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1. Introduction

These are notes for my lectures at the summer school “Abecedarian of
SIDE” held at CRM (Montréal) in June 2016. They are intended to give
a short introduction to difference Galois theory, leaving aside the technical-
ities. There already exist several nice introductory papers/surveys about
differential Galois theory, e.g. [Ber92, Beu92, VdP98, Sin09, Sau12], and
(parameterized) difference Galois theory, e.g. [HSS16, DV12]. For complete
proofs and further results concerning difference Galois theory, we refer the
reader to van der Put and Singer’s [vdPS97].

2. First steps : from classical Galois theory to difference
Galois theory

2.1. The classical Galois groups. The Galois group over Q of a polyno-
mial P (X) ∈ Q[X] can be defined as follows. We start with the base field
Q. We then consider a splitting field K of P (X) over Q i.e. a minimal field
extension of Q over which P (X) decomposes as a product a polynomials
of degree 1. Then, the Galois group of P (X) over Q is made of the field
automorphisms σ of K such that σ|Q = IdQ.

Ex. 1 — Recall why we can describe the elements of this Galois group as
the permutations of the roots of P (X) preserving the algebraic relations with
coefficients in Q between these roots. This was Galois’s original approach.

2.2. The differential Galois groups. This construction can be extended
to linear differential equations with coefficients in C(z) as follows. Instead
of a polynomial P (X) with coefficients in Q, we consider a linear differential
system

Y ′(z) = A(z)Y (z) with A(z) ∈ C(z)n×n.

The base field Q of Section 2.1 above is now replaced by the field C(z) or,
better, by the field C(z) endowed with the derivation d/dz : C(z) → C(z).
Consider some complex number z0 which is not a pole of A(z). According
to Cauchy’s theorem, there exists Y(z) ∈ GLn(C{z − z0}) such that

Y′(z) = A(z)Y(z)

(we have denoted by C{z − z0} the ring of analytic functions near z0). The
analogue of the splitting field of the polynomial P (X) over Q is the field
extension

K = C(z)(Y(z))

of C(z) generated by the entries of Y(z). Note that K is stable by the usual
derivation d/dz, which is an extension of the derivation d/dz attached to
the base field C(z). The field K endowed with the derivation d/dz : K →
K is called a Picard-Vessiot field for Y ′(z) = A(z)Y (z) over C(z). The
corresponding differential Galois group of Y ′(z) = A(z)Y (z) over C(z) is
then made of the field automorphisms σ of K such that

σ|C(z) = IdC(z) and σ ◦ d/dz = d/dz ◦ σ.
The commutation condition ensures that any element of the differential
Galois group transforms any solution of Y ′(z) = A(z)Y (z) with coefficients
in K into another solution : for any element σ of the differential Galois
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group and for all F ∈ Mn,1(K) such that F ′(z) = A(z)F (z), we have
σ(F )′(z) = A(z)σ(F )(z).

Ex. 2 — Let σ be a field automorphism of K such that σ|C(z) = IdC(z).
Prove that the following properties are equivalent :
—σ transforms any solution of Y ′(z) = A(z)Y (z) with coefficients in K into

another solution;
—σ ◦ d/dz = d/dz ◦ σ.

2.3. Toward difference Galois groups. Can we extend the construction
of Section 2.2 to other linear functional equations? Let us consider this
question for very simple difference systems of rank one of the form

y(z + 1) = a(z)y(z) with a(z) ∈ C(z)×.

The base field is still C(z), but the role played by the derivation d/dz in
Section 2.2 is now played by the field automorphism τ of C(z) defined by
τ : f(z) 7→ f(z + 1). Inspired by Section 2.2, it seems natural to look for a
field extension K of C(z) such that :

(1) K can be endowed with a field automorphism extending τ , still de-
noted by τ ;

(2) there exists y ∈ K× such that

τ(y) = a(z)y;

(3) K is minimal for the above properties i.e.

K = C(z)(y);

and, then, to define the difference Galois group of y(z + 1) = a(z)y(z) over
C(z) as the group made of the field automorphisms σ of K such that

σ|C(z) = IdC(z) and σ ◦ τ = τ ◦ σ.
Let us first study the case a(z) = 1 i.e. the equation

y(z + 1) = y(z).

Note that
y(z) = 1 and K = C(z)(y(z)) = C(z)

endowed with τ : f(z) 7→ f(z + 1) have the required properties. It is easily
seen that the corresponding difference Galois group is trivial i.e. reduced to
{IdC(z)}. This is coherent with fact that the equation y(z+ 1) = y(z) is the
simplest possible (“trivial”).

However, the choice y(z) = 1 may seem somewhat arbitrary. For instance,
one could have chosen y(z) = sin(2πz) instead of 1 and K = C(z)(y(z))
endowed with τ : f(z) 7→ f(z+1). The corresponding difference Galois group
contains a subgroup isomorphic to PGL2(C) (i.e. the automorphisms of K

defined by r(z, y(z)) 7→ r(z, ay(z)+bcy(z)+d) with a, b, c, d ∈ C such that ad−bc 6= 0).

This is not reasonable and not coherent with what precedes... Actually,
the problem is that, in the process of going from C(z) to K by adjoining
y = sin(2πz), we have introduced new constants i.e. elements of K fixed by
τ which do not belong to the base field C(z) (or, equivalently, to C). This
leads us to require the further condition that

(4) Kτ := {f ∈ K | τ(f) = f} must be equal to C.
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This condition excludes the choice y(z) = sin(2πz).
Let us now consider the case a(z) = −1 i.e. the equation

y(z + 1) = −y(z).

We claim that, in this case, it is impossible to find a field K satisfying to
the conditions (1) to (4) above. Indeed, assume at the contrary that such
a field K exists. Then, y2 is fixed by τ and hence belongs to C. Therefore,
y belongs to C. This is a contradiction: the equation τ(y) = −y does not
have any solution in C(z).

Actually, we will have to work with rings and to accept zero divisors.
More precisely, the basic objects will be rings endowed with an automor-
phism : these will be called difference rings. In the present case, we will see
that a correct analogue of the splitting field is given by the quotient ring
C(z)[X,X−1]/(X2 − 1) endowed with its unique ring automorphism φ such
that φ|C(z) = τ and φ(X) = −X.

2.4. Organization of the lecture notes. Section 4 is devoted to the dif-
ference rings. The analogue(s) for difference equations of the splitting fields
of Section 2.1, called Picard-Vessiot rings and total Picard-Vessiot rings, are
defined and studied in Section 5. The difference Galois groups are intro-
duced in Section 6, where their first properties are studied. This study is
pursued in Section 7 (where we describe the algebraic relations between the
solutions of difference equations in terms of the difference Galois groups)
and in Section 8 (devoted to the Galois correspondence). In section 9, we
focus our attention on regular q-difference systems. In Section 9.2, we intro-
duce Birkhoff’s connection matrices and explain their galoisian meaning. In
Section 9.3, we consider the q-difference equations as deformations of differ-
ential systems and explain in which sense the connection matrices deform the
monodromy representations attached to differential equations. Section 10 is
concerned with the explicit calculation of difference Galois groups (mainly
references). Section 11 is a brief introduction to parameterized difference
Galois theory.

3. A table of analogies

The following table summarizes some analogies between the classical Ga-
lois theory and difference Galois theory. The concepts in the right hand
column will be introduced in the next sections.

Galois theory Difference Galois theory
Polynomial equations Difference equations
Rings Difference rings
Fields Difference fields
Splitting fields Picard-Vessiot rings and total Picard-Vessiot rings
Galois groups Difference Galois groups
Finite groups Linear algebraic groups
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4. Difference rings and difference fields

Definition 1. A difference ring is a couple (R,φ) where R is a ring and φ
is a ring automorphism of R. If R is a field, then (R,φ) is called a difference
field.

