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Abstract. We consider the series Φ(α) =
∑∞

m=1
1
m2 sin(2πm

2α) cot(πmα), a twist of the
famous continuous but almost nowhere differentiable sine series defined by Riemann. In a
slightly different but equivalent form, this series appeared in the first author’s paper [On

the distribution of multiple of real numbers, Monatsh. Math 164.3 (2011), 325–360]. We
pursue here the study of Φ, which is almost everywhere but not everywhere convergent.
We first prove that Φ enjoys a modular type property, in the following sense (with Φn

the n-th partial sum of Φ): For all α ∈ (0, 1], the sequence ΦN (α) − αΦ⌊αN⌋(−1/α) has
a finite simple limit Ω(α) as N → +∞. Using analytic properties of Ω, we then prove
that Φ(α) converges if and only if α is irrational and

∑

j log(qj+1)/qj converges (Brjuno’s

condition), where qj is the j-th denominator in the sequence of convergents to α. This
completes the results obtained in the above mentioned paper, where it was proved that
Φ(α) converges absolutely under Brjuno’s condition.

1. Introduction

This paper deals with the series

Φ(α) =

∞
∑

m=1

1

m2
sin(2πm2α) cot(πmα). (1.1)

(The summand is defined for any real number α because sin(2πm2z) cot(πmz) is an entire
function for any integer m ≥ 1.) It is a twist of Riemann series

∑∞
m=1

1
m2 sin(2πm

2α). It
appeared in a different form in the diophantine study in [13]. Riemann series is continuous
on R and nowhere differentiable, except at the rational numbers of the form p/q with p
and q both odd and coprime (Hardy, Gerver, Itatsu; see [5, Chapitre VII]). Duistermaat [6]
showed that these facts are simple consequences of the following modular type functional

equation, where R(α) =
∑∞

m=1
e2iπm2α

m2 and α > 0:

R(α)− eiπ/4α3/2R(−1/α) =
π2

6
+ iπeiπ/4

√
α− i

π

2
α− 3

2
eiπ/4

∫ α

0

√
τR(−1/τ)dτ, (1.2)

which itself can be deduced from the classical modular equation satisfied by the theta series
∑

m∈Z e
iπm2α. The latter was used by Jaffard [7] to compute the multifractal spectrum of
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Riemann series. The important information in (1.2) is that the right-hand side is much
smoother (differentiable with continuous derivative on (0,+∞)) than what is suggested by
the left-hand side (continuous but almost nowhere differentiable).

We address here two questions:
– When does the series Φ(α) converge?
– Does the series Φ(α) satisfy a modular type functional equation (like (1.2)) that pro-

vides some non-trivial analytic information?

Although both questions might seem unrelated, it turns out that our answer to the
second one is an important step to answer the first one.

We shall now make a couple of comments concerning the first question. On the one
hand, it is easy to prove that the series diverges for all rational number α = p/q with
(p, q) = 1. Indeed, in this case, for any integer J ≥ 1,

Jq−1
∑

m=1

sin(2πm2α) cot(πmα)

m2
=

q−1
∑

k=1

sin(2πk2p/q) cot(πkp/q)
J−1
∑

j=1

1

(jq + k)2
+ 2

J−1
∑

j=1

1

jq
,

whence a logarithmic divergence of Φ(p/q). On the other hand, it was proved in [13] that
Φ(α) converges absolutely for any irrational number α satisfying Brjuno’s diophantine

condition
∞
∑

j=0

log(qj+1)

qj
< ∞, (1.3)

where qj denotes the j-th denominator of the sequence of convergents to α. (1) More
precisely, the “absolute convergence” result proved in [13] concerns the series of general
term 1

m2

∑m
k=1 cos(2πkmα) but this does not change anything since

1

m2

m
∑

k=1

cos(2πkmα) =
cos(πm(m+ 1)α) sin(πm2α)

m2 sin(πmα)

=
sin(2πm2α) cot(πmα)

2m2
− sin(πm2α)2

m2
(1.4)

and the second fraction on the right of (1.4) is the term of an absolutely convergent series

for any α. The proof uses the fact that |sin(2πm2α) cot(πmα)| ≪ ||m2α||
||mα|| (where ||x||

denotes the distance of x ∈ R to Z) and then estimates in terms of the continued fraction

expansion of α for the growth of the sums
∑N

m=1
||m2α||
m2||mα|| , inspired by the estimates found

in Kruse’s paper [9] for the sums
∑N

m=1
1

ms||mα|| . See also [14].

1The results proved in [13] concerns the series
∑∞

n=1
cos(πn(n+1)α) sin(πn2α)

n2 sin(πnα) and its simple relation with

Φ(α) is given by Eq. (1.4) below. Furthermore, Brjuno’s condition is replaced in [14] by the more compli-

cated condition
∑

j
log(max(qj+1/qj ,qj))

qj
< ∞. It was not stated in [14] that both conditions are equivalent:

indeed, we have qj+1/qj ≤ max(qj+1/qj , qj) ≤ 2qj+1 and the series
∑

j log(qj)/qj is convergent for any
irrational number α. It is well-known that only Liouville numbers may fail to satisfy Brjuno’s condition,
which thus holds almost surely.
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Figure 1. Plot of Φ500 on [0,1]

In the present paper, a modular type property of Φ(α) is established and used in order
to understand more precisely the convergence properties of Φ(α). For any integer N and
any real number α, we denote by ΦN(α) the N -th partial sum of Φ(α) :

ΦN(α) =
N
∑

m=1

sin(2πm2α) cot(πmα)

m2
.

