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Abstract. q-Difference equations appear in various contexts in mathe-
matics and physics. The “basis” q is sometimes a parameter, sometimes
a fixed complex number. In both cases, one classically associates to
any series solution of such equations its q-Gevrey order expressing the
growth rate of its coefficients : a (nonarchimedean) q−1-adic q-Gevrey
order when q is a parameter, an archimedean q-Gevrey order when q is
a fixed complex number. The objective of this paper is to relate these
two q-Gevrey orders, which may seem unrelated at first glance as they
express growth rates with respect to two very different norms. More pre-
cisely, let f(q, z) ∈ C(q)[[z]] be a series solution of a linear q-difference
equation, where q is a parameter, and assume that f(q, z) can be spe-
cialized at some q = q0 ∈ C× of complex norm > 1. On the one hand,
the series f(q, z) has a certain q−1-adic q-Gevrey order sq. On the other
hand, the series f(q0, z) has a certain archimedean q0-Gevrey order sq0 .
We prove that sq0 ≤ sq “for most q0”. In particular, this shows that if
f(q, z) has a nonzero (nonarchimedean) q−1-adic radius of convergence,
then f(q0, z) has a nonzero archimedean radius converges “for most q0”.
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1. Introduction

Let q be a nonzero element of a field K and consider a linear q-difference
equation

(1) an(z)f(qnz) + an−1(z)f(qn−1z) + · · ·+ a0(z)f(z) = 0

with coefficients a0(z), . . . , an(z) ∈ K(z) such that a0(z)an(z) 6= 0.
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These equations, and more generally the q-calculs, appear in vari-
ous mathematical and physical domains including Gromov-Witten theory
[GL03, Roq19], knot theory [GL05], quantum affine algebras and elliptic
quantum groups [TV97], etc.

1.1. q-Gevrey estimates. Assume that K is endowed with an absolute
value

| · | : K → R+.

A solution f(z) ∈ K[[z]] of (1) may be divergent. The important works
of Bézivin in [Béz92] and of Bézivin and Boutabaa in [BB92] give precise
(q-Gevrey) estimates on the growth of the coefficients of f(z), that we shall
now recall.

Definition 1. A formal power series

f(z) =
∑
k≥0

fkz
k ∈ K[[z]]

is q-Gevrey of order s ∈ R if there exist A,B > 0 such that, for all k ≥ 0,

|fk| ≤ ABk|q|
k(k−1)

2
s.

This is equivalent to the fact that the series∑
k≥0

|fk|

|q|
k(k−1)

2
s
zk

has a nonzero radius of convergence. If this radius of convergence is nonzero
and finite, we say that f(z) has exact q-Gevrey order s.

1.1.1. Archimedean q-Gevrey estimates. Bézivin proved the following fun-
damental result (which is for instance the starting point of the resumation
theories for the solutions of q-difference equations; see Ramis and Zhang’s
papers [Zha00, RZ02, Zha02, RSZ06]). It is a q-analogue of a famous result
due to Ramis [Ram78, Ram79, Ram84] for differential equations.

Theorem 2 ([Béz92]). Assume that K = C is the field of complex numbers
and that | · | : C → R+ is the usual archimedean norm. If |q| > 1, then
any solution f(z) ∈ C[[z]] of (1) is either convergent or has exact q-Gevrey
order s = 1/r for some positive slope r of L at 0.

The slopes mentioned in Theorem 2 are the slopes of the Newton polygon
of L at 0. Let us recall that the Newton polygon N0(L) of L at 0 is the
convex hull in R2 of

{(i, j) | i ∈ Z and j ≥ ν0(an−i)},

where ν0 denotes the z-adic valuation. This polygon is delimited by two
vertical half lines and by k vectors (r1, d1), . . . , (rk, dk) ∈ Z>0 × Z having

pairwise distinct slopes λ1 = d1
r1
, . . . , λk = dk

rk
, called the slopes of L at 0.

See Sauloy’s [Sau04] for further informations.
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1.1.2. Nonarchimedean q-Gevrey estimates. In a subsequent work, Bézivin
and Boutabaa proved the following nonarchimedean variant of Theorem 2.

Theorem 3 ([BB92]). Assume that | · | : K → R+ is nonarchimedean. If
|q| > 1, then any solution f(z) ∈ K[[z]] of (1) is either convergent or has
exact q-Gevrey order s = 1/r for some positive slope r of L at 0.