Example 2. The couple (R,φ) is a difference ring in the following cases :

(1) any ring R and φ = IdR;

(2) R = C(z) and φ : f(z) 7→ f(qz) where q ∈ C×;

(3) R = C(z) and φ : f(z) 7→ f(z + 1);

(4) R = ∪j≥0C(zp
−j

) and φ : f(z) 7→ f(zp) where p is a positive integer.
Note that C(z) endowed with φ : f(z) 7→ f(zp) is not a difference field
because φ is not surjective.

(5) R = CZ and φ : (xn)n∈Z 7→ (xn+1)n∈Z.

Definition 3. Let (R,φ) be a difference ring. An ideal I of R such that
φ(I) ⊂ I is called a difference ideal of (R,φ). We say that (R,φ) is a simple
difference ring if its difference ideals are {0} and R.

Ex. 3 — Let (R,φ) be a difference ring. Let I be a maximal difference
ideal of (R,φ) i.e. a proper difference ideal of (R,φ) which is maximal among
the difference ideals of (R,φ) (be careful, I is not necessarily a maximal
ideal). Prove that φ(I) = I.

Ex. 4 — Let I be a difference ideal of the difference ring (R,φ). Then, φ
induces a ring endomorphism φ of R/I.

Prove that (R/I, φ) is a difference ring if and only if φ(I) = I.

Ex. 5 — Let (R,φ) be a difference ring.

1. Prove that if R is a noetherian ring and if I is a difference ideal of
(R,φ) then φ(I) = I.

2. Give an example of difference ring (R,φ) such that φ(I) ( I.

Example 4. (1) Any difference field is a simple difference ring.

(2) Let Γ(z) be Euler’s Gamma function. Recall that

Γ(z + 1) = zΓ(z).

Consider the difference ring (R,φ) with R = C(z)[Γ(z),Γ(z)−1] and
φ : f(z) 7→ f(z + 1). We claim that (R,φ) is a simple difference ring.
Indeed, let I be a non zero difference ideal of (R,φ). Note that R is
a principal ideal domain (in particular, it is noetherain, so φ(I) = I
according to exercise 5). Let P (z, Y ) ∈ C(z)[Y, Y −1]\{0} be such that
I = (P (z,Γ(z))). We have φ(I) = (P (z + 1, zΓ(z))). Since φ(I) = I,
we get P (z + 1, zΓ(z)) = c(z)Γ(z)iP (z,Γ(z)) for some c(z) ∈ C(z)×

and i ∈ Z. It follows easily that P (z, Y ) is a monomial in Y . So
P (z,Γ(z)) ∈ R× and, hence, I = R.

(3) The difference ring (R,φ) with R = C(z)[Γ(z)] and φ : f(z) 7→ f(z+1)
is not a simple difference ring. Indeed, (Γ(z)) is a proper non trivial
difference ideal.
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Definition 5. A morphism (resp. isomorphism) from the difference ring

(R,φ) to the difference ring (R̃, φ̃) is a ring morphism (resp. isomorphism)

ϕ : R→ R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.

Ex. 6 — Prove that, for difference rings, “being isomorphic” is an equiv-
alence relation.

Ex. 7 — We have already seen that C(z) endowed with the ring automor-
phism σq : f(z) 7→ f(qz) (q ∈ C×) or τ : f(z) 7→ f(z + 1) is a difference
field. Prove that, up to isomorphism, these are the only difference fields of
the form (C(z), φ).

Definition 6. A difference ring (R̃, φ̃) is a difference ring extension of a

difference ring (R,φ) if R̃ is a ring extension of R and if φ̃|R = φ; in this

case, we will often denote φ̃ by φ.

A difference ring (R,φ) is a difference subring of a difference ring (R̃, φ̃)

if (R̃, φ̃) is a difference ring extension of (R,φ).

Two difference ring extensions (R̃1, φ̃1) and (R̃2, φ̃2) of a difference ring
(R,φ) are isomorphic over (R,φ) if there exists a difference ring isomor-

phism ϕ from (R̃1, φ̃1) to (R̃2, φ̃2) such that ϕ|R = IdR.

Definition 7. The ring of constants Rφ of the difference ring (R,φ) is
defined by

Rφ := {f ∈ R | φ(f) = f}.
Ex. 8 — Let (R,φ) be a difference ring.

1. Prove that the ring of constants Rφ is a ring (!).

2. Prove that if R is a field then Rφ is a field.

Ex. 9 — Let (k′, φ) be a difference field extension of a difference field
(k, φ).

1. Prove that if k′ is an algebraic extension of k, then k′φ is an algebraic
extension of kφ. In particular, if k′ is an algebraic extension of k and

if kφ is algebraically closed, then k′φ = kφ.

2. Prove that if k is algebraically closed, then kφ is not necessary alge-
braically closed.

Ex. 10 — Let (k, φ) be a difference field. Prove that φ can be extended
into a ring automorphism of k. In other words, k can be endowed with a
structure of difference field extension of (k, φ).

In what follows, we will frequently denote the difference ring (R,φ) by R.

5. Picard-Vessiot theory

Let (k, φ) be a difference field and denote by C := kφ its field of constants.

5.1. Picard-Vessiot rings. Consider a difference system

(1) φ(Y ) = AY with A ∈ GLn(k).

Definition 8. A Picard-Vessiot ring for (4) over (k, φ) is a difference ring
extension R of (k, φ) such that
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1) there exists Y ∈ GLn(R) such that φ(Y) = AY (such a Y is called a
fundamental matrix of solutions of (4));

2) R is generated, as a k-algebra, by the entries of Y and det(Y)−1;
3) R is a simple difference ring.

The Picard-Vessiot rings will play the same role as the splitting fields in
classical Galois theory.

We shall now address the following questions :

(1) Do Picard-Vessiot rings exist?

(2) Are Picard-Vessiot extensions unique?

The answer to the first question is given by the following result.

Proposition 9 ([vdPS97, §1.1]). There exists a Picard-Vessiot ring for (4)
over (k, φ).

Proof. We shall first construct a difference ring extension of (k, φ) satisfying
to conditions 1) and 2) of definition 8. We let X = (Xi,j)1≤i,j≤n be a matrix
of indeterminates and we consider the ring k[X,det(X)−1] of polynomials
with coefficients in k, in n2 indeterminates, and localized at det(X). We
consider the unique difference ring extension (k[X,det(X)−1], ψ) of (k, φ)
defined by ψ(X) = AX. The first two conditions of definition 8 are satisfied
by (k[X,det(X)−1], ψ), but not necessarily the last one.

Example 10. (1) Consider the case k = C(z), φ : f(z) 7→ f(qz),
q ∈ C×, and A(z) = −1 ∈ GL1(C). Then, the difference ring
(k[X,det(X)−1] = k[X,X−1], ψ) is not simple. For instance, (X2−1)
is a proper non trivial difference ideal.

(2) Consider the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×, and

A(z) = q1/2 ∈ GL1(C). Then, the difference ring (k[X,det(X)−1] =
k[X,X−1], ψ) is not simple. For instance, (X2 − z) is a proper non
trivial difference ideal.

(3) Consider the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×, and
A(z) = z ∈ GL1(C). Then, the difference ring (k[X,det(X)−1] =
k[X,X−1], ψ) is simple. Indeed, let I be a non zero difference ideal.
Let P (z,X) ∈ k[X,det(X)−1] be such that I = (P (z,X)). Since
(P (qz, zX)) = ψ(I) = I = (P (X)), there exists c(z) ∈ k× and i ∈ Z
such that P (qz, zX) = c(z)XiP (z,X). So, i = 0 and it is easily
seen that P (z,X) is a monomial in X and, hence, is invertible in
k[X,det(X)−1]. Thus, I = k[X,det(X)−1].

In order to remedy this problem, we consider a maximal difference ideal
I of R i.e. a proper difference ideal of R which is maximal among the
difference ideals of R (be careful, I is not necessarily a maximal ideal) and
we consider the difference ring extension

(R,φ) = (k[X,det(X)−1]/I, ψ)

of (k, φ) where φ = ψ : R→ R is the ring automorphism induced by ψ (see
exercises 3 and 4). It is clear that the first two conditions of definition 8 are
satisfied by (R,φ). Moreover, the 1-1 correspondance between the difference
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ideals of k[X,det(X)−1]/I and the difference ideals of k[X,det(X)−1] con-
taining I (see exercise 4) shows that (R,φ) is a simple difference ring. This
concludes the proof of the existence of the Picard-Vessiot rings.