We then consider

ΩN(α) = ΦN (α)− αΦ⌊αN⌋(−1/α)

where ⌊ · ⌋ denotes the floor function. We observe that the limit of ΩN (α) is a priori

defined almost everywhere on (0, 1] but not everywhere. The first part of the paper is
devoted to the proof of the following result, which in particular shows that the limit of
ΩN (α) exists and is defined everywhere on (0, 1]. For other instances of such a phenomenon,
see [1, 2, 3, 15, 18].

Theorem 1. The sequence of functions ΩN has a simple limit Ω on (0, 1] as N → +∞.

Moreover,

ΩN (α) =
1

πα

N
∑

m=1

sin(2πm2α)

m3
+GN(α) (1.5)

where GN has a simple limit G on [0, 1] as N → +∞ and |GN(α)| is bounded by an absolute

constant for all α ∈ [0, 1] and all N ≥ 1.

In particular, the function

Ω(α)− 1

πα

∞
∑

m=1

sin(2πm2α)

m3
(1.6)
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Figure 2. Plot of Ω500 on [0.07, 1]

is defined and bounded on [0, 1]. The Riemann-like sine series in (1.6) is continuous and
behaves like πα log(1/α) as α → 0+ (see Lemma 3). These facts will be important for
the proof of Theorem 2 stated below. We will provide explicit expressions for the limits
G(α) and Ω(α) but they are not easy to study precisely. Graphical experiments (see
Figure 2) done with the computer algebra system PARI/GP lead us to formulate the
following conjecture:

Conjecture 1. The function G is continuous on [0, 1].

Fortunately, Theorem 1 provides us enough control on Ω and this conjecture is not
required for the proof of our next result.

Theorem 2. For any irrational number α ∈ (0, 1), the series Φ(α) converges if and only

if Brjuno’s condition (1.3) holds.
In case of convergence, we have

Φ(α) =
∞
∑

j=0

αT (α) · · ·T j−1(α)Ω(T j(α)) (1.7)

where T k(α) denotes the k-th iterate of α by the Gauss map T (α) = {1/α}.
Remark. By the classical properties of continued fraction expansions, we have T j(α) ≈ qj

qj+1

and αT (α) · · ·T j−1(α) = |qj−1α − pj−1| ≈ 1
qj
. (See Section 3.1 for some properties of

continued fraction expansions.) Hence, since Ω has a logarithmic behavior at the origin,
identity (1.7) can be viewed as the quantitative version of the first (qualitative) part of
Theorem 2. Similar expansions can be found in [15, 16] for instance and implicitly in [17].

As mentioned above, it was proved in [13] that Φ(α) converges absolutely if Brjuno’s
condition holds. Together with Theorem 2, this leads to the following result.
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Corollary 1. The series Φ(α) converges if and only if it converges absolutely.

We observe here that Φ could be related with “false” Lerch’ sums and “false” theta
functions (“false” means here that we replace summations over Z by summations over N∗

in the usual definitions of Lerch’ sums and theta functions). For Lerch’ sums, we refer the
reader to Mordell’s papers [11, 12] and Zwegers’ thesis [19] on mock theta functions. It
would be interesting to know if an alternative expression for Ω could be deduced from this
relationship which would prove Conjecture 1.

Beside Conjecture 1, let us conclude this introduction with a few other problems. For-
mally, the Fourier series expansion of Φ(α) is S(Φ)(α) = π2

12
+
∑∞

n=1
2φn

n2 cos(2πnα) where

φn =
∑

d|n

1≤d≤√
n

d2 − n

2
if n is a square, φn =

∑

d|n

1≤d≤√
n

d2 otherwise.

This is an easy consequence of (1.4). Two problems are to determine for which α’s the
Fourier series S(Φ)(α) converges (2) and for which ones we have S(Φ)(α) = Φ(α). In the
spirit of Davenport-like problems (see [4, 10]), the natural answers would be “if and only
if Brjuno’s condition holds” for both problems but we don’t know what to expect here. It
was proved in [13] that S(Φ)(α) = Φ(α) if

∑∞
j=0 qj+1/q

2
j converges, which is an almost sure

condition but stronger than Brjuno’s condition. Another problem is the determination of

the minima of Φ on [0, 1], which seems to be at α =
√
5−1
2

and α = 3−
√
5

2
. Finally, it would

be interesting to know if our method can be adapted to study the convergence of the series

∞
∑

m=1

sin(2πm2α) cot(πmα)

ms

for any given s ∈ (1, 2). (For obvious reasons, this series converges, respectively diverges,
for every α ∈ R if s > 2, respectively if s ≤ 1.)

We will frequently work with analytic functions h on an open subset Ω of C defined as
the quotient of analytic functions h = f/g on Ω. For any z ∈ Ω, the quotient f(z)/g(z)
(which is not well defined if g(z) = 0) will mean h(z). This will be implicit in the whole
paper. We will still denote by ⌊·⌋ a modified floor function: on [0,+∞) it coincides with
the usual floor function while on (−∞, 0) it is set to zero. We will also often treat labels
given to certain quantities as mathematical expressions; for instance, if (10.1) and (10.2)
are such labels, we will freely write things like |(10.1)| ≤ 1 or (10.2) = 0 when the meaning
is obvious.