Example 4. One can illustrate the previous results with the Tchakaloff se-
ries

f(z) =
∑
k≥0

q
k(k−1)

2 zk

that satisfies

(2) qzf(q2z)− (1 + z)f(qz) + f(z) = 0.

Of course, if the hypotheses of Theorem 2 or Theorem 3 are satisfied, then
f(z) has exact q-Gevrey order 1. This is in accordance with the fact that the
slopes of (2) at 0 are 0 and 1.

Remark 5. For an extension of Theorem 3 to nonlinear q-difference equa-
tions, we refer to Di Vizio’s [DV08].

Remark 6. The situation is radically different when |q| = 1; see Di Vizio’s
[DV09].

In the present paper, we will focus our attention on the following two
cases :

(1) K = C(q) is the field of rational fractions in the indeterminate q with
coefficients in C, q = q, and | · | = | · |q−1 is the q−1-adic norm defined,
for any a(q) ∈ C(q), by

|a(q)|q−1 = edegq a(q)

(| · |q−1 is a nonarchimedean norm with |q|q−1 = e > 1, so we can apply
Theorem 3);

(2) K = C and |·| is its usual archimedean norm (we can apply Theorem 2
provided that |q| > 1).

1.2. Statement of the main result. We are now in a position to describe
the problem considered in the present paper. Let

f(q, z) =
∑
k≥0

fk(q)zk ∈ C(q)[[z]]

be such that

(3) an(q, z)f(q,qnz) + an−1(q, z)f(q,qn−1z) + · · ·+ a0(q, z)f(q, z) = 0

for some a0(q, z), . . . , an(q, z) ∈ C(q, z) such that a0(q, z)an(q, z) 6= 0.
On the one hand, we can apply Theorem 3 to f(q, z) with K = C(q) and

with the q−1-adic norm | · | = | · |q−1 : the series f(q, z) is either convergent
or has some exact q-Gevrey order sq. If f(q, z) is convergent, then we set
sq = 0.
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On the other hand, assume that we can specialize the ai(q, z) and the
fk(q) at a given q ∈ C such that |q| > 1. Then, it is meaningful to consider
the series

f(q, z) =
∑
k≥0

fk(q)zk ∈ C[[z]].

It is a solution of the q-difference equation

(4) an(q, z)f(q, qnz) + an−1(q, z)f(q, qn−1z) + · · ·+ a0(q, z)f(q, z) = 0.

If the ai(q, z) are not all zero, then Theorem 2 ensures that f(q, z) is either
convergent or has some exact q-Gevrey order sq (with respect to the usual
archimedean norm | · | on C). If f(q, z) is convergent, then we set sq = 0.

The following theorem, which is the main result of the present paper,
gives a relation between sq and sq.

Theorem 7. There exist v(q, X) ∈ C[q][X] \ {0}, w(q) ∈ C[q] \ {0} and
M > 0 such that, for all m ≥M , v(q,qm) 6= 0 and

fm(q)v(q,qm)v(q,qm−1) · · · v(q,qM )w(q) ∈ C[q]

and such that

sq ≤ sq
for all but finitely many q ∈ C such that

— |q| > 1,
— and v(q, qm) 6= 0 for all m ≥M .

We emphasize that it may happen that sq > sq for certain choices of q;
see the example given in Section 4.

1.3. Organization of the paper. The proof of Theorem 7 is given in
Section 3. Our proof relies on a preliminary result, namely Proposition 9,
which is stated and proven in Section 9. In Section 4, we illustrate Theorem
7 on a q-hypergeometric example.

Acknowledgement. This work was supported by the ANR De rerum
natura project, grant ANR-19-CE40-0018 of the French Agence Nationale
de la Recherche.

2. A preliminary result

In what follows, we let N(·) be the norm on C[q] defined, for any u(q) =∑d
i=0 uiq

i ∈ C[q], by

N(u(q)) = max{|ui| | i ∈ {0, . . . , d}}.

(From now on, | · | will denote the usual archimedean norm on C.)

Definition 8. We will say that a sequence (um(q))m≥0 ∈ C[q]Z≥0 has mod-
erate growth with respect to N(·) if there exist A,B > 0 such that, for all
m ≥ 0,

N(um(q)) ≤ ABm.