Example 11. (1) We come back to the case k = C(z), φ : f(z) 7→ f(qz),
q ∈ C×, A(z) = −1 ∈ GL1(C). Then, (X2−1) is a maximal difference
ideal of (k[X,X−1], ψ). Indeed, the proper ideals of k[X,X−1] contain-
ing (X2− 1) are (X− 1) and (X+ 1) and none of them is stable by φ.
Therefore, a Picard-Vessiot ring is given by (k[X,X−1]/(X2 − 1), ψ).

(2) We come back to the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×,

A(z) = q1/2 ∈ GL1(C). Then, (X2 − z) is a maximal ideal of
k[X,X−1] (because X2 − z is irreducible) and, hence, a maximal dif-
ference ideal of (k[X,X−1], ψ). Therefore, a Picard-Vessiot ring is
given by (k[X,X−1]/(X2 − z), ψ), which is isomorphic over (k, φ) to

k[z1/2, z−1/2] endowed with the automorphism f(z1/2) 7→ f(q1/2z1/2).

(3) We come back to the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×, A(z) =
z ∈ GL1(C). Then, a Picard-Vessiot ring is given by (k[X,X−1], ψ).

�

Note the following fundamental property of the Picard-Vessiot rings:

Proposition 12 ([vdPS97, Lemma 1.18]). Assume that the characteristic
of k is 0 and that C is algebraically closed. Then, for any Picard-Vessiot
ring R for (4) over (k, φ), we have

Rφ = C.

This is coherent with the discussion of Section 2. We will see later, in
proposition 20, another characterization of the Picard-Vessiot rings very
close to the spirit of the discussion of Section 2.

Our question concerning uniqueness is answered by the following result.

Theorem 13 ([vdPS97, Proposition 1.19]). Assume that the characteristic
of k is 0 and that C is algebraically closed. Then, any two Picard-Vessiot
rings for (4) over (k, φ) are isomorphic over the difference ring (k, φ).

Remark 14. If C is not algebraically closed, then the previous two results
may fail. Indeed, let us come back to the case k = C(z), φ : f(z) 7→ f(qz),
A(z) = −1 ∈ GL1(C) in the special case q = −1. Then C(z)φ = C(z2) is not
algebraically closed. The proof of theorem 9 yields the Picard-Vessiot ring
(R,φ) = (C(z)[X,X−1]/(X2− 1), φ) where φ is determined by φ(X) = −X.
This difference ring has new constants with respect to the base difference field
(k, φ) e.g. zX belongs to Rφ but not to kφ = C(z)φ = C(z2). On the other
hand, C(z) endowed with φ is itself is a Picard-Vessiot ring for φ(y) = −y
over k (because z is a fundamental matrix of solutions of φ(y) = −y). The
two difference rings R and k are not isomorphic.

Hypothesis 1. From now on, we assume that the characteristic of k is 0
and that C is algebraically closed.

We shall now study the structure of the Picard-Vessiot rings in more
details. We start with an example.
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Example 15. We pursue the study of the example k = C(z), φ : f(z) 7→
f(qz), q ∈ C×, and A(z) = −1 ∈ GL1(C). A Picard-Vessiot ring is given
by the unique difference ring extension (R,φ) = (k[X,X−1]/(X2 − 1), φ) of
(k, φ) such that φ(X) = −X. Note that R is not a domain, so that the
Picard-Vessiot rings are not integral domains in general (in particular, it
is in general impossible to realize the Picard-Vessiot rings as subrings of
some field of meromorphic functions). Letting R′0 = k[X,X−1]/(X − 1) and
R′1 = k[X,X−1]/(X + 1), the Chinese reminders theorem ensures that

f : R → R′0 ⊕R′1 = R′

P 7→ (P̂ , P̃ )

is a ring isomorphism. This is even a difference ring isomorphism if R′ is
endowed with the automorphism

φ′ = f ◦ φ ◦ f−1.
We let e′0 = (1̂, 0̃) = f(X+1

2 ) ∈ R′0 ⊕ R′1 and e′1 = (0̂, 1̃) = f(−X+1
2 ) ∈

R′0 ⊕R′1. We have
R′0 = R′e′0 and R′1 = R′e′1.

Moreover, we have

φ′(e′0) = f ◦ φ ◦ f−1(e′0) = f(φ(
X + 1

2
)) = f(

−X + 1

2
) = e′1

and

φ′(e′1) = f ◦ φ ◦ f−1(e′1) = f(φ(
−X + 1

2
)) = f(

X + 1

2
) = e′0.

So, letting R0 = f−1(R′0), e0 = f−1(e′0) and R1 = f−1(R′1), e1 = f−1(e′1),
we have decomposed R as a direct product of rings

R = R0 ⊕R1 with Ri = Rei

where
— e0 and e1 are idempotent elements of R,
— R0 and R1 are integral domains,
— φ(e0) = e1 and φ(e1) = e0, hence, φ(R0) = R1 and φ(R1) = R0.

Remark 16. In the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×, A(z) = q1/2

or z ∈ GL1(C), the Picard-Vessiot rings described in example 11 are integral
domains.

Actually, the property discovered in the previous example is a special case
of a general fact.

Theorem 17 ([vdPS97, Corollary 1.16]). We can decompose R as a direct
product of rings

R = ⊕x∈XRx with Rx = Rex

where
— X = Z/tZ for some integer t ≥ 1,
— for all x ∈ X, ex is an idempotent element of R (and, hence, ex =

1Rx),
— for all x ∈ X, Rx is an integral domain,
— for all x ∈ X, φ(ex) = ex+1X and, hence, φ(Rx) = Rx+1X .
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5.2. Total Picard-Vessiot rings. We maintain the notations and hy-
potheses of the previous section. In particular, we assume that k has char-
acteristic 0 and that C is algebraically closed. We let R be a Picard-Vessiot
ring over k attached to the system (4). Since R is not necessary an integral
domain, we cannot consider its field of fractions in general. But, we can
consider its total ring of fractions K i.e.

K = S−1R

where S is the multiplicative subset of R made of the non zero divisors (if
R is an integral domain, then K is nothing but the field of fractions of R).
Recall that

S−1R = R×R/ ∼
where ∼ is the equivalence relation on R×R defined by

(r, s) ∼ (r′, s′)⇔ ∃t ∈ S, t(rs′ − r′s) = 0.

The equivalence class of (r, s) will be denoted by r/s. There is a natural
ring structure on S−1R given by

r/s+ r′/s′ = (rs′ + r′s)/(ss′) and (r/s)(r′/s′) = (rr′)/(ss′).

Moreover, φ : R→ R admits a unique extension into a ring automorphism
φ : K → K, and it is given by

φ(r/s) = φ(r)/φ(s).

Definition 18. In this way, K is a difference ring extension of R, called
the total Picard-Vessiot ring of (4) over (k, φ).

In the process of taking the total quotient ring, we have not increased the
ring of constants:

Proposition 19. We have Kφ = C.

Proof. Indeed, consider r/s ∈ Kφ. Then, I = {a ∈ R | ar/s ∈ R} is a
difference ideal of R containing s, so I = R. In particular, 1 ∈ I and hence
r/s ∈ R. Therefore, Kφ = Rφ = C. �

We consider a decomposition of R as given by theorem 17 :

R = ⊕x∈XRx.

It is easily seen that K can be identified with the direct product of fields

K = ⊕x∈XKx

where Kx is the field of fractions of Rx.
Collecting the previous results, we obtain the direct implication of the

following result, which gives a new characterization of the Picard-Vessiot
rings; for the proof of the other implication, we refer to [vdPS97, Corollary
1.24].