2Since Φ ∈ L2(0, 1), S(Φ) converges to Φ almost everywhere by Carleson’s theorem.
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2. Proof of Theorem 1

2.1. Strategy of the proof; a basic identity. Let f : R \ {0} → C be a map. For all
N ∈ N and all α ∈ R \Q, we set

ΨN(α) =

N
∑

m=1

f(2πm2α) cot(πmα)

m2
.

(The value of an empty sum is set to 0.) Using the classical expansion

cot(πz) =
1

πz
+ 2z

∞
∑

n=1

1

z2 − n2
,

which is valid and uniform on any compact subset of C \ Z, we get, for all M,N ∈ N and
all α ∈ (0,+∞) \Q,

ΨN(α)− αΨM(−1/α) =
1

πα

N
∑

m=1

f(2πm2α)

m3
+

α2

π

M
∑

m=1

f(−2πm2/α)

m3

+ 2α
N
∑

m=1

M
∑

n=1

(

f(2πm2α)

m
− α

f(−2πn2/α)

n

)

1

m2α2 − n2

+ 2α
N
∑

m=1

1

m

+∞
∑

n=M+1

f(2πm2α)

m2α2 − n2
− 2α2

M
∑

n=1

1

n

+∞
∑

m=N+1

f(−2πn2/α)

m2α2 − n2
.

If f is the restriction of an analytic function vanishing on Z, then the above equality is
meaningful and valid on (0,+∞). Therefore, in the particular case f = sin, we obtain, for
all α > 0,

ΩN(α) =
1

πα

N
∑

m=1

sin(2πm2α)

m3
− α2

π

⌊αN⌋
∑

m=1

sin(2πm2/α)

m3
(2.1)

+ 2α
N
∑

m=1

⌊αN⌋
∑

n=1

(

sin(2πm2α)

m
+ α

sin(2πn2/α)

n

)

1

m2α2 − n2
(2.2)

+ 2α
N
∑

m=1

1

m

+∞
∑

n=⌊αN⌋+1

sin(2πm2α)

m2α2 − n2
(2.3)

+ 2α2

⌊αN⌋
∑

n=1

1

n

+∞
∑

m=N+1

sin(2πn2/α)

m2α2 − n2
. (2.4)

In order to prove Theorem 1, it is sufficient to show that the three sequences (2.2), (2.3)
and (2.4) converge as N tends to +∞ and that their moduli are bounded by an absolute
constant for all α ∈ [0, 1] and N ≥ 1. This will be proved in Sections 2.2, 2.3 and 2.4
respectively.
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2.2. Study of (2.2).

Proposition 1. The double series

α
∑

m,n≥1

1

|m2α2 − n2|

∣

∣

∣

∣

sin(2πm2α)

m
+

α sin(2πn2/α)

n

∣

∣

∣

∣

(2.5)

converges and defines a bounded function of α on [0, 1]. Therefore, (2.2) converges as

N → +∞ and its modulus is bounded by an absolute constant for all α ∈ [0, 1] and all

N ≥ 1.

Proof. For all integers m,n ≥ 1, for all α > 0, we have

1

m2α2 − n2

(

sin(2πm2α)

m
+

α sin(2πn2/α)

n

)

=

(

1

m
− α

n

)

sin(2πm2α)

(m2α2 − n2)
+ α

sin(2πn2/α) + sin(2πm2α)

(m2α2 − n2)n

=
n− αm

mn
· sin(2πm2α)

(m2α2 − n2)
+ 2α

cos (π(m2α− n2/α)) sin (π(m2α + n2/α))

(m2α2 − n2)n
.

Therefore, for all α > 0,

(2.5) ≤ α
∑

m,n≥1

∣

∣

∣

∣

n− αm

mn(m2α2 − n2)

∣

∣

∣

∣

(2.6)

+ 2α2
∑

m,n≥1

∣

∣

∣

∣

sin (π(m2α + n2/α))

(m2α2 − n2)n

∣

∣

∣

∣

. (2.7)

We first study (2.6). We have
∣

∣

1
mα+n

∣

∣ ≤ 1
2
√
αmn

. So

α

∣

∣

∣

∣

mα− n

mn(m2α2 − n2)

∣

∣

∣

∣

≤
√
α

2(mn)3/2
.

It follows that (2.6) is bounded in modulus by an absolute constant for all α ∈ [0, 1].
In order to study (2.7), we use:

(2.7) ≤ 2α2
∑

m,n≥1
|mα−n|≤1/2

∣

∣

∣

∣

sin (π(m2α + n2/α))

(m2α2 − n2)n

∣

∣

∣

∣

(2.8)

+ 2α2
∑

m,n≥1
|mα−n|>1/2

∣

∣

∣

∣

1

(m2α2 − n2)n

∣

∣

∣

∣

. (2.9)

Let us first consider the integers m,n ≥ 1 such that |mα− n| ≤ 1/2. Let us assume that
α is irrational. We set ε = α− n

m
; we have |ε| ≤ 1

2m
. Note that

m2α + n2/α− 2mn = (m
√
α− n/

√
α)2 = m2ε2/α.
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Therefore,

α2

∣

∣

∣

∣

sin (π(m2α + n2/α))

n(m2α2 − n2)