The aim of this section is to prove the following result, which will be used
in Section 3 for proving Theorem 7.
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Proposition 9. Let

f(q, z) =
∑
m≥0

fm(q)zm ∈ C(q)[[z]]

be such that

(5) an(q, z)f(q,qnz) + an−1(q, z)f(q,qn−1z) + · · ·+ a0(q, z)f(q, z) = 0

for some a0(q, z), . . . , an(q, z) ∈ C(q, z) such that a0(q, z)an(q, z) 6= 0.
There exist v(q, X) ∈ C[q][X] \ {0}, w(q) ∈ C[q] \ {0}, a sequence
(um(q))m≥0 ∈ C[q]Z≥0 having moderate growth with respect to N(·) and
M > 0 such that, for all m ≥M , v(q,qm) 6= 0 and

fm(q) =
um(q)

v(q,qm)v(q,qm−1) · · · v(q,qM )w(q)
.

Before proving Proposition 9, we state and prove some preliminary lem-

mas. In what follows, we set, for any u(q) =
∑d

i=0 uiq
i ∈ C[q],

`(u(q)) = the number of nonzero coefficients of the polynomial u(q)

= card{i ∈ {0, . . . , d} | ui 6= 0}.

Lemma 10. For any u(q, X) ∈ C[q][X], the sequence (`(u(q,qk)))k≥0 is
ultimately constant.

Proof. Set u(q, X) =
∑

0≤i,j≤d ui,jq
iXj with ui,j ∈ C. Then, u(q,qk) =∑

0≤i,j≤d ui,jq
i+kj . If k is large enough, then the i + kj are two by two

distinct when i, j vary in {0, . . . , d} and, hence, `(u(q,qk)) = card{(i, j) ∈
{0, . . . , d}2 | ui,j 6= 0} is independent of k large enough. �

Lemma 11. For any u(q, X) ∈ C[q][X], the sequence (N(u(q,qk)))k≥0 is
ultimately constant.

Proof. Setting u(q, X) =
∑

0≤i,j≤d ui,jq
iXj with ui,j ∈ C and arguing as

in the proof of Lemma 10, we see that, for k large enough, N(u(q,qk)) =
max{|ui,j | | 0 ≤ i, j ≤ d} is independent of k. �

We state the following lemma for latter reference; its proof is obvious and
left to the reader.

Lemma 12. The map ` : C[q] → Z≥0 is submultiplicative, i.e., for any
u(q), v(q) ∈ C[q], we have

`(u(q)v(q)) ≤ `(u(q))`(v(q)).

Lemma 13. For any u1(q), . . . , un(q) ∈ C[q], we have

N(u1(q) · · ·un(q)) ≤ `(u1(q)) · · · `(un−1(q))N(u1(q)) · · ·N(un(q)).

Proof. Let us first consider the case n = 2. We have to prove that

N(u1(q)u2(q)) ≤ `(u1(q))N(u1(q))N(u2(q)).

For k ∈ {1, 2}, we set

uk(q) =
∑
i

uk,iq
i.



6 JULIEN ROQUES

We have u1(q)u2(q) =
∑

m amqm with

am =
∑

i+j=m

u1,iu2,j =
∑

i s.t.u1,i 6=0

u1,iu2,m−i

and

|am| ≤
∑

i s.t.u1,i 6=0

|u1,i||u2,m−i|

≤
∑

i s.t.u1,i 6=0

N(u1(q))N(u2(q)) = `(u1)N(u1(q))N(u2(q)).

Whence the desired result when n = 2. The general case follows from the
case n = 2 by an obvious induction. �

Proof of Proposition 9. We can assume that :
— for all i ∈ {1, . . . , n}, ai(q, z) ∈ C[q][z];
— and inf{νz(ai(q, z)) | i ∈ {0, . . . , n}} = 0 where νz : C[q][z] → Z≥0

denotes the z-adic valuation.
Indeed, we can always reduce the problem to this case by multiplying the q-
difference equation (5) (on the left) by a suitable nonzero element of C[q][z].

We set

f(q, z) =
∑
k≥0

fk(q)zk and ai(q, z) =
d∑

j=0

ai,j(q)zj .

We have

an(q, z)f(q,qnz) + an−1(q, z)f(q,qn−1z) + · · ·+ a0(q, z)f(q, z)

=
∑
m≥0

 n∑
i=0

∑
j+k=m

ai,j(q)fk(q)qki

 zm.