Proposition 20 ([vdPS97, Corollary 1.24]). Let R be a difference ring ex-
tension of (k, φ). Then, R is a Picard-Vessiot ring for (4) if and only if the
following properties hold:

(1) R has no nilpotent element;
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(2) the ring of constants of the total quotient ring of R (i.e. of the asso-
ciated total Picard-Vessiot ring) is C;

(3) there exists Y ∈ GLn(R) such that φ(Y) = AY

(4) R is minimal with respect to the above properties.

Remark 21. In the previous result, it is important to consider the ring of
constants of the total Picard-Vessiot ring associated to R, and not only of
the Picard-Vessiot ring R; see [vdPS97, Example 1.25].

6. Difference Galois groups

Let (k, φ) be a difference field. We assume that k is of characteristic 0
and that the field of constants C := kφ is algebraically closed.

Consider a difference system

(2) φ(Y ) = AY with A ∈ GLn(k).

We let R be a Picard-Vessiot ring for this system over k, and we denote
by K the corresponding total Picard-Vessiot ring.

Definition 22. The corresponding difference Galois group Galφ(R/k) over
(k, φ) of (2) is the group of the k-linear ring automorphisms of R commuting
with φ :

Galφ(R/k) := {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ}.

Example 23. (1) We come back to the case k = C(z), φ : f(z) 7→ f(qz),
q ∈ C× not a root of the unity, A(z) = −1 ∈ GL1(C). We recall that
a Picard-Vessiot ring is given by (R,φ) = (k[X,X−1]/(X2 − 1), φ)

where φ is determined by φ(X) = −X. Let σ ∈ Galφ(R/k). Then, we
have φ(σ(X)) = σ(φ(X)) = σ(−X) = −σ(X). Therefore, there exists

c ∈ kφ = C such that σ(X) = cX. Moreover, we have X
2

= 1 ∈ k
so σ(X)2 = σ(X

2
) = σ(1) = 1 i.e. c2X

2
= c2 = 1 and, hence,

c = ±1. It follows that Galφ(R/k) ⊂ {IdR, σ} where σ is the unique
automorphism of R/k such that σ(X) = −X. It is easily seen that
this inclusion is actually an equality.

(2) We come back to the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C×
not a root of the unity, A(z) = q1/2 ∈ GL1(C). We recall that a

Picard-Vessiot ring is given by R = k[z1/2, z−1/2] endowed with the

automorphism f(z1/2) 7→ f(q1/2z1/2). Arguing as in the previous ex-

ample, one can prove that Galφ(R/k) = {IdR, σ} where σ is the unique

automorphism of R/k such that σ(z1/2) = −z1/2.

(3) We come back to the case k = C(z), φ : f(z) 7→ f(qz), q ∈ C× not
a root of the unity, A(z) = z ∈ GL1(C). Then, a Picard-Vessiot
ring is given by (R,φ) = (k[X,X−1], φ), where φ is determined by

φ(X) = zX. Then, we have Galφ(R/k) = {σc | c ∈ C×} where σc is
the unique automorphism of R/k such that σ(X) = cX.

Ex. 11 — Set

Galφ(K/k) := {σ ∈ Aut(K/k) | φ ◦ σ = σ ◦ φ}.
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Prove that the map

Galφ(K/k) → Galφ(R/k)

σ 7→ σ|R

is well-defined (i.e. takes its values in Galφ(R/k)) and gives a group isomor-

phism between Galφ(K/k) and Galφ(R/k).

Ex. 12 — What happens if we choose another Picard-Vessiot ring?

One can identify Galφ(R/k) with a subgroup of GLn(C) as follows (this is
analogous to the identification of the Galois group of an algebraic equation
to a group of permutations of its roots). Let Y ∈ GLn(R) be a fundamental

matrix of solutions of (2). For any σ ∈ Galφ(R/k), there exists a unique
C(σ) ∈ GLn(C) such that

σ(Y) = YC(σ).

Indeed, we have φ(Y) = AY so σ(φ(Y)) = σ(AY) and, hence, φ(σ(Y)) =
Aσ(Y). It follows that Y−1σ(Y) is left invariant by φ and, hence, has
coefficients in C. Moreover, det(Y−1σ(Y)) = det(Y)−1σ(det(Y)) ∈ R×.
Therefore, Y−1σ(Y) belongs to Mn(C) ∩GLn(R) = GLn(C), as expected.

The proof of the following result is left as an exercise.

Proposition 24. The map

ρgal : Galφ(R/k) → GLn(C)

σ 7→ C(σ)

is faithful linear representation of Galφ(R/k) (i.e. an injective group mor-
phism). Its image is denoted by Ggal.

Ex. 13 — What happens to ρgal if we choose another fundamental matrix
of solutions Y ∈ GLn(R)?

Example 25. For the cases (1) to (3) considered in example 23, we have

Ggal = {±1}, {±1} and C× for the choices Y = X, z1/2 and X respectively.

We now come to a crucial property of the difference Galois groups.

Theorem 26 ([vdPS97, Theorem 1.13]). The image Ggal of ρgal is an al-
gebraic subgroup of GLn(C).

Recall that this means that Ggal is
— a subgroup of GLn(C) and
— the zero-locus of a set of polynomials in C[(Xi,j)1≤i,j≤n, detX−1].

7. Galois groups and algebraic relations

We let (k, φ) be a difference field. We assume that k is of characteristic 0
and that the field of constants C := kφ is algebraically closed.

Consider a difference system

(3) φ(Y ) = AY with A ∈ GLn(k).
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We let R be a Picard-Vessiot ring for this system over k. Let Y ∈ GLn(R)
be a fundamental matrix of solutions of (3). We denote by

ρgal : Galφ(R/k) → GLn(C)

σ 7→ C(σ)

the faithful linear representation attached to Y as in Section 6, so that, for
all σ ∈ Galφ(R/k), σ(Y) = YC(σ). We set

Ggal = Im(ρgal).

The aim of this section is to give a precise meaning to the following
assertion :

“the difference Galois group Gal(R/k) measures the algebraic
relations between the solutions of the difference system (3)”.

We let I be the ideal of the algebraic relations in k[X,det(X)−1] between
the entries of Y, i.e., I is the kernel of the unique k-algebra morphism
ϕ : k[X,det(X)−1]→ R such that ϕ(X) = Y. So, I is a maximal difference
ideal of k[X,det(X)−1]. We will use the following excercise in what follows.

Ex. 14 — Prove that I is a radical ideal.

7.1. The case when k is algebraically closed. We shall first assume
that k is algebraically closed.

We let V be the k-algebraic subset of GLn(k) defined by I i.e.

V = {v ∈ GLn(k) | ∀P (X) ∈ I, P (v) = 0}.
We have a natural map

V ×Ggal → V

(v,M) 7→ vM.

Indeed, for any (v,M = C(σ)) ∈ V ×Ggal, we have, for all P ∈ I, P (v) = 0
so P (vC(σ)) = P (σ(v)) = σ(P (v)) = 0 so vC(σ) ∈ V . One deduces easily
that we have the natural map

V ×Ggal(k) → V

(v,M) 7→ vM

where Ggal(k) is the C-algebraic subgroup of GLn(k) defined by the equa-
tions of Ggal seen as an algebraic subgroup of GLn(C). This group action
is actually transitive :

Theorem 27 ([vdPS97, Theorem 1.13]). For all v, w ∈ V , there exists a
unique M ∈ Ggal(k) such that

w = vM.

We denote by JC the ideal of C[X,det(X)−1] defining Ggal, i.e.,

JC = {P (X) ∈ C[X,det(X)−1] | ∀M ∈ Ggal, P (M) = 0}.
We denote by Jk the ideal of k[X,det(X)−1] defining Ggal(k), i.e.,

Jk = {P (X) ∈ k[X,det(X)−1] | ∀M ∈ Ggal(k), P (M) = 0}.
We have

Jk = kJC .
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Consider v ∈ V (V is non empty). Theorem 27 ensures that

V = vGgal(k).

