ON THE ARCHIMEDEAN AND NONARCHIMEDEAN
¢-GEVREY ORDERS

JULIEN ROQUES

ABSTRACT. g-Difference equations appear in various contexts in mathe-
matics and physics. The “basis” ¢ is sometimes a parameter, sometimes
a fixed complex number. In both cases, one classically associates to
any series solution of such equations its g-Gevrey order expressing the
growth rate of its coefficients : a (nonarchimedean) ¢~ '-adic ¢-Gevrey
order when ¢ is a parameter, an archimedean ¢-Gevrey order when g is
a fixed complex number. The objective of this paper is to relate these
two g-Gevrey orders, which may seem unrelated at first glance as they
express growth rates with respect to two very different norms. More pre-
cisely, let f(q,z) € C(q)[[2]] be a series solution of a linear g-difference
equation, where ¢ is a parameter, and assume that f(q,z) can be spe-
cialized at some g = qo € C* of complex norm > 1. On the one hand,
the series f(q, z) has a certain ¢~ '-adic ¢-Gevrey order s,. On the other
hand, the series f(qo, z) has a certain archimedean go-Gevrey order sq.
We prove that sq, < s, “for most qo”. In particular, this shows that if
f(q, 2) has a nonzero (nonarchimedean) ¢~ *-adic radius of convergence,
then f(qo, z) has a nonzero archimedean radius converges “for most qo”.
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1. INTRODUCTION

Let ¢ be a nonzero element of a field K and consider a linear g-difference
equation

(1) an(2) f(q"2) + an-1(2) f(q"7'2) + -+ ao(2)f(2) = 0
with coefficients ag(z),...,an(z) € K(z) such that ag(2)ay(z) # 0.
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These equations, and more generally the g-calculs, appear in vari-
ous mathematical and physical domains including Gromov-Witten theory
[GL03, Roql9], knot theory [GLO05], quantum affine algebras and elliptic
quantum groups [TV97], etc.

1.1. ¢-Gevrey estimates. Assume that K is endowed with an absolute
value

|- |: K = RT.
A solution f(z) € KJ[z]] of (1) may be divergent. The important works
of Bézivin in [Béz92| and of Bézivin and Boutabaa in [BB92] give precise

(¢-Gevrey) estimates on the growth of the coefficients of f(z), that we shall
now recall.

Definition 1. A formal power series
f(z) =" fud" € K[[2]]
k>0

is q-Gevrey of order s € R if there exist A, B > 0 such that, for all k > 0,

k(k—1)

|fx| < ABF|q| "= *.

This is equivalent to the fact that the series

Ifel
Z KD, ©

k>0 |q] 2

has a nonzero radius of convergence. If this radius of convergence is nonzero
and finite, we say that f(z) has exact q-Gevrey order s.

1.1.1. Archimedean q-Gevrey estimates. Bézivin proved the following fun-
damental result (which is for instance the starting point of the resumation
theories for the solutions of g-difference equations; see Ramis and Zhang’s
papers [Zha00, RZ02, Zha02, RSZ06]). It is a g-analogue of a famous result
due to Ramis [Ram78, Ram79, Ram84] for differential equations.

Theorem 2 ([Béz92]). Assume that K = C is the field of complex numbers
and that | - | : C — RT is the usual archimedean norm. If |q| > 1, then
any solution f(z) € C[[z]] of (1) is either convergent or has exact q-Gevrey
order s = 1/r for some positive slope r of L at 0.

The slopes mentioned in Theorem 2 are the slopes of the Newton polygon
of L at 0. Let us recall that the Newton polygon Ny(L) of L at 0 is the
convex hull in R? of

{(i,7) | i € Z and j > vp(an—;)},

where vy denotes the z-adic valuation. This polygon is delimited by two
vertical half lines and by k vectors (r1,d1), ..., (rg,di) € Zso x Z having
pairwise distinct slopes A\ = %, ce AR = f—:, called the slopes of L at 0.
See Sauloy’s [Sau04] for further informations.
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1.1.2. Nonarchimedean q-Gevrey estimates. In a subsequent work, Bézivin
and Boutabaa proved the following nonarchimedean variant of Theorem 2.

