢(1) = 0. We have to
prove that

belongs to E. Note that

V(&) =) na" where v, = Y .

nez k<n

On the one hand, for any A > 0, there exists C' > 0 such that, for all
n € Z<o, |¢n| < CA™ g """1/2|. So, for n € Z<,

k<n

< CA" |q|fn(n71)/2 Z Al ‘q|fl(2n+lfl)/2
<0

< O’ A™ ‘q|—n(n—1)/2

where

Cl _ CZAI ’q|fl(l71)/2 < 00.
<0
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On the other hand, the equality ¢(1) = 0 implies 7, = — > ¢%. Let B,C >
k>n

0 be such that, for all n € Z>g, |¢n| < CB"|q~™=1/2| So, for n € Z>,

"7n| < Z |¢k|

k>n
< oB" ’q‘—n(n—l)/Q Z Bl |q’—l(2n+l—1)/2
>0
< C'B" ‘q’—n(n—l)/Q

where
C/ — CZBI |q‘—l(l—1)/2 < 0.
>0
Therefore, v belongs to F as expected.
The case s < —1 can be deduced from the case s = —1 as we did above to

deduce the case s > 1 from the case s =1. [J

Lemma 6.3. — Forr € Z>1, s € Z and c € C*, the complex

ol —cx®

(6.3.1) Ko —+— Ky
has finite dimensional cohomology and its Euler characteristic is min{0, s}.

Proof. - See [12, Section 3.2]. O

7. Proofs of Corollaries 1.3 and 1.5 via the local structure of
g-difference equations

Of course, Corollary 1.5 follows from Corollary 1.3. Section 6.2 can be easily
modified in order to obtain a proof of Corollary 1.3 by using the following two
facts. Firstly, that there exists an F' € GL,(C({z})) satisfying (6.0.2) is still
true according to [6, Section 6] (provided that Assumption 3.3 is satisfied).
Secondly, we need a variant of Lemma 6.1 under Assumption 3.3; such a
variant is given by:

Lemma 7.1. — For any r € Z>1, A € Z>1 and c € C* \ ¢%<-1 such that
Zkzo 17“7:;,% has a nonzero radius of convergence if A =0, the complex

AT

Ao/ Ko =25 Ao/ Ko

has trivial cohomology.
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The proof of this lemma is an obvious variant of the proof of Lemma 6.1
and is thus left to the reader.

8. The g-de Rham complex with ¢-spirals of poles. Proofs of
Theorems 1.6, 1.7 and 1.8

In what follows, we use the notations of Section 1.4.

8.1. An example. — We have mentioned in Section 1.4 that

Clz, x_l]qzs EN Clz, x_l}qzs

may have infnite dimensional H' if S # (; here is an example.

Example 8.1. — Consider L = 0,—1 and S = {1} and assume that q is not
a root of the unity. We claim that the H' of (1.5.2) is infinite dimensional
in this case. In order to prove this, it is sufficient to prove that the infinite
dimensional sub-C-vector space of Clz, x_l]qzs given by

V =Spanc{(z —1)7% | k € Z>1}

is in direct sum with L(Clz,z7 ' z5). Assume at the contrary that
V N L(Clz, 27 ,zs) contains a nonzero element g(x) and consider f(z) €
Clz, 27 ,zs such that

9(x) = L(f(2)) = fqz) — f(x).

This functional equation together with the fact that g(x) has a pole at 1 imply
that f(x) has at least one pole on q%. Let ¢+ be the greater power of q which
is a pole of f(x); then ¢'+ is a pole of f(qx) — f(x) = g(x), s0o iy = 0. Let
q'= be the least power of q which is a pole of f(x); then ¢'~—1 is a pole of
flgx) — f(x) = g(x), so i = 1. The inequality i > i is absurd. The reader
interested in equations of the form f(qz) — f(2) = g(z) with f(x), g(z) € C(x)
is referred to [2] and to the references therein.

8.2. Proof of Theorem 1.6. — Without loss of generality, we can and will
assume that, for any s, s’ € S, we have s'/s ¢ ¢“\ {0}, For any 4,5 € Z>q such
that i < j, we consider the sub-C-vector space of Clz, 7] z5 given by

Eij={f(z) e C[x,x_l]qzs | the poles of f(z) belong to ¢{*}S}.
It isn easily seen that L induces a C-linear morphism

L: Ei,j — Eifn,j-
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We claim that, if a,(x) does not vanish on ¢'~"S and if ag(x) does not vanish
on ¢’S, then the following morphism of complexes is a quasi-isomorphism :

L
(8.1.1) Ei1j1—=FEin-1j-1,
|,
Eij Ei—n,j

where the vertical arrows are the inclusions. Indeed, (8.1.1) is a quasi-
isomorphism if and only if the C-linear morphism