This yields the following description of the algebraic relations with coef-
ficients in k between the entries of Y in terms of the algebraic equations
defining the algebraic group Ggal :

Proposition 28. We have

I = {P (v−1X) | P (X) ∈ Jk} = {P (v−1X) | P (X) ∈ kJC}.

Example 29. For instance, if

Ggal = {M ∈ GLn(C) | (detM)m = 1}
for some positive integer m, then

I = ((detX)m − λ)

for some λ = det(v)m ∈ k×.

Ex. 15 — Another way to state this is that the k-algebras C[Ggal] ⊗C k
and R are isomorphic. Prove this and give an isomorphism.

7.2. The general case. We no longer assume that k is algebraically closed.
Then, the previous results are false in general, as shown by the following
example.

Example 30. Consider the case k = C(z), φ = σq, q ∈ C× not a root of

the unity, φ(y) = q1/2y. A Picard-Vessiot ring is given by R = k[z1/2, z−1/2]

with φ(z1/2) = q1/2z1/2. A fundamental solution is given by Y = z1/2 ∈
GL1(R). The Galois group is Ggal = {±1} ⊂ GL1(C) so that C[Ggal] =
C[X,X−1]/(X2 − 1). Then, R and C[Ggal] ⊗C k are not isomorphic since
the former is an integral domain, but not the latter. However, these rings
become isomorphic if we tensorize by k over k.

Actually, we have the following result:

Proposition 31 ([vdPS97, Theorem 1.13]). We have

kI = {P (v−1X) | P ∈ kJC}.

Ex. 16 — Another way to state this is that the rings C[Ggal] ⊗C k and

R⊗k k are isomorphic. Prove this and give an isomorphism.

Remark 32. Actually, what precedes can be (and must be) rephrased in
terms of torsors.

In some circumstances, we do not need to go to k. For instance, if Ggal
is connected and k is a C1-field, then proposition 28 is true even if k is not
algebraically closed. (The Ggal ⊗ k-torsors are trivial in this case.)

8. Galois correspondence

Let (k, φ) be a difference field. We assume that k is of characteristic 0
and that the field of constants C := kφ is algebraically closed.

Consider a difference system

(4) φ(Y ) = AY with A ∈ GLn(k).
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Let R be a Picard-Vessiot ring for this system over k and denote by K the
corresponding total Picard-Vessiot ring. We consider its difference Galois
group Galφ(R/k) = Galφ(K/k) (see exercise 11 for the identification be-
tween the two groups), endowed with its structure of linear algebraic group.

There is a Galois correspondence in difference Galois theory. Note that
the total Picard-Vessiot rings are used instead of the Picard-Vessiot rings
themselves.

Theorem 33 ([vdPS97, Theorem 1.29]). Let F be the set of difference
subrings F of K such that k ⊂ F and such that every non zero divisor of F
is actually a unit of F . Let G be the set of algebraic subgroups of Galφ(K/k).
Then,

— for any F ∈ F , the set G(K/F ) of elements of Galφ(K/k) which fix

F pointwise is an algebraic subgroup of Galφ(K/k);

— for any algebraic subgroup H of Galφ(K/k), KH := {f ∈ K | ∀σ ∈
H,σ(f) = f} belongs to F ;

— the maps F → G, F 7→ G(K/F ) and G → F , H 7→ KH are each
other’s inverses.

Remark 34. Note that, if R is an integral domain, then theorem 33 gives
a correspondence between the difference subfields of K containing k, on the
one hand, and the algebraic subgroups of Galφ(K/k), on the other hand.

In particular, for any subgroup H of Galφ(K/k), if KH = k, then H is

Zariski-dense in Galφ(K/k). We will use this fact in Section 9.
We also have the following property: if H is a normal algebraic subgroup

of Galφ(K/k), then the restriction morphism Galφ(K/k) → Galφ(KH/k)

induces an isomorphism Galφ(K/k)/H ∼= Galφ(KH/k).

9. Galoisian ambiguities coming from analysis for regular
q-difference equations

In this section, we study the Galois groups of the regular q-difference equa-
tions and their relationship with transcendental invariants introduced by
Birkhoff, namely the connection matrices. The main references are Etingof’s
[Eti95] and Sauloy’s [Sau00].

We shall first recall some classical facts concerning the monodromy of
linear differential equations.

9.1. Monodromy and differential Galois groups. Consider a linear dif-
ferential system

(5) Y ′(z) = A(z)Y (z) with A(z) ∈ Mn(C(z)).

Its set of singularities on P1(C) is denoted by S.
We shall first recall the definition of the monodromy representation at-

tached to this differential system. Let z0 ∈ P1(C)\S. According to Cauchy’s
theorem, there exists Y(z) ∈ GLn(OP1(C),z0) such that

Y′(z) = A(z)Y(z)
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(we have denoted by OP1(C) the sheaf of analytic functions over P1(C) and
by OP1(C),z0 its stalk at z0). Let

γ : [0, 1]→ P1(C) \ S
be a continuous path such that γ(0) = γ(1) = z0. It turns out that Y(z)
can be analytically continued along γ.

Ex. 17 — Prove this !

After analytic continuation along γ, we get a new solution γY(z) ∈
GLn(OP1(C),z0) of Y ′(z) = A(z)Y (z). Therefore, there exists M(γ) ∈
GLn(C) such that

γY(z) = Y(z)M(γ).

This matrix M(γ) is called the monodromy matrix along γ of the differential
equation (5). This matrix only depends on the homotopy class of γ in
P1(C) \ S. Therefore, we have a map

ρmono : π1(P1(C) \ S, z0) → GLn(C)

[γ] 7→ M([γ]) := M(γ).

This is a group morphism.

Definition 35. The map ρmono is a linear representation of π1(P1(C)\S, z0)
called the monodromy representation.

Its image is called the monodromy group and denoted by Gmono.

Ex. 18 — We emphasize that the monodromy representation and group
depends on the choice of Y(z) and z0. Study the dependence of the
monodromy representation and group on z0 and Y(z).

On the other hand, we recall (see Section 2.2) that the differential Galois
group of the differential system (5) can be described as

Gald/dz(K/C(z)) = {σ ∈ Aut(K/C(z)) | σ ◦ d/dz = d/dz ◦ σ}
where

K = C(z)(Y(z))

is the field generated over C(z) by the entries of Y(z). We can realize

Gald/dz(K/C(z)) as an algebraic subgroup Ggal of GLn(C) as follows (this

is similar to what we did in Section 6). For any σ ∈ Gald/dz(K/C(z)), there
exists a unique C(σ) ∈ GLn(C) such that

σ(U) = UC(σ).

Then,

ρgal : Gald/dz(K/C(z)) → GLn(C)

σ 7→ C(σ)

is faithful linear representation of Gald/dz(K/C(z)) and its image, denoted
by Ggal, is an algebraic subgroup of GLn(C).

We shall now prove that the monodromy is Galoisian. Indeed, any el-
ement of K can be continued meromorphically along any coninuous path
γ : [0, 1] → P1(C) \ S such that γ(0) = γ(1) = z0 (because the entries of
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Y(z) can be analytically continued along any such path). This induces an

element σγ of Gald/dz(K/C(z)) such that

C(σγ) = M(γ).

Therefore, we have proved the following result.

Proposition 36. We have

Gmono ⊂ Ggal.

In case the system is regular singular 1, the differential Galois group is
“what algebra see of analysis” :

Theorem 37 (Schlesinger; [vdPS03, Theorem 5.8]). Assume that the dif-
ferential system (5) is regular singular. Then, the monodromy group Gmono
is Zariski-dense in the Galois group Ggal.

Remark 38. If the system is irregular, then this result may be false. The
typical counter-example is y′(z) = y(z). There is an extension of this result
to arbitrary linear differential equations due to Ramis.

9.2. Birkhoff connection matrices and difference Galois groups. Let
q be a non zero complex number such that |q| < 1. We consider the difference
field (C(z), σq) where σq : f(z) 7→ f(qz) and a q-difference system

(6) σqY = AY with A ∈ GLn(C(z)).