∣

∣

∣

∣

= α2

∣

∣

∣

∣

sin (πm2ε2/α)

n(mα + n)mε

∣

∣

∣

∣

≤ α2

∣

∣

∣

∣

πm2ε2/α

n(mα + n)mε

∣

∣

∣

∣

=

∣

∣

∣

∣

απmε

n(mα + n)

∣

∣

∣

∣

≤
∣

∣

∣

∣

απ

2n(mα + n)

∣

∣

∣

∣

where we have used the inequalities | sin(x)| ≤ |x| valid for all real number x and m|ǫ| ≤
1/2. By continuity, this estimate remains valid if α is rational. We now observe that

∑

m,n≥1
|mα−n|≤1/2

1

n(mα + n)
=
∑

n≥1

1

n

(

∑

m≥1
n−1/2

α
≤m≤n+1/2

α

1

mα + n

)

and that

∑

m≥1
n−1/2

α
≤m≤n+1/2

α

1

mα + n
≤ 1

2n− 1/2
+

∫
n+1/2

α

n−1/2
α

dt

tα + n

=
1

2n− 1/2
+

1

α
log

2n+ 1/2

2n− 1/2
≤ 1 + 1

α

2n− 1/2
.

It follows that the right hand side of (2.8) is bounded by an absolute constant for all
α ∈ [0, 1]. Let us now study (2.9). We have

(2.9) = 2α2
∑

n≥1

1

n

(

∑

m≥1
m> 2n+1

2α

+
∑

m≥1
m< 2n−1

2α

)
∣

∣

∣

∣

1

m2α2 − n2

∣

∣

∣

∣

.

On the one hand, for n ≥ 1,

∑

m> 2n+1
2α

1

|m2α2 − n2| ≤
1

|
(

2n+1
2α

)2
α2 − n2|

+
∑

m> 2n+1
2α

+1

1

m2α2 − n2

≤ 4

4n+ 1
+

∫ +∞

2n+1
2α

dx

x2α2 − n2
=

4

4n + 1
+

log (4n+ 1)

2nα
.
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On the other hand, for n ≥ 2,

∑

1≤m< 2n−1
2α

1

|m2α2 − n2| ≤
1

|
(

2n−1
2α

)2
α2 − n2|

+
∑

1≤m< 2n−1
2α

−1

1

n2 − (mα)2

≤ 4

4n− 1
+

∫ 2n−1
2α

1

dx

n2 − x2α2

=
4

4n− 1
+

1

2nα

(

log(4n− 1)− log
n+ α

n− α

)

≤ 4

4n− 1
+

log(4n− 1)

2nα
.

If n = 1 and α > 1/2 then
∑

1≤m< 2n−1
2α

1
|m2α2−n2| = 0. If n = 1 and α ≤ 1/2 then arguing

as above we get

∑

1≤m< 2n−1
2α

1

|m2α2 − n2| ≤
4

4n− 1
+

log(4n− 1)

2nα
.

These inequalities show that (2.9) is bounded in modulus by an absolute constant for all
α ∈ [0, 1]. �

2.3. Study of (2.3).

Lemma 1. The sequence (2.3) tends to 0 as N → +∞ for all α ∈]0, 1[. Its modulus is

bounded by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

Proof. We have

|(2.3)| ≤ 2α

⌊N− 1
α
−2⌋

∑

m=1

1

m

∞
∑

n=⌊αN⌋+1

1

|n2 − α2m2| (2.10)

+ 2α

N
∑

m=⌊N− 1
α
−2⌋+1

1

m

∞
∑

n=⌊αN⌋+3

1

|n2 − α2m2| (2.11)

+ 2α

N
∑

m=⌊N− 1
α
−2⌋+1

1

m

⌊αN⌋+2
∑

n=⌊αN⌋+1

∣

∣

∣

∣

sin(2πm2α)

n2 − α2m2

∣

∣

∣

∣

. (2.12)

We now proceed to bound the three terms of the right hand side of this inequality.
We first study (2.10). If N − 1/α − 2 < 1 then (2.10) = 0. We now assume that

N − 1
α
− 2 ≥ 1. Consider 1 ≤ m ≤

⌊

N − 1
α
− 2
⌋

. For x ≥ ⌊αN⌋, x−αm ≥ ⌊αN⌋−α(N −
1
α
− 2) = −{αN} + 1 + 2α ≥ 2α and hence the map x 7→ 1

x2−α2m2 is continuous, positive
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and decreasing on [⌊αN⌋ ,+∞). Therefore,

∞
∑

n=⌊αN⌋+1

1

|n2 − α2m2| ≤
∫ ∞

⌊αN⌋

dx

x2 − α2m2
=

1

2αm
log

⌊αN⌋+ αm

⌊αN⌋ − αm

≤ 1

2αm

2αm

⌊αN⌋ − αm
=

1

⌊αN⌋ − αm
.

Consequently,

(2.10) ≤ 2α

⌊N− 1
α
−2⌋

∑

m=1

1

m(⌊αN⌋ − αm)
=

2α2

⌊αN⌋

⌊N− 1
α
−2⌋

∑

m=1

(

1

αm
+

1

⌊αN⌋ − αm

)

≤ 2α
1 + log

⌊

N − 1
α
− 2
⌋

⌊αN⌋ +
2α2

⌊αN⌋

⌊N− 1
α
−2⌋

∑

m=1

1

⌊αN⌋ − αm
.