(8.1.2) Eij/Ei-1j-1 = Ei—nj/Ei—n-1,-1

induced by L is an isomorphism. In order to prove the injectivity of (8.1.2),
we have to prove that any f(z) € E; j such that L(f(x)) € E;—p—1 -1 actually
belongs to E;_1 1, i.e., that such an f(z) has no pole on ¢’‘SU¢’S. Assume
at the contrary that f(x) has a pole at some ¢'s € ¢2S then a,(z)f(q"x)
has a pole at ¢ ™s but none of ag(z)f(x),...,an_1(z)f(¢" 'z) has a pole
at ¢'~"s, therefore L(f(z)) has a pole at ¢"~"s and this contradicts the fact
that L(f(z)) € Ei—n—1,—1. Similarly, assume at the contrary that f(z) has
a pole at some ¢/s € ¢%S then ag(z)f(z) has a pole at ¢/s but none of
a1(z)f(qx),...,an(x)f(¢"z) has a pole at ¢’s, therefore L(f(z)) has a pole
at ¢’s and this contradicts the fact that L(f(z)) € Ei_n—1j-1. The fact
that (8.1.2) is an isomorphism now follows from the fact that E; ;j/E;_1 j_1
and E;_,, j/E;_n—1,—1 are finite dimensional C-vector spaces having the same
dimensions.
Since DR™I(L, S, d) is the inductive limit of the complexes

(8.1.3) Eij & Eing

as i — —oo and j — +o0o, we deduce that DR™I(L) is quasi-isomorphic to
(8.1.3) for ¢ small enough and j large enough. It remains to prove that (8.1.3)
has finite dimensional cohomology and to compute its Euler characteristic.
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To this purpose, consider the exact sequence of complexes :

L

(8.1.4) Clz,z7!]

Clz,z7!]

Eij

E/L*nmj

E;;/Clz,a™ "] —5> Ei_p;/Cla, 2]

But, according to Proposition 2.1, the top complex in (8.1.4) has finite dimen-
sional cohomology with Euler characteristic

vo(ao(z)) — deg(an(x)) —irrg(L) — irreo (L).

The bottom complex in (8.1.4) has finite dimensional cohomology with Euler
characteristic

dimg E; j/Clz, 2 '] — dimg E;_,, ;/Clz, 7]
=(—i+1dmn—(j—i+n+1)dmn=—ndm.

Therefore, the middle complex in (8.1.4) has finite dimensional cohomology
and its Euler characteristic is equal to

vo(ao(z)) — deg(an(x)) — irrg(L) — irreo (L) — ndm.

8.3. Proof of Theorem 1.7. — The morphisms (1.6.1) are isomorphisms
if and only if the quotient complex

(8.1.5) DR™(L,[¢%S),d)/DR™(L,¢%S,d) =

_ L _
Oyzs1.4/Cla, v zs,q = Opzs)a/Clz, 2254

has trivial cohomology. But, the inclusion O < Qjzs) 4 induces an isomor-
phism
0/Cla, 2] = Oyzg).4/Cla, 27 25 4

It follows that (8.1.5) has trivial cohomology if and only if the complex
DR™(L)/DR™(L) = 0/Clz,2"'] & 0/Clz,z ]

has trivial cohomology if and only if the morphisms (1.0.2) are isomorphisms.
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8.4. Proof of Theorem 1.8. — Arguing as in the proof of Theorem 1.7, we
see that the quotient complex DR (L, [¢2S],d)/DR™(L,q%S,d) has finite
dimensional cohomology if and only if DR (L)/DR¥(L) has finite dimen-
sional cohomology and that, in this case,

X(DR™(L,[¢*S),d)/DR™(L, ¢S, d)) = x(DR™(L)/ DR (L)).

Since DR™I(L,q%S,d) and DR®I(L) have finite dimensional cohomology,
we get that DR™(L, [¢%S], d) has finite dimensional cohomology if and only
DR**(L) has finite dimensional cohomology and that, in this case,

X(DR*™(L,[q*S],d)) — x(DR™(L, ¢*S,d))
= x(DR*"(L)) — x(DR"9(L)).

A
Cohomology and duality

This appendix contains results about the effect of duality on cohomology.
These results are well-known but we have not been able to find suitable ref-
erences with complete proofs with the exact hypotheses we need. The results
and proofs below are straightforward extensions of results and proofs in Serre’s
[16].

A.1. Algebraic duality. — Consider a complex
M2 Iy oo B

of C-vector spaces. Its dual is

r x fx fx
Mz T g By e e 22

Then H'(M*) and H %(M)* are isomorphic, more precisely a C-linear iso-
morphism is given by

H' (M) = ker(f2;_y)/im(fZ;) = (ker(f-;)/im(f-i-1))" = H™ (M)
(A.0.1) u mod im(f*;) mg;(f/_i)

where m@» is the map induced by u on ker(f_;)/im(f_;—1).
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Moreover, this isomorphism is natural in the sense that, for any morphism
o : M — N, we have the commutative diagram :

HI(N*) —= H(N)*
Hi(w*)i lH‘i(@)*

where the horizontal arrows are given by (A.0.1). In particular, we see that ¢
is a quasi-isomorphism if and only if ¢* is a quasi-isomorphism.