Note that C(z) is of characteristic 0 and that the field of constants C(z)σq =
C is algebraically closed. Thus, we can apply most of the results of the
previous sections.

In this section, we assume that the following hypothesis is satisfied:

Hypothesis 2. The q-difference system (6) is regular at 0 and∞, i.e., A(z)
is analytic at 0 and ∞ and

A(0) = A(∞) = In.

Our first task is to construct fundamental matrices of solutions attached
to 0 and ∞.

The infinite product

Y0(z) = A(z)−1A(qz)−1A(q2z)−1 · · ·
defines an element of GLn(OP1(C),0) such that

Y0(qz) = A(z)Y0(z) and Y0(0) = In.

This functional equation shows that Y0(z) can be extended into a meromor-
phic function over C :

Y0(z) ∈ GLn(M(C)).

We let
R0 = C(z)[Y0(z), (det(Y0(z)))

−1]

be the C(z)-algebra generated by the entries of Y0(z) and the inverse of its
determinant. This ring has a natural structure of difference ring extension

1. This means that, for any s ∈ S, the growth of the entries of Y(z) as z tends to s
along any sector of finite aperture and centered at s is at most polynomial.
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of (C(z), σq). It is an integral domain, therefore its total Picard-Vessiot ring
K0 is nothing but the field of fractions of R0 :

K0 = C(z)(Y0(z)).

Proposition 39 ([Eti95, Section 3]). The difference ring R0 is a Picard-
Vessiot ring for the q-difference system (6) over C(z). Hence, the difference
field K0 is a total Picard-Vessiot ring for this system over C(z).

Proof. We use the characterization of the Picard-Vessiot rings given by
proposition 20. The only non trivial point is that K

σq
0 = C. This is true be-

cause any element f ofK
σq
0 is meromorphic over C and satisfies f(qz) = f(z).

In particular, f(z) induces an analytic function over the compact Riemann
surface C×/qZ. Such a function is necessarily constant. It follows that f(z)
itself is constant over C× and, hence, over C. �

We have similar results at ∞. Indeed,

Y∞(z) = A(q−1z)A(q−2z)A(q−3z) · · ·

defines an element of GLn(OP1(C),∞) such that

Y∞(qz) = A(z)Y∞(z) and Y∞(∞) = In.

This functional equation shows that Y∞(z) can be extended into a mero-
morphic function over P1(C) \ {0} :

Y0(z) ∈ GLn(M(P1(C) \ {0})).

We let

R∞ = C(z)[Y∞(z), (det(Y∞(z)))−1]

be the C(z)-algebra generated by the entries of Y∞(z) and the inverse of its
determinant. This ring has a natural structure of difference ring extension
of (C(z), σq). It is an integral domain, therefore its total Picard-Vessiot ring
K∞ is nothing but the field of fractions of R∞ :

K∞ = C(z)(Y∞(z)).

Proposition 40 ([Eti95, Section 3]). The difference ring R∞ is a Picard-
Vessiot ring for the q-difference system (6) over C(z). Hence, the difference
field K∞ is a total Picard-Vessiot ring for this system over C(z)

So, we have two Picard-Vessiot rings R0 and R∞. Theorem 12 ensures
that they are isomorphic as difference rings extensions of (C(z), σq). In order
to describe such an isomorphism, we introduce Birkhoff’s connection matrix.

Definition 41. The Birkhoff connection matrix is defined by

P(z) = Y0(z)
−1Y∞(z) ∈ GLn(M(C×)).

It is easily seen that

P(qz) = P(z).

So, one can consider P(z) as meromorphic function over the complex torus
C×/qZ (i.e. as an elliptic function).

We let S be the set of poles of P(z) or P(z)−1 in C×.
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Theorem 42 ([Eti95, Theorem 3.1]). For any v ∈ C× \ S, there exists a
unique isomorphism of difference ring extensions of (C(z), σq)

τv : R∞ → R0

such that
τv(Y∞(z)) = Y0(z)P(v).

It induces an isomorphism of difference field extensions of (C(z), σq)

τv : K∞ → K0.

Proof. Let X = (Xi,j)1≤i,j≤n be indeterminates over C(z). Consider the
unique C(z)-algebra morphism

ϕ0 : C(z)[X]→ C(z)[Y0(z)]

such that ϕ0(X) = Y0(z) and let I0 = ker(ϕ0) (i.e. I0 is the ideal of the
algebraic relations with coefficients in C(z) between the entries of Y0(z)).
We denote by

ϕ0 : C(z)[X]/I0 → C(z)[Y0(z)]

the C(z)-algebra isomorphism induced by ϕ0.
We define ϕ∞, I∞ and ϕ∞ similarly.
Consider P (X) ∈ I∞, so that P (Y∞(z)) = P (Y0(z)P(z)) = 0. There-

fore, the function P (Y0(z)P(v)), meromorphic over C, vanishes at qkv
for all integer k large enough. It follows that P (Y0(z)P(v)) = 0 i.e.
P (XP(v)) ∈ I0. Hence, we have a well-defined ring morphism

C(z)[X]/I∞ → C(z)[X]/I0

P (X) 7→ P (XP(v)).

This is actually a ring isomorphism; its inverse is given by

C(z)[X]/I0 → C(z)[X]/I∞

P (X) 7→ P (XP(v)−1).

Therefore,
ϕ0 ◦ ι ◦ ϕ∞−1 : C(z)[Y∞(z)]→ C(z)[Y0(z)]

is a ring isomorphism. It induces (by localization) ring isomorphisms R∞ →
R0 and K∞ → K0 with the expected properties. �

Therefore, for all v, w ∈ C× \ S,

τ−1v τw ∈ Galφ(R∞/C(z))

and, hence,
P(v)−1P(w) ∈ Ggal

where Ggal denotes the image of the linear representation

ρgal : Galφ(R∞/C(z))→ GLn(C)

attached to the fundamental matrix of solutions Y∞(z).

Definition 43. We denote by GBir the subgroup of GLn(C) generated by
P(v)−1P(w) for all v, w ∈ C× \ S.

Theorem 44 ([Eti95, Theorem 3.3]). We have

Ggal = GBir.
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Proof. We admit that GBir is Zariski-closed and refer to [Eti95, Proposition
3.2] for the proof. According to Galois correspondence, it is sufficient to
prove that KGBir∞ ⊂ C. Consider f(z) ∈ KGBir∞ . So, f(z) = P (Y∞(z))
for some P (X) = A(X)/B(X) with A(X), B(X) ∈ C(z)[X] such that
B(Y∞(z)) 6= 0. Since f(z) ∈ KGBir∞ , we have f(z) = P (Y∞(z)) =
P (Y∞(z)P(v)−1P(w)) for all v, w ∈ C× \S. For v = z and for w fixed, we
get f(z) = P (Y0(z)P(w)−1). Therefore, f(z), which is a priori meromor-
phic over P1(C)\{0}, is also meromorphic at 0; thus, it is meromorphic over
the whole P1(C) and, hence, belongs to C(z). The Galois correspondence
ensures that GBir = Ggal. �

Remark 45. What says P(z) about σqY = AY ? Consider two q-difference
systems σqY = A1Y and σqY = A2Y with A1, A2 ∈ GLn(C(z)). We denote
by P1(z) = Y1,0(z)

−1Y1,∞(z) and P2(z) = Y2,0(z)
−1Y2,∞(z) the corre-

sponding connection matrices (with obvious notations). Assume that

P1(z) = P2(z).

Then, we have

Y2,0(z)Y1,0(z)
−1 = Y2,∞(z)Y1,∞(z)−1 =: R(z).

Note that R(z) is meromorphic over P1(C)\{∞} (this follows from the first
expression for R(z)) and P1(C)\{0} (this follows from the second expression
for R(z)) so it is meromorphic over P1(C) and, hence,

R(z) ∈ GLn(C(z)).

Moreover, we have R(qz) = A2(z)R(z)A1(z)
−1. So, the q-difference system

σqY = A2Y is obtained form σqY = A1Y by using the linear change of
unknown function

Y ; RY.