But, for y ≤
⌊

N − 1
α
− 2
⌋

+1, ⌊αN⌋−αy ≥ ⌊αN⌋−α(N− 1
α
−1) = −{αN}+1+α ≥ α and

hence the map y 7→ 1
⌊αN⌋−αy

is continuous, positive and increasing on (−∞,
⌊

N − 1
α
− 2
⌋

+

1]. Hence,

⌊N− 1
α
−2⌋

∑

m=1

1

⌊αN⌋ − αm
≤
∫ ⌊N− 1

α
−2⌋+1

1

dy

⌊αN⌋ − αy

=
1

α
log

⌊αN⌋ − α

⌊αN⌋ − α
(⌊

N − 1
α
− 2
⌋

+ 1
) ≤ 1

α
log(⌊αN⌋ /α− 1).

Therefore,

(2.10) ≤ 2α
1 + log ⌊N − 1/α− 2⌋

⌊αN⌋ + 2α
log(⌊αN⌋ /α− 1)

⌊αN⌋ .

It follows that (2.10) tends to 0 as N → +∞ for any α ∈ [0, 1]. Moreover, we deduce the
inequality

(2.10) ≤ 2α

⌊αN⌋ + 2
log(N − 1

α
)

N − 1
α

+ 2α
log ⌊αN⌋
⌊αN⌋ + 2|α logα|.

Since N − 1
α
≥ 3 and ⌊αN⌋ ≥ 1, we get that (2.10) is bounded by an absolute constant for

all α ∈ [0, 1] and all N ≥ 1.
We now study (2.11). We assume that

⌊

N − 1
α
− 2
⌋

+ 1 ≤ m ≤ N . For x ≥ ⌊αN⌋ + 2,

x−αm ≥ ⌊αN⌋+2−αN = −{αN}+2 ≥ 1 and hence the map x 7→ 1
x2−α2m2 is continuous,

positive and decreasing on [⌊αN⌋+ 2,+∞). Therefore,
+∞
∑

n=⌊αN⌋+3

1

|n2 − α2m2| ≤
∫ +∞

⌊αN⌋+2

dx

x2 − α2m2
=

1

2αm
log

⌊αN⌋ + 2 + αm

⌊αN⌋+ 2− αm

≤ 1

2αm

2αm

⌊αN⌋ + 2− αm
=

1

⌊αN⌋ + 2− αm
.
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Hence,

(2.11) ≤ 2α

N
∑

m=⌊N− 1
α
−2⌋+1

1

m(⌊αN⌋ + 2− αm)

=
2α2

⌊αN⌋+ 2

N
∑

m=⌊N− 1
α
−2⌋+1

(

1

αm
+

1

⌊αN⌋ + 2− αm

)

≤ 2α

(

1
⌊

N − 1
α
− 2
⌋

+ 1
+

log(N/
(⌊

N − 1
α
− 2
⌋

+ 1
)

)

⌊αN⌋ + 2

)

+
2α2

⌊αN⌋+ 2

N
∑

m=⌊N− 1
α
−2⌋+1

1

⌊αN⌋+ 2− αm
.

But, for y ≤ N , ⌊αN⌋ + 2 − αy ≥ ⌊αN⌋ + 2− αN = −{αN} + 2 ≥ 1 and hence the map
y 7→ 1

⌊αN⌋+2−αy
is continuous, positive and increasing on (−∞, N ]. Hence,

N
∑

m=⌊N− 1
α
−2⌋+1

1

⌊αN⌋ + 2− αm
≤ 1

⌊αN⌋ + 2− αN
+

∫ N

⌊N− 1
α
−2⌋+1

dy

⌊αN⌋ + 2− αy

≤ 1 +
1

α
log

⌊αN⌋ + 2− α
(⌊

N − 1
α
− 2
⌋

+ 1
)

⌊αN⌋ + 2− αN

≤ 1 +
1

α
log(3 + 2α).

Therefore,

(2.11) ≤ 2α
⌊

N − 1
α
− 2
⌋

+ 1
+ 2α

log(N/(
⌊

N − 1
α
− 2
⌋

+ 1))

⌊αN⌋ + 2
+

2α

⌊αN⌋ + 2
(α+ log(3 + 2α))

≤ 2α
⌊

N − 1
α
− 2
⌋

+ 1
+ 2

log(N + 1
α
)

N + 1
α

+
2α

⌊αN⌋ + 2
(α + log(3 + 2α)).

It follows that (2.11) tends to 0 as N → +∞ and that its modulus is bounded by an
absolute constant for all α ∈ [0, 1] and all N ≥ 1. Finally, for any integers m,n, we have
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| sin(2πm2α)| = | sin(2πm(n− αm))| ≤ 2π|m(n− αm)|. Hence,

(2.12) ≤
N
∑

m=⌊N− 1
α
−2⌋+1

2α

m

⌊αN⌋+2
∑

n=⌊αN⌋+1

∣

∣

∣

∣

2πm(n− αm)

n2 − α2m2

∣

∣

∣

∣

= 4απ

N
∑

m=⌊N− 1
α
−2⌋+1

⌊αN⌋+2
∑

n=⌊αN⌋+1

1

n + αm

≤ 4απ
2(N −

⌊

N − 1
α
− 2
⌋

)

⌊αN⌋ + 1 + α

≤ 8απ
( 1
α
+ 3)

⌊αN⌋ + 1 + α
. (2.13)

It follows that (2.12) tends to 0 as N → +∞ and that its modulus is bounded by an
absolute constant for all α ∈ [0, 1] and all N ≥ 1. �

2.4. Study of (2.4).

Lemma 2. The sequence (2.4) tends to zero as N → +∞ for any α ∈]0, 1]. Its modulus

is bounded by an absolute constant for all α ∈ [0, 1] and all N ≥ 1.