Theorem 3 ([BB92|). Assume that |-|: K — R" is nonarchimedean. If
lg| > 1, then any solution f(z) € K[[z]] of (1) is either convergent or has
exact q-Gevrey order s = 1/r for some positive slope r of L at 0.

Example 4. One can illustrate the previous results with the Tchakaloff se-

T1es
k(k—1)
f)=)q 7 2

k>0
that satisfies

(2) qzf(a°z) = (1 +2)f(q2) + f(2) = 0.

Of course, if the hypotheses of Theorem 2 or Theorem 3 are satisfied, then
f(2) has exact qg-Gevrey order 1. This is in accordance with the fact that the
slopes of (2) at 0 are 0 and 1.

Remark 5. For an extension of Theorem 3 to nonlinear q-difference equa-
tions, we refer to Di Vizio’s [DV08].

Remark 6. The situation is radically different when |q| = 1; see Di Vizio’s
[DV09].

In the present paper, we will focus our attention on the following two
cases :

(1) K = C(q) is the field of rational fractions in the indeterminate q with
coefficients in C, ¢ = q, and |-| = |- |41 is the q~*-adic norm defined,
for any a(q) € C(a), by

a(@)q1 = @
(|-]q-1 is a nonarchimedean norm with |g|,-1 = e > 1, so we can apply
Theorem 3);

(2) K = C and |-] is its usual archimedean norm (we can apply Theorem 2
provided that |g| > 1).

1.2. Statement of the main result. We are now in a position to describe
the problem considered in the present paper. Let

fla,2) = ful@)z" € C(q)[[2]

k>0

be such that

(3) an(a, 2)f(a,q"2) + an—1(q, 2) f(a,q" " '2) + -+ + ao(q, 2) f(q, 2) =0

for some ag(q, 2),...,an(q, z) € C(q, z) such that ag(q, z)an(q, z) # 0.

On the one hand, we can apply Theorem 3 to f(q, z) with K = C(q) and
with the g~!-adic norm | -| = |- |41 : the series f(q, 2) is either convergent
or has some exact g-Gevrey order sq. If f(q,z) is convergent, then we set
8q = 0.
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On the other hand, assume that we can specialize the a;(q,z) and the
fx(q) at a given ¢ € C such that |g| > 1. Then, it is meaningful to consider
the series

fla,2) =Y frl@)z" € C[2]].
k>0
It is a solution of the g-difference equation

(4)  an(g,2)f(q.4"2) + an-1(,2)f(0,¢"""2) + - + ao(q, 2) (g, 2) = 0.

If the a;(q, z) are not all zero, then Theorem 2 ensures that f(q, z) is either
convergent or has some exact ¢-Gevrey order s, (with respect to the usual
archimedean norm |- | on C). If f(q, z) is convergent, then we set s, = 0.

The following theorem, which is the main result of the present paper,
gives a relation between s, and sq.

Theorem 7. There exist v(q, X) € C[q][X]\ {0}, w(q) € C[q] \ {0} and
M > 0 such that, for allm > M, v(q,q™) # 0 and

fm(@)v(a,a™)v(a,a™ ") - v(q,a™)w(q) € Clq]
and such that
8¢ < 8q
for all but finitely many q € C such that

— gl >1,
— and v(q,q™) # 0 for allm > M.

We emphasize that it may happen that s, > sq for certain choices of ¢;
see the example given in Section 4.

1.3. Organization of the paper. The proof of Theorem 7 is given in
Section 3. Our proof relies on a preliminary result, namely Proposition 9,
which is stated and proven in Section 9. In Section 4, we illustrate Theorem
7 on a q-hypergeometric example.

Acknowledgement. This work was supported by the ANR De rerum
natura project, grant ANR-19-CE40-0018 of the French Agence Nationale
de la Recherche.