We say that the two q-difference systems above are isomorphic over C(z).

9.3. From connection matrices to monodromy. One can consider the
differential equations as degenerations of q-difference equations as q tends
to 1. We have attached (galoisian) analytic invariants to both differential
and q-difference systems, namely the monodromy representation and the
connection matrices. The aim of this section is to understand what happens
to the connection matrices as q tends to 1. We follow Sauloy in [Sau00].

We fix τ ∈ C such that =(τ) > 0. For all ε > 0, we set qε = e2πiτε. So,
|qε| < 1 and qε tends to 1 as ε > 0 tends to 0.

Consider a differential system

(7) Y ′(z) = B̃(z)Y (z) with B̃(z) ∈ Mn(C(z)).

We deform this differential system into a family of qε-difference equations

(8) Y (qεz) = Aε(z)Y (z) with Aε(z) ∈ GLn(C(z))

parameterized by ε > 0. By deformation, we mean the following. The
previous qε-difference systems can be rewritten as follows :

(9) DqεY (z) = Bε(z)Y (z)
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where

Bε(z) =
Aε(z)− In
(qε − 1)z

and DqεY (z) =
Y (qεz)− Y (z)

(qε − 1)z
.

Roughly speaking, we say that the family of systems (8) deforms the dif-

ferential system (7) if Bε(z) tends to B̃(z) as ε > 0 tends to 0, so that the
systems (9) tend to the differential system (7) as ε > 0 tends to 0.

We shall now state more precisely our hypotheses :
— We assume that the differential system (7) is regular at 0 and ∞, i.e.,

that there exists Y0(z) ∈ GLn(OP1(C),0) such that

Y′0(z) = B̃(z)Y0(z) and Y0(0) = In

and that there exists Y∞(z) ∈ GLn(OP1(C),∞) such that

Y′∞(z) = B̃(z)Y∞(z) and Y∞(∞) = In.

— We assume that the qε-difference systems (8) are regular at 0 and ∞,
and we denote by Pε(z) the corresponding connection matrices.

— We denote the singularities of B̃(z) (in C×) by z̃1, . . . , z̃r. We set
z̃0 = 1. We assume that the spirals z̃je

2πiτR are pairwise distinct. We
index z̃0, . . . , z̃r in such a way that a positive circle around 0 meats
the spirals z̃0e

2πiτR, . . . , z̃re
2πiτR in this order.

— We assume that Bε(z) converges uniformly to B̃(z) on every compact
subset of C× \ {z̃0, . . . , z̃r} as ε > 0 tends to 0.

We denote by Ũ0, ..., Ũr the connected components of C× \ ∪rj=1z̃je
2πiτR

where Ũj has z̃j and z̃j+1 on its boundary.

Theorem 46 ([Sau00, Section 4]). Under the previous assumptions, we
have :

— For all j ∈ {0, . . . , r}, there exists P̃j ∈ GLn(C) such that Pε(z)

tends to P̃j on Ũj as ε > 0 tends to 0.
— The monodromy matrix around z̃j in the basis Y0(z) is given by

P̃jP̃
−1
j−1.

Remark 47. For a very general study of the behavior of the q-difference
Galois groups as q tends to 1, we refer to André’s [And01].

Remark 48. The results established by Etingof have been extended to the
regular singular q-difference systems by van der Put and Singer in [vdPS97]
and by Sauloy in [Sau03], following distinct approaches.

10. Computing difference Galois groups

Hendricks developed algorithms in [Hen97, Hen98] in order to compute
the difference Galois groups of linear difference or q-difference equations of
order 2 with coefficients in Q(z) and ∪j≥1Q(z1/j) respectively. It relies on

the classification of the algebraic subgroups of GL2(Q). For the difference

Galois groups of Mahler equations of order 2 with coefficients in ∪j≥1Q(z1/j),
we refer to [Roq16]. For calculations of difference Galois groups of finite
difference equations of order 2 on an elliptic curve, we refer to [DR15].

What about equations of higher order ?
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Feng has recently given in [Fen15] an algorithm to compute the Galois
groups of linear difference equations over Q(z).

For the galoisian properties of “classical equations”, especially of the gen-
eralized q-hypergeometric equations, we refer to [Roq08, Roq11, Roq12].
The methods combine algebra and analysis.

We also emphasize that André’s main result in [And01] gives a powerful
tool to compute the difference Galois groups of difference equations deform-
ing a given differential equations whose differential Galois group is known.

11. parameterized difference Galois theory

In the recent years, several authors have developed “parameterized” differ-
ential or difference Galois theories. The starting point was the seminal work
of Cassidy and Singer in [CS07]. This section is a brief introduction to the
parameterized difference Galois theory developed by Hardouin and Singer
in [HS08]. This theory is typically adapted to the study of the algebraic
relations between the successive derivatives of the entries of a fundamental
matrix of solutions of a given difference system. For instance, it has been
used in loc. cit. to give a short proof of Hölder’s theorem, concerning Euler’s
Gamma function, which satisfies

Γ(z + 1) = zΓ(z).

Theorem 49 (Hölder). Euler’s Gamma function is hypertranscendental i.e.
the successive derivatives Γ(z),Γ′(z),Γ′′(z), . . . are algebraically independent
over C(z).

Another application given by Hardouin and Singer is the following.

Theorem 50 ([HS08, Introduction]). Let y1(z), y2(z) be linearly indepen-
dent solutions of the q-hypergeometric equation

y(q2z)− 2az − 2

a2z − 1
y(qz) +

z − 1

a2z − q2
y(z) = 0

where a ∈ C× \ qZ and a2 ∈ qZ and |q| 6= 1. Then y1(z), y2(z), y1(qz) and
their successive derivatives are algebraically independent over the field of
q-invariant meromorphic functions over C×.

Also, the parameterized difference Galois theory has been used by Drey-
fus, Hardouin and Roques [DHR16] in order to study the generating se-
ries of automatic sequences. Let us recall that the generating series

f(z) =
∑

k≥0 skz
k of any p-automatic sequence (sk)k≥0 ∈ QN

(and, actu-

ally, of any p-regular sequence) satisfies a mahlerian difference system i.e. a
difference system of the form

F (zp) = A(z)F (z)

where

F (z) = (f(z), f(zp), . . . , f(zp
n−1

))t and A(z) ∈ GLn(C(z))

for some positive integer n; see Mendès France’s [MF80], Randé’s [Ran92],
Dumas’ [Dum93], Becker’s [Bec94], Adamczewski and Bell’s [AB13], and
the references therein. The famous examples are the generating series of the
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Thue-Morse, the paper-folding, the Baum-Sweet and the Rudin-Shapiro se-
quences (see Allouche and Shallit’s book [AS03]). The study of the algebraic
relations between such series and their successive derivatives is a classical
problem, and we have shown in [DHR16] that the parameterized difference
Galois theory is a very convenient tool in this context. For instance, we
were able to prove the following result, where fBS(z) and fRS(z) are the
generating series of the Baum-Sweet and Rudin-Shapiro series.

Theorem 51 ([DHR16, Introduction]). The series
fBS(z), fBS(z2), fRS(z), fRS(−z) and all their successive derivatives
are algebraically independent over C(z).

11.1. A short introduction to parameterized difference Galois the-
ory. The general setting of the parameterized difference Galois theory de-
veloped in [HS08] is the following. Instead of a difference field (k, φ), we
consider a differential difference field (k, φ, δ) i.e. k is a field, φ is a field
automorphism of k and δ : k → k is a derivation (this means that δ is an
additive map satisfying Leibniz rule) such that

φ ◦ δ = δ ◦ φ.

Example 52. (1) In the example of Hölder’s theorem, one can take k =
C(z), φ : f(z) 7→ f(z + 1), δ = d/dz.

(2) k = C(z), φ : f(z) 7→ f(qz), δ = zd/dz.

We want to study (the solutions of) a linear difference system

(10) φ(Y ) = AY with A ∈ GLn(k).