Proof. We obviously have

(2.4) ≤ 2α2

⌊αN⌋−3
∑

n=1

1

n

+∞
∑

m=N+1

1

|n2 − α2m2| (2.14)

+ 2α2

⌊αN⌋
∑

n=⌊αN⌋−2

1

n

+∞
∑

m=⌊N+1/α+1⌋+1

1

|n2 − α2m2| (2.15)

+ 2α2

⌊αN⌋
∑

n=⌊αN⌋−2

1

n

⌊N+1/α+1⌋
∑

m=N+1

∣

∣

∣

∣

sin(2πn2/α)

n2 − α2m2

∣

∣

∣

∣

. (2.16)

We now proceed to bound the three terms of the right hand side of this inequality.
If αN < 4 then (2.14) is zero. Assume that αN ≥ 4 and consider 1 ≤ n ≤ ⌊αN⌋ − 3.

For y ≥ N , αy − n ≥ αN − (⌊αN⌋ − 3) = {αN} + 3 > 1 and hence the map y 7→ 1
α2y2−n2

is continuous, positive and decreasing on [N,+∞). Therefore,

+∞
∑

m=N+1

1

|α2m2 − n2| ≤
∫ +∞

N

dy

α2y2 − n2
=

1

2αn
log

αN + n

αN − n
≤ 1

α

1

αN − n
.
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Hence,

(2.14) ≤ 2α

⌊αN⌋−3
∑

n=1

1

n(αN − n)
=

2

N

⌊αN⌋−3
∑

n=1

(

1

n
+

1

αN − n

)

≤ 2
1 + log(⌊αN⌋ − 3)

⌊αN⌋ +
2

N

⌊αN⌋−3
∑

n=1

1

αN − n
.

But, for x ≤ ⌊αN⌋ − 2, αN − x ≥ αN − ⌊αN⌋ + 2 = {αN} + 2 > 1 and hence the map
x 7→ 1

αN−x
is continuous, positive and increasing on (−∞, ⌊αN⌋ − 2]. Therefore,

⌊αN⌋−3
∑

n=1

1

αN − n
≤
∫ ⌊αN⌋−2

1

dx

αN − x
= log

αN − 1

αN − ⌊αN⌋ + 2
≤ log(αN − 1).

Consequently,

(2.14) ≤ 2
1 + log(⌊αN⌋ − 3)

⌊αN⌋ + 2α
log(αN − 1)

αN
(2.17)

≤ 2
1 + log(αN − 1)

αN − 1
+ 2α

log(αN − 1)

αN
(2.18)

It is now clear that (2.14) tends to 0 as N → +∞ and that its modulus is bounded by an
absolute constant for all α ∈ [0, 1] and all N ≥ 1.

If αN < 1 then (2.15) = 0. Assume that αN ≥ 1 and consider n ∈ N∗ such that
⌊αN⌋−2 ≤ n ≤ ⌊αN⌋. For y ≥

⌊

N + 1
α
+ 1
⌋

, αy−n ≥ αN+1−⌊αN⌋ = {αN}+1 ≥ 1 and

hence the map y 7→ 1
α2y2−n2 is continuous, positive and decreasing on [

⌊

N + 1
α
+ 1
⌋

,+∞).

Therefore, we have

∞
∑

m=⌊N+ 1
α
+1⌋+1

1

α2m2 − n2
≤
∫ ∞

⌊N+ 1
α
+1⌋

dy

α2y2 − n2
=

1

2αn
log

α
⌊

N + 1
α
+ 1
⌋

+ n

α
⌊

N + 1
α
+ 1
⌋

− n

≤ 1

α
· 1

α ⌊N + 1/α+ 1⌋ − n
≤ 1

α
.

Therefore,

(2.15) ≤ 2α

⌊αN⌋
∑

n=⌊αN⌋−2

1

n
. (2.19)

It follows that (2.15) tends to 0 as N → +∞ and that is modulus is bounded by an absolute
constant for all α ∈ [0, 1] and all N ≥ 1.
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Finally, for all integers m,n, | sin(2πn2/α)| = | sin(2πn(m − n/α))| ≤ 2π|n(n/α −m)|.
Hence,

(2.16) ≤ 2α2

⌊αN⌋
∑

n=⌊αN⌋−2

1

n

⌊N+ 1
α
+1⌋

∑

m=N+1

∣

∣

∣

∣

2πn(n/α−m)

n2 − α2m2

∣

∣

∣

∣

= 4απ

⌊αN⌋
∑

n=⌊αN⌋−2

⌊N+ 1
α
+1⌋

∑

m=N+1

1

n+ αm

≤ 12απ

⌊

N + 1
α
+ 1
⌋

−N

1 + α(N + 1)
≤ 12απ

1
α
+ 1

1 + α(N + 1)

It follows that (2.16) tends to 0 as N → +∞ and that is modulus is bounded by an absolute
constant for all α ∈ [0, 1] and all N ≥ 1.