2. A PRELIMINARY RESULT

In what follows, we let N(-) be the norm on C[q] defined, for any u(q) =

Siouid’ € Cla], by
N(u(q)) = max{fu] | i € {0,...,d}}.
(From now on, | - | will denote the usual archimedean norm on C.)
Definition 8. We will say that a sequence (U (q))m>o0 € Clq]?>° has mod-
erate growth with respect to N(-) if there exist A, B > 0 such that, for all
m >0,
N(um(q)) < AB™.

The aim of this section is to prove the following result, which will be used
in Section 3 for proving Theorem 7.



Proposition 9. Let
fla,2) = fm(@)z™ € C(a)|[]]
m>0

be such that

(5) an(a,2)f(d,q"2) + an-1(q,2) f(a, 4" '2) + -+ ao(q, 2) f(q,2) = 0
for some ap(q, 2),...,an(q,2) € C(q,z) such that ap(q, z)an(q,z) # O.
There exist v(q,X) € Clq][X] \ {0}, w(q) € C[q] \ {0}, a sequence

(um(Q))m>0 € Cla)Z20 having moderate growth with respect to N(-) and
M > 0 such that, for allm > M, v(q,q™) # 0 and

Um(a)
fm(a) = :
" v(a,qm)v(g, g™ ) - v(a, aM)w(q)
Before proving Proposition 9, we state and prove some preliminary lem-
mas. In what follows, we set, for any u(q) = Z?:o u;q’ € C[q],

l(u(q)) = the number of nonzero coefficients of the polynomial u(q)
= card{i € {0,...,d} | u; #0}.

Lemma 10. For any u(q,X) € C[q][X], the sequence (£(u(q,q*)))r>0 is
ultimately constant.

Proof. Set u(q, X) = ZOSi,jgdui,jinj with u;; € C. Then, u(q, qF) =
Zogmgd “i,qukj'
distinct when i, j vary in {0,...,d} and, hence, £(u(q,q¥)) = card{(i,j) €
{0,...,d}? | u;; # 0} is independent of k large enough. O

If k£ is large enough, then the ¢ + kj are two by two

Lemma 11. For any u(q, X) € C[q][X], the sequence (N(u(q,q")))r>0 is
ultimately constant.

Proof. Setting u(q, X) = > o<; j<a u; ;9" X7 with u;; € C and arguing as
in the proof of Lemma 10, we see that, for k large enough, N(u(q,q")) =
max{|u; j| | 0 <4,j < d} is independent of k. O

We state the following lemma for latter reference; its proof is obvious and
left to the reader.

Lemma 12. The map ¢ : Clq] — Z>o is submultiplicative, i.e., for any
u(q),v(aq) € Clq], we have

t(u(a)v(a)) < L(u(a))l(v(a)).
Lemma 13. For any u1(q), ..., u,(q) € Clq], we have
N(ui(q) - un(@)) < (ur(q)) - - £(un-1(a))N(u1(q)) - - - N(un(q))-
Proof. Let us first consider the case n = 2. We have to prove that
N(u1(q)uz(q)) < £(u1(q))N(ui(q))N(uz(q))-
For k € {1,2}, we set
ur(a) =) urig”
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We have ui(q)ua(q) =), amnq™ with

am = g UL U2 = E UL ;U2 m—i

i+j=m i s.t.u1,i¢0
and
lam| < Z w1 3| [u2,m—i
is.t.uy ;70
< Y N(ua(@)N(uz(a)) = £(u)N(ur () N(uz(a))-
i s.t.uy ;70

Whence the desired result when n = 2. The general case follows from the
case n = 2 by an obvious induction. O

Proof of Proposition 9. We can assume that :
— foralli e {1,...,n}, ai(q, z) € C[q][z];
— and inf{v,(ai(q,2)) | i € {0,...,n}} = 0 where v, : C[q][z] = Z>o
denotes the z-adic valuation.
Indeed, we can always reduce the problem to this case by multiplying the q-
difference equation (5) (on the left) by a suitable nonzero element of C[q][z].
We set

d
fla2) = 3 ful@)z and ag(a,2) = 3 as (@),
=0

k>0
We have

an(q7 Z)f(q7 qnz) + an—l(qa Z)f(q7 qn—lz) +o T+ aO(qv Z)f(cb Z)