The difference rings used in difference Galois theory are replaced by the
differential difference rings i.e. by 3-uples (R,φ, δ) where R is a ring, φ :
R → R is a ring automorphism and δ : R → R is a derivation such that
φ ◦ δ = δ ◦ φ. We denote by C the field of constants of the difference field
(k, φ).

There are natural notions of differential difference ring extensions, ideals,
isomorphisms, etc, similar to the notions of difference ring extensions, ideals,
isomorphisms, etc, introduced in Section 4. For instance, a differential differ-

ence ring (R̃, φ̃, δ̃) is a differential difference ring extension of the differential

difference ring (R,φ, δ) if R̃ is a ring extension of R, φ̃|R = φ and δ̃|R = δ;

in this case, we will often denote φ̃ by φ and δ̃ by δ. We refer the reader to
[HS08] for the details.

Definition 53 ([HS08, Definition 2.3]). A parameterized Picard-Vessiot ring
for (10) over (k, φ, δ) is a differential difference ring extension R of (k, φ, δ)
such that

1) there exists Y ∈ GLn(R) such that φ(Y) = AY (such a Y is called a
fundamental matrix of solutions of (4));

2) R is generated, as a (k, δ)-algebra, by the entries of Y and det(Y)−1

i.e. R is generated as a k-algebra by the entries of Y and det(Y)−1

and they successive transforms by δ.
3) R is a simple differential difference ring i.e. the only ideals of R stable

by φ and δ are {0} and R.
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As in difference Galois theory, we need to impose restrictions on the field
of constants C in order to have a nice parameterized Picard-Vessiot the-
ory. Unfortunately, the requirement that C is algebraically closed is not
sufficient. The usual requirement is that C is differentially closed. This is
not only a property of the field C but a property of C endowed with the
derivation δ : C → C (δ induces a map C → C because φ and δ commute).
Roughly speaking, the fact that (C, δ) is differentially closed means that, for
any polynomials P1(y1, . . . , ys), . . . , Pr(y1, . . . , ys), Q(y1, . . . , ys) in the δi(yj)
(here, δi(yj) is a suggestive notation for indeterminates over C) and with
coefficients in C, if

(11) P1(y1, . . . , ys) = 0, . . . , Pr(y1, . . . , ys) = 0, Q(y1, . . . , ys) 6= 0

has a solution ỹ1, . . . , ỹs is some differential field extension (F,D) of (C, δ)
(i.e. F is a field extension of C, D : F → F is a derivation such that
D|C = δ, and the equations (11) are satisfied if we replace yi by ỹi and δ by
D), then it has a solution in (C, δ).

Proposition 54 ([HS08, Proposition 2.4]). Assume that k is of character-
istic 0 and that C is differentially closed. Then, up to ismorphism of dif-
ferential difference fields over (k, φ, δ), there exists a unique parameterized
Picard-Vessiot ring for the difference system (10) over (k, φ).

Moreover, we have Rφ = C.

We let R be a parameterized Picard-Vessiot rings for the difference system
(10) over (k, φ, δ). The parameterized difference Galois group is then defined
as follows.

Definition 55 ([HS08, Definition 2.5]). The parameterized difference Galois

group Gal(φ,δ)(R/k) over (k, φ, δ) of (10) is the group of the k-linear ring
automorphisms of R commuting with φ and δ :

Gal(φ,δ)(R/k) := {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ and δ ◦ σ = σ ◦ δ}.

As in difference Galois theory, one can see Gal(φ,δ)(R/k) as a subgroup of
GLn(C) via the faithful representation

ρgal : Gal(φ,δ)(R/k) → GLn(C)

σ 7→ C(σ)

where C(σ) is determined by the equality σ(Y) = YC(σ).
A crucial result is then:

Theorem 56 ([HS08, Theorem 2.6]). The image of ρgal, which will be de-

noted by G
(φ,δ)
gal , is a differential algebraic subgroup of GLn(C).

This means that the image of ρgal is
— a subgroup of GLn(C) and
— the zero-locus in GLn(C) of a set of differential polynomials in

C[(δk(Xi,j))1≤i,j≤n, detX−1].
One can prove that the parameterized difference Galois groups reflect the

algebraic relations between the entries of a fondamental matrix of solutions
and their successive derivatives, in a similar way that the difference Galois
groups reflect the algebraic relations between the entries of a fondamental
matrix of solutions.
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11.2. From parameterized to non parameterized difference Galois
theory. Applications. We maintain the hypotheses and notations of the
previous section. We let S be the k-algebra generated by the entries of Y and
det(Y)−1. Then, it can be shown that (S, φ) is a Picard-Vessiot ring for the

difference system (10) over (k, φ). We denote by Gφgal the group Galφ(S/k)

seen as a subgroup of GLn(C) via the faithful representation attached to Y.

Theorem 57 ([HS08, Proposition 2.8]). The differential algebraic group

G
(φ,δ)
gal is a Zariski-dense subgroup of the algebraic group Gφgal.

In some cases, e.g. if Gφgal has few differential algebraic subgroups, this is

a strong information. For instance, it has been proved by Cassidy in [Cas89]
that the Zariki-dense proper algebraic subgroups of SLn(C) are conjugate
to SLn(Cδ), where

Cδ = {f ∈ C | δ(f) = 0}.
Whence the following result.

Theorem 58. Assume that Gφgal = SLn(C). Then, we have:

— either G
(φ,δ)
gal = Gφgal = SLn(C);

— or G
(φ,δ)
gal is conjugate to a subgroup of SLn(Cδ).

Moreover, the difference between the former and the later case can be
reformulated as an integrability condition :

Proposition 59 ([HS08, Proposition 2.9]). The differential algebraic group

G
(φ,δ)
gal is conjugate to a subgroup of GLn(Cδ) if and only if there exists

B ∈ kn×n such that

φ(B) = ABA−1 + δ(A)A−1.

In this case, there exists Y ∈ GLn(R) such that

φ(Y ) = AY and δ(Y ) = BY.

For instance, these are the main ingredients behind the proofs of theorem
50: it is proved in [Roq08] that, in this case, the difference Galois group is
SL2(C) and Hardouin and Singer managed to prove that the parameterized
difference Galois group is SL2(C) by using the previous two results.

12. Answers to selected exercises

Answer of exercise 3

Indeed, we have φ(I) ⊂ I, thus I ⊂ φ−1(I). But φ−1(I) is a difference
ideal of R. So, we have either φ−1(I) = I or φ−1(I) = R. The latter case is
excluded.

Answer of exercise 4

Assume that (R/I, φ) is a difference ring. Prove that there is a 1-1 corre-
spondance between the difference ideals of R containing I and the difference
ideals of R/I given by J 7→ π−1(J) where π : R → R/I is the canonical
morphism.
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Answer of exercise 5

1. Indeed, we have φ(I) ⊂ I and, hence, I ⊂ φ−1(I). Therefore, we
have the ascending chain of ideals I ⊂ φ−1(I) ⊂ φ−2(I) ⊂ · · · . Since
R is noetherian, there exists a positive integer j such that φ−j(I) =

φ−(j+1)(I), whence φ(I) = I.

2. Let (Xn)n∈Z be a family of indeterminates over a field k and con-
sider the difference ring (R,φ) where R = k[(Xn)n∈Z] and where φ is
the unique k-algebra endomorphism of R such that φ(Xn) = Xn+1.
Then, I = (X0, X1, . . .) is a difference ideal of (R,φ) and we have
φ(I) ( I.

Answer of exercise 9

1. Let f ∈ k′φ. Let P (X) ∈ k[X] be the minimal polynomial of f over
k (in particular, P (X) is monic). Then, P φ(X) − P (X) ∈ k[X] has
degree < degP (X) and vanishes at f . Therefore, P φ(X)−P (X) = 0
i.e. the coefficients of P (X) belong to kφ and, hence, f is algebraic
over kφ.

2. Consider for instance C endowed with the complex conjugation.
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[Ran92] Bernard Randé. Équations fonctionnelles de Mahler et applications aux suites
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