The expected result follows. �

3. Proof of Theorem 2

The proof of Theorem 2 will be decomposed in many steps. Before that, we recall some
facts about continued fraction expansions.

3.1. Basics of continued fraction expansions. We refer to [8] for more details and
proofs.

Let us consider an irrational number α ∈ (0, 1). We denote by [a0; a1, a2, . . .] the regular
continued fraction of α, where a0 = 0. For all k ≥ 1, we have ak =

⌊

1/T k−1(α)
⌋

≥ 1 where
T (x) = {1/x} and {·} denotes the fractional part function. For any k ≥ 0, we denote by
[a0; a1, a2, . . . , ak] the k-th convergent to α and by pk = pk(α) and qk = qk(α) its numerator
and denominator respectively (note that p0 = 0 and q0 = 1). It is convenient to set p−1 = 1
and q−1 = 0. For all k ≥ 1, pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2.

In the following proposition, we list a number of basic properties of continued fraction
expansions which will be used freely in this paper.

Proposition 2. (i) For all k ≥ 0, qk ≥ Fk ≥ 2k/2 where (Fk)k≥0 denotes the Fibonacci

sequence defined by F0 = 0, F1 = 1 and Fk+1 = Fk−1 + Fk.

(ii) Both sequences (pk)k≥0 and (qk)k≥0 are increasing.

(iii) For all k ≥ 0, T k(α) = qkα−pk
pk−1−qk−1α

= |qkα−pk|
|qk−1α−pk−1| and αT (α) · · ·T k(α) = (−1)k(qkα−

pk) = |qkα− pk|.
(iv) For all k ≥ 0, 1

2
< qk+1|qkα−pk| < 1, and T k(α) ≍ qk

qk+1
and αT (α) · · ·T k(α) ≍ 1

qk+1
.

(v) The series
∑∞

k=0 αT (α) · · ·T k(α) converges for all irrational number α.

3.2. An iterative procedure. Theorem 1 implies the following decomposition:

ΩN (α) = A(α) +BN (α) + CN(α) (3.1)

where A(α) = A1(α) + A2(α) with

A1(α) =
1

πα

+∞
∑

m=1

sin(2πm2α)

m3
, A2(α) = G(α),



15

BN(α) = − 1

πα

+∞
∑

m=N+1

sin(2πm2α)

m3
, CN(α) = GN(α)−G(α).

We observe that |CN(α)| is bounded by an absolute constant for all α ∈ [0, 1] and all
N ≥ 1, and that, for all α ∈ [0, 1], limN→∞CN(α) = 0.

From now on, α is a fixed irrational number in [0, 1]. For any integer N , we define the
integer ℓN (α) by

ℓN(α) = min{j ∈ N |
⌊

· · · ⌊⌊Nα⌋T (α)⌋ · · ·T j(α)
⌋

= 0}.

It is clear that ℓN(α) → +∞ as N → +∞. Using (3.1), we get that, for all N ≥ 1,

ΦN (α) =

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)A(T j(α)) (3.2)

+

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)B⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α)) (3.3)

+

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)C⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α)) (3.4)

where, for j = 0, αT (α) · · ·T j−1(α) = 1 and ⌊· · · ⌊⌊Nα⌋T (α)⌋ · · ·T j−1(α)⌋ = N .
We first remark that (3.4) converges to 0 as N → +∞: this follows from Lebesgue

dominated convergence theorem. Indeed, the sequence of elements of ℓ1(N,C) defined by

j 7→
{

αT (α) · · ·T j−1(α)C⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α)) if j ≤ ℓN(α)

0 if j > ℓN (α)

tends simply to 0 and its absolute value is dominated by an element of ℓ1(N,C) (because
|CM(β)| is bounded by an absolute constant for all β ∈ [0, 1] and all N ≥ 1).

Moreover, we have |BM (β)| ≪ 1
β(M+1)2

for all β ∈ [0, 1] and all N ≥ 1, where the implicit

constant is absolute. Hence,

∣

∣B⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α))

∣

∣≪ 1

T j(α)(⌊· · · ⌊⌊Nα⌋T (α)⌋ · · ·T j−1(α)⌋+ 1)2

uniformly for all N ≥ 1 and all j ∈ {0, ..., ℓN(α)− 1}. Note that this implies that, for all
j ∈ N, B⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T

j(α)) → 0 as N → +∞. Moreover, for all integer j < ℓN(α),

T j(α)
⌊

· · · ⌊⌊Nα⌋T (α)⌋ · · ·T j−1(α)
⌋

≥ 1

because ⌊· · · ⌊⌊Nα⌋T (α)⌋ · · ·T j(α)⌋ > 0. Thus,
∣

∣B⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α))

∣

∣≪ 1
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uniformly with respect to N ∈ N∗ and j ∈ {0, ..., ℓN(α) − 1}. Using Lebesgue dominated
convergence theorem as above, we get that

ℓN (α)−1
∑

j=0

αT (α) · · ·T j−1(α)B⌊···⌊⌊Nα⌋T (α)⌋···T j−1(α)⌋(T
j(α))

tends to 0 as N → +∞.
Consequently, we obtain that

φN(α) =

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)A(T j(α))

+ αT (α) · · ·T ℓN (α)−1(α)B⌊···⌊⌊Nα⌋T (α)⌋···T ℓN (α)−1(α)⌋(T
ℓN (α)(α)) + o(1) (3.5)

as N tends to +∞.