=> (D] D a(@ful@d™ | =™

m>0 \ ¢=0 j+k=m
Therefore, the series f(q,z) = ;50 fe(q)z* satisfies

an(q,2)f(a,a"2) + an-1(q,2) f(a,q"'2) + - + ao(q, 2) f(q,2) = 0
if and only if, for all m > 0,

n
> > aij@fr(@a =o.
=0 j+k=m
The latter equation can be rewritten as follows :
(6) fm(@vo(a,a™) + fm-1(@vi(a,a™ ")+ + fn—a(@)va(a,a™ %) =0
where

ve(a, X) = air(@) X"
i=0

Since inf{v,(a;(q,2)) | i« € {0,...,n}} = 0, the polynomial vy(q, X) is
nonzero, so there exists M > 0 such that, for all m > M,

UO(CL qm) 7& 0.
We consider w(q) € C[q] \ {0} such that

w(q) frr—-a(a), -, w(a)fu-1(q) € Clq]



and we set, for all m > M,

um(q) = vo(a, q™)vo(q, a™ ) -+ vo(a, g w(a) fm(a)-

In terms of the u,,(q), the equation (6) can be rewritten as follows :

(7) um(a) + wm—1(a)0m,1(Q) + tm—2(Q)Vm2(Q) + - - +tm—a(Q)Vm.a(q) = 0
where

m—i—i—l)

Umyi(q) = vo(q, g™ vo(q, g™ %) -~ vo(q, q vi(q,q™%)

(with the convention v, 1(q) = vi(q,q™1)).
Since ups—1(q), - . ., upr—q(q) and the v, ;(q) belong to C[q], the equation
(7) shows that, for all m > M,

um(q) € Clq].

It remains to prove that the sequence (u;,(q))m>n has moderate growth
with respect to N. In order to do so, let us first note that it follows from
(7) and from the triangular inequality for N(-) that, for m > M,

< ZN um z Umz(q))

Using Lemma 13, we get

N (ttm—i(@)0m,i(@)) < €(Vm,i(a))N(um—i(q))N(om.i(a))-
But, Lemma 10 and Lemma 11 ensure that there exists ¢y > 0 such that,
for all i € {0,...,d}, for all k£ > 0,
(vi(q,q")) < co
and
N(vi(q,q")) < co.
Moreover, using the submultiplicativity of £, we get :

m—2) . m—i+1)

U(Umi(Q)) = £(vo(a,a™ H)vo(a, g ~vo(q, q vi(q, g™ "))
< (vo(a, g™ M) l(vo(a, a™2)) -+ £(vo(a, g™ 1)) e(vi(q, ™)) < cf
and, using Lemma 13, we get :

N(0mi(q)) = N(vo(q, g™ Doola, @™ 2) -+ vo(q, g™ wi(q, g™ Y)

< (vo(q, @™ ) (vo(q, @™ %)) - - Llvo(q, g™ 1))

x N(vo(a, g™ 1)N(vo(q, g™ 2)) -+ - N(vo(a, g™ "1))N(v;(q, g™ )

1111_211
<cO Cy Co = Cy

Therefore,
N (trn—i(@)0m,i(@)) < &' "N(um—i(q))-
Hence, setting
K =max{c ! |ie{l,...,d}},

we get
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This implies that the sequence (N(up(q)))m>nm has at most geometric
growth. This concludes the proof. U

3. PROOF OF THEOREM 7

Proposition 9 ensures that there exist v(q, X) € C[q][X] \ {0}, w(q) €
Clq] \ {0}, a sequence (s, (q))m>0 € C[q]?>° having moderate growth with
respect to N(-) and M > 0 such that, for all m > M, v(q,q™) # 0 and

fm(a) = v(q,q™)v(q, g™ 1) - -v(q,qM)w(q)”