A.2. Topological duality. — Consider a complex

M:--'ﬁ)Mfli:L)Mof—o)MlL)-”

of topological C-vector spaces (the M; are topological C-vector spaces and the
fi are linear continuous). Its topological dual is
i 9 Iz fz
Mo B gy By agg g,
L]
where M is the topological dual of M;.

We have a C-linear morphism (where H ‘(M) is endowed with its quotient
structure)

HY(M') = ker(f2;_y)/im(f%) —  (ker(f-;)/im(f-i-1)) = H (M)’
(A.0.2) u mod im(f*;) — U|I«;r\(f/,¢)

—1
where WQ(]Z) is the map induced by w on ker(f—;)/im(f_;—1).
Moreover, this morphism is natural in the sense that, for any morphism ¢ :
M — N of complex of topological C-vector spaces, we have the commutative
diagram :

HZ(./\/”) - Hﬁi(./\/‘)/

H"(w*)i lH‘i(w)*
H{(M') ——= H (M)
where the horizontal arrows are given by (A.0.2).

Lemma A.1. — Assume that

— for any subspace V' of M_;, the restriction morphism M', — V' is sur-
jective (according to [8, Corollary 1, Chapter 2, 6, p.55], this holds true
if M; is locally convez);

— f—i is a homomorphism (in the sense of [8, Definition 2, Chapter 1, 3,
p.16]).
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Then, (A.0.2) is a C-linear isomorphism.

Proof. — Let us prove that (A.0.2) is injective. Let u mod im(f*;) be in
the kernel of (A.0.2). Then, u € ker(f*, ;) C M’, vanishes on ker(f_;). So
w induces u € (M_;/ker(f—;)). Moreover, since f_; is a homomorphism, it
induces an isomorphism of topological C-vector spaces fjl : M_;/ker(f—;) —

—~ 1
im(f_;). Then, w := wo f_; € im(f_;)" satisfies u = wo f_;. Now any

extension v € M’ of w satisfies u = f*,(v) € im(f*,) and this concludes the
proof of the injectivity of (A.0.2).
The proof of the surjectivity is easy and left to the reader. O

In what follows, we use the terminology “LF” from [8, Definition 4, Chap.
4, Part 1, 5, p. 146]

Lemma A.2. — Let E,F be two (LF )-topological C-vector spaces and let
f: E — F be continuous linear. If im(f) has finite codimension in F, then f
is an homomorphism and im(f) is closed in F.

Proof. — Since the quotient of a (LF)-topological C-vector spaces by a closed
subspace is a (LF)-topological C-vector spaces, up to replacing E by E/ ker(f)
and f by the map E/ker(f) — F induced by f, we can and will assume that f
is injective. Let Z be a supplement of im(f) in F. Since Z is Hausdorff finite
dimensional, F x Z endowed with the product topology is a (LF)-topological
C-vector spaces. Consider the surjective continuous linear map g : ExZ — F,
(z,y) — f(x) +y. According to [8, Theorem 2, 1), Chap. 4, Part 1, 5, p.
148], g is an homomorphism in the sense of [8, Definition 2, Chapter 1, 3,
p.16] meaning that the map E/ker(g) — F induced by ¢ is an isomorphism
of topological C-vector spaces. But ¢ is injective, so ¢ is an isomorphism
of topological C-vector spaces, so im(f) = g(E x {0}) is closed in F and
gEx{oy : £ x {0} = im(f), (,0) = f(x) is an isomorphism of topological

C-vector spaces, whence the result. ]
Lemma A.3. — Consider a complex
NI'--EZZ)N,1 g;)Nog—())Nl g_1>
[ ]

of (LF )-topological C-vector spaces (the N; are topological C-vector spaces
and the g; are linear continuous). Assume that

— the ker(g;) are (LF )-topological C-vector spaces;
— N has finite dimensional cohomology.

Consider a complex

Mo T2 I gy o I
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of vector spaces and a morphism ¢ : M — N. Then, o* : NV — M* is a
quasi-isomorphism if and only if ¢ is a quasi-isomorphism.

Proof. — We have the commutative diagram
H'(N") —= H™'(NY
Hi(s@*)l J/Hi(w)*
Hi(M*) —= H{(M)*

where the top (resp. bottom) horizontal arrow is given by (A.0.2) (resp.
(A.0.1)). The fact that the top arrow is an isomorphism follows from Lemma
A.1 and Lemma A.2. Moreover, H *(N) is finite dimensional (by hypothesis)
and Hausdorff (because im(g_;—1) is closed in ker(g_;) in virtue of Lemma
A.2), so HY(N)' = H'(N)*. Therefore, we get that ¢* is a quasi-isomorphism
if and only if, for alli € Z, H *()* : H-Y(N)* — H~%(M)* is an isomorphism
if and only if, for all i € Z, if H () : H~*(M) — H~%(N\) is an isomorphism
if and only if ¢ is a quasi-isomorphism. O
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