Therefore, the series f(q, z) =
∑

k≥0 fk(q)zk satisfies

an(q, z)f(q,qnz) + an−1(q, z)f(q,qn−1z) + · · ·+ a0(q, z)f(q, z) = 0

if and only if, for all m ≥ 0,
n∑

i=0

∑
j+k=m

ai,j(q)fk(q)qki = 0.

The latter equation can be rewritten as follows :

(6) fm(q)v0(q,q
m) + fm−1(q)v1(q,q

m−1) + · · ·+ fm−d(q)vd(q,qm−d) = 0

where

vk(q, X) =
n∑

i=0

ai,k(q)Xi.

Since inf{νz(ai(q, z)) | i ∈ {0, . . . , n}} = 0, the polynomial v0(q, X) is
nonzero, so there exists M > 0 such that, for all m ≥M ,

v0(q,q
m) 6= 0.

We consider w(q) ∈ C[q] \ {0} such that

w(q)fM−d(q), . . . , w(q)fM−1(q) ∈ C[q]
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and we set, for all m ≥M ,

um(q) = v0(q,q
m)v0(q,q

m−1) · · · v0(q,qM )w(q)fm(q).

In terms of the um(q), the equation (6) can be rewritten as follows :

(7) um(q) +um−1(q)ṽm,1(q) +um−2(q)ṽm,2(q) + · · ·+um−d(q)ṽm,d(q) = 0

where

ṽm,i(q) = v0(q,q
m−1)v0(q,q

m−2) · · · v0(q,qm−i+1)vi(q,q
m−i)

(with the convention ṽm,1(q) = v1(q,q
m−1)).

Since uM−1(q), . . . , uM−d(q) and the ṽm,i(q) belong to C[q], the equation
(7) shows that, for all m ≥M ,

um(q) ∈ C[q].

It remains to prove that the sequence (um(q))m≥M has moderate growth
with respect to N . In order to do so, let us first note that it follows from
(7) and from the triangular inequality for N(·) that, for m ≥M ,

N(um(q)) ≤
d∑

i=1

N(um−i(q)ṽm,i(q)).

Using Lemma 13, we get

N(um−i(q)ṽm,i(q)) ≤ `(ṽm,i(q))N(um−i(q))N(ṽm,i(q)).

But, Lemma 10 and Lemma 11 ensure that there exists c0 > 0 such that,
for all i ∈ {0, . . . , d}, for all k ≥ 0,

`(vi(q,q
k)) ≤ c0

and

N(vi(q,q
k)) ≤ c0.

Moreover, using the submultiplicativity of `, we get :

`(ṽm,i(q)) = `(v0(q,q
m−1)v0(q,q

m−2) · · · v0(q,qm−i+1)vi(q,q
m−i))

≤ `(v0(q,qm−1))`(v0(q,q
m−2)) · · · `(v0(q,qm−i+1))`(vi(q,q

m−i)) ≤ ci0
and, using Lemma 13, we get :

N(ṽm,i(q)) = N(v0(q,q
m−1)v0(q,q

m−2) · · · v0(q,qm−i+1)vi(q,q
m−i))

≤ `(v0(q,qm−1))`(v0(q,q
m−2)) · · · `(v0(q,qm−i+1))

×N(v0(q,q
m−1))N(v0(q,q

m−2)) · · ·N(v0(q,q
m−i+1))N(vi(q,q

m−i))

≤ ci−10 ci−10 c0 = c2i−10

Therefore,

N(um−i(q)ṽm,i(q)) ≤ c3i−10 N(um−i(q)).

Hence, setting

K = max{c3i−10 | i ∈ {1, . . . , d}},
we get

N(um(q)) ≤ K
d∑

i=1

N(um−i(q)).
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This implies that the sequence (N(um(q)))m≥M has at most geometric
growth. This concludes the proof. �

3. Proof of Theorem 7

Proposition 9 ensures that there exist v(q, X) ∈ C[q][X] \ {0}, w(q) ∈
C[q] \ {0}, a sequence (um(q))m≥0 ∈ C[q]Z≥0 having moderate growth with
respect to N(·) and M > 0 such that, for all m ≥M , v(q,qm) 6= 0 and

fm(q) =
um(q)

v(q,qm)v(q,qm−1) · · · v(q,qM )w(q)
.