By definition, the series

5 o,

m(m—1)

m>0|q| _*

has a positive radius of convergence. Using the Cauchy-Hadamard formula,
we get

1
lim sup 7{?;(2)) < o0,
m—-+0o q D) q q—l

1.e.,
1 —1

lim sup — <deg fm(q) — m<m>8q> < 400.

m——+oo TN 2
Therefore, there exists a > 0 such that, for all m large enough,

m(m — 1
(8) deg fm(q) < (2)5q + am.
On the other hand, it is easily seen that there exist some constants o/, 3’ >

0 such that, for all m large enough,

(9) deg(v(a,q™)v(a,q™ ") - v(q, g)w(q))

m(m

-1
< 2) degy v(q, X) +a'm + 3.

Putting (8) and (9) together, we get that there exist some constants
o, 3" > 0 such that, for all m large enough,

(10)  degum(q) = deg fm(aq) + deg(v(q, q™)v(q,q™ ") - v(q, q)w(q))

1
< m(m2) (sq + degy v(q, X)) + om + "

Consider g € C with |¢| > 1. We have

dern () deg um(a)+1
g|tegrm @+t — ]
n(@)] < N(um(@) Y la* = N(un ()2 g~ 1
k=0

Using the moderate growth of (u;,(q))m>0 with respect to N(-) and the
estimate (10), we see that there exists v,0 > 0 such that, for all m large
enough,

m(m—1)

(11) [um(q)] < 78™|q| 7 (atdeax (@),
On the other hand, if we assume that ¢ is such that




— degy v(q, X) = degx v(q, X),
— w(q) #0,
— and v(q,q™) # 0 for all m > M
(note that the first two conditions exclude at most finitely many ¢), then we
have
v(g, X) = exdeex v(@X)5(x)
for some ¢ € C* and some v(X) € 1 + X 'C[X ~!] and, hence,

m(m—1)

(12) (g, ¢™)v(q,¢™ 1) - v(q, ¢ )w(q) ~mostoo ddMg 2 deexv(@X)

for some ¢/, d’ € C*. Putting (11) and (12) together, we obtain that there
exist 7/, 8" > 0 such that

m(m—1)

|fm(@)] <A/6™ gl =2 *a

and, hence, s; < sq. This concludes the proof.

4. AN EXAMPLE

Let us illustrate Theorem 7 with the g-hypergeometric series

f(q’ Z) _ ka(q)zk _ Z (q_ 35 q)kzk

= = (@=2aq)
that satisfies the q-hypergeometric equation

(29 -3)z— (1 + (g —2)/q)
(@-3)az - (a—2)/q

(13) fla,q9%z) — f(a,q2)

z—1
- (@—3)gz — (g —2)/

We have used the classical notation for the g-Pochhammer symbols :

(a:q)p = (1 —a)1—aq)--- (1 —aq" 1) if k> 1,

qf(q, z) =0.

and
(a;q)o = 1.
The polynomials
v(q, X) =1-(q—2)X € C[q][X]\ {0} and w(q) =1 € C[q] \ {0}
satisfy

(14) fm(@v(a,q™)v(q,q™ ") -+ v(q, q)w(q) € C[q].

We clearly have sq = 0 because deg(q — 3;q), = deg(q — 2;q). Moreover,
if ¢ € C is such that

T |q| > 1’
— v(q,q™) # 0 for all m > 0,
— dq 7& 2a 35

then we have s, = 0 because

(q—3;9)x

B q-3\"
Fel@) = (=g e <q—z>
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for some ¢, € C*. In particular, for these ¢, we have s, < sq has claimed in
Theorem 7. However, note that if ¢ = 2 then
k(k—1)
fe(@) = fu(2) = (=1 @)k ~k—sto0 C2q 2

for some ¢y € C*, so that sy =1 > sq = 0. This shows that even if we have
found v(q, X') and w(q) satisfying (14), one cannot conclude that s, < sq
for all ¢ € C such that

o ‘Q| > 1’

— v(q,q™) # 0 for all m > 0;
we have to discard finitely many such ¢ in general (here, we have to exclude

q=2).
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