By definition, the series ∑
m≥0

|fm(q)|q−1

|q|
m(m−1)

2
sq

q−1

zm

has a positive radius of convergence. Using the Cauchy-Hadamard formula,
we get

lim sup
m→+∞

∣∣∣∣∣ fm(q)

q
m(m−1)

2
sq

∣∣∣∣∣
1
m

q−1

< +∞,

i.e.,

lim sup
m→+∞

1

m

(
deg fm(q)− m(m− 1)

2
sq

)
< +∞.

Therefore, there exists α > 0 such that, for all m large enough,

(8) deg fm(q) ≤ m(m− 1)

2
sq + αm.

On the other hand, it is easily seen that there exist some constants α′, β′ >
0 such that, for all m large enough,

(9) deg(v(q,qm)v(q,qm−1) · · · v(q,qM )w(q))

≤ m(m− 1)

2
degX v(q, X) + α′m+ β′.

Putting (8) and (9) together, we get that there exist some constants
α′′, β′′ > 0 such that, for all m large enough,

(10) deg um(q) = deg fm(q) + deg(v(q,qm)v(q,qm−1) · · · v(q,q)w(q))

≤ m(m− 1)

2
(sq + degX v(q, X)) + α′′m+ β′′.

Consider q ∈ C with |q| > 1. We have

|um(q)| ≤ N(um(q))

deg um(q)∑
k=0

|q|k = N(um(q))
|q|deg um(q)+1 − 1

|q| − 1
.

Using the moderate growth of (um(q))m≥0 with respect to N(·) and the
estimate (10), we see that there exists γ, δ > 0 such that, for all m large
enough,

(11) |um(q)| ≤ γδm|q|
m(m−1)

2
(sq+degX v(q,X)).

On the other hand, if we assume that q is such that
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— degX v(q,X) = degX v(q, X),
— w(q) 6= 0,
— and v(q, qm) 6= 0 for all m ≥M

(note that the first two conditions exclude at most finitely many q), then we
have

v(q,X) = cXdegX v(q,X)ṽ(X)

for some c ∈ C× and some ṽ(X) ∈ 1 +X−1C[X−1] and, hence,

(12) v(q, qm)v(q, qm−1) · · · v(q, qM )w(q) ∼m→+∞ d′c′mq
m(m−1)

2
degX v(q,X)

for some c′, d′ ∈ C×. Putting (11) and (12) together, we obtain that there
exist γ′, δ′ > 0 such that

|fm(q)| ≤ γ′δ′m|q|
m(m−1)

2
sq

and, hence, sq ≤ sq. This concludes the proof.

4. An example

Let us illustrate Theorem 7 with the q-hypergeometric series

f(q, z) =
∑
k≥0

fk(q)zk =
∑
k≥0

(q− 3; q)k
(q− 2; q)k

zk

that satisfies the q-hypergeometric equation

(13) f(q,q2z)− (2q− 3)z − (1 + (q− 2)/q)

(q− 3)qz − (q− 2)/q
f(q,qz)

+
z − 1

(q− 3)qz − (q− 2)/q
f(q, z) = 0.

We have used the classical notation for the q-Pochhammer symbols :

(a; q)k = (1− a)(1− aq) · · · (1− aqk−1) if k ≥ 1,

and

(a; q)0 = 1.

The polynomials

v(q, X) = 1− (q− 2)X ∈ C[q][X] \ {0} and w(q) = 1 ∈ C[q] \ {0}

satisfy

(14) fm(q)v(q,qm)v(q,qm−1) · · · v(q,q)w(q) ∈ C[q].

We clearly have sq = 0 because deg(q− 3; q)k = deg(q− 2; q)k. Moreover,
if q ∈ C is such that

— |q| > 1,
— v(q, qm) 6= 0 for all m ≥ 0,
— q 6= 2, 3,

then we have sq = 0 because

fk(q) =
(q − 3; q)k
(q − 2; q)k

∼k→+∞ cq

(
q − 3

q − 2

)k
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for some cq ∈ C×. In particular, for these q, we have sq ≤ sq has claimed in
Theorem 7. However, note that if q = 2 then

fk(q) = fk(2) = (−1; q)k ∼k→+∞ c2q
k(k−1)

2

for some c2 ∈ C×, so that s2 = 1 > sq = 0. This shows that even if we have
found v(q, X) and w(q) satisfying (14), one cannot conclude that sq ≤ sq
for all q ∈ C such that

— |q| > 1,
— v(q, qm) 6= 0 for all m ≥ 0;

we have to discard finitely many such q in general (here, we have to exclude
q = 2).
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Sci. Paris, 342(7):515–518, 2006.
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