3.3. Some intermediate results. We need to prove simple analytic results.

Lemma 3. We have
∞
∑

n=1

∣

∣

∣

∣

sin(2πn2β)

n3

∣

∣

∣

∣

≪ β(1 + log(1/β)) (3.6)

for all β ∈ [0, 1] and for some absolute constant.

Moreover,
∞
∑

n=1

sin(2πn2β)

n3
= πβ log(1/β) ·

(

1 + o(1)
)

, β → 0+. (3.7)

Proof. We have

∞
∑

n=1

∣

∣

∣

∣

sin(n2β)

n3

∣

∣

∣

∣

≤ β

⌊β−1/2⌋
∑

n=1

1

n
+

∞
∑

n=⌊β−1/2⌋+1

1

n3

≤ β
(

log
⌊

β−1/2
⌋

+ 1
)

+
1

(⌊β−1/2⌋+ 1)
3 +

1

2 (⌊β−1/2⌋+ 1)
2

≤ 1

2
β (log(1/β) + 1) + β3/2 + β (3.8)

and the first part of the lemma follows.
For any x ≥ 0, we have x − x3

6
≤ sin(x), so that for any ε ∈ (0, 1), sin(x) ≥ (1 − ε)x

provided that 0 ≤ x ≤ √
ε. Therefore, for any ε ∈ (0, 1), we have

∞
∑

n=1

sin(n2β)

n3
≥ (1− ε)β

∑

1≤n≤ε1/4/β1/2

1

n
−

∞
∑

n>ε1/4/β1/2

1

n3

≥ (1− ε)β log(ε1/4/β1/2) +O
(

β/ε1/2
)

.
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Choosing ε = 1
log(1/β)

, we get

∞
∑

n=1

sin(n2β)

n3
≥ 1

2
β log(1/β) +O(β log log(1/β)) (3.9)

as β → 0+. Combining (3.8) and (3.9) provides the second part of the lemma. �

Lemma 4. There exists η ∈ (0, 1) such that for all N ≥ 1 and all β ∈ (0, η], we have

A1(β) +BN (β) ≥ 0 and A1(β) ≥ 0.

Proof. Arguing as in Lemma 3, we see that, for any integer N ,

N
∑

n=1

sin(n2β)

n3
≥























(1− ε)β
∑

1≤n≤N

1

n
≥ 0 if N ≤ ε1/4/β1/2

(1− ε)β
∑

1≤n≤ε1/4/β1/2

1

n
−

∞
∑

n>ε1/4/β1/2

1

n3
if N > ε1/4/β1/2

where ε = 1
log(1/β)

. The result follows from the fact that

(1− ε)β
∑

1≤n≤ε1/4/β1/2

1

n
−

∞
∑

n>ε1/4/β1/2

1

n3
=

1

2
β log(1/β) +O(β log log(1/β))

as β → 0+ and hence is positive for β close to 0. �

From now on, we fix η ∈ (0, 1) such that:

• for all α ∈ (0, η], A1(β) +BN(β) ≥ 0 and A1(β) ≥ 0;
• there exists c1, c2 > 0 such that, for all α ∈ (0, η],

c1 log(1/β) ≤ A1(β) ≤ c2 log(1/β). (3.10)

The existence of such an η is guaranteed by Lemmas 3 and 4.

Proposition 3. Let (Nk)k≥0 be an increasing sequence of integers. The following properties

are equivalent:

(i)
∑Nk

j=0 αT (α) · · ·T j−1(α)A(T j(α)) converges as k → +∞;

(ii)
∑Nk

j=0 αT (α) · · ·T j−1(α)A1(T
j(α)) converges as k → +∞;

(iii)
∑

0≤j≤Nk
T j(α)≤η

αT (α) · · ·T j−1(α)A1(T
j(α)) converges as k → +∞;

(iv)
∑∞

j=0
log(qj+1(α))

qj(α)
< ∞.

Proof. The equivalence of (i) and (ii) follows from the convergence of the series

∞
∑

j=0

αT (α) · · ·T j−1(α)A2(T
j(α))

which itself follows from the fact that A2 is bounded.



18

The equivalence of (ii) and (iii) follows from the convergence of
∑

0≤j≤Nk
T j(α)>η

αT (α) · · ·T j−1(α)A1(T
j(α))

as k → +∞, which itself follows from the fact that A1 is bounded on [η, 1].
Inequality (3.10) implies that

∑

0≤j≤Nk
T j(α)≤η

αT (α) · · ·T j−1(α)A(T j(α))

converges as k → +∞ if and only if
∑

0≤j≤Nk

T j(α)≤η

αT (α) · · ·T j−1(α) log(1/T j(α))

converges as k → +∞. This is equivalent to the convergence of
∑

0≤j≤Nk
T j(α)≤η

1

qj
log(qj+1/qj)

(we use Proposition 2 here). This is also equivalent to the convergence of the series
∑∞

j=0
log(qj+1)

qj
, as follows from the convergence of the series

∑

0≤j≤N
T j(α)>η

1
qj
log(qj+1/qj) and

∑∞
j=0

log(qj)

qj
(again by Proposition 2). �

3.4. End of the proof of Theorem 2. We can now complete the proof. Let us first
assume that

∑∞
j=0

log qj+1

qj
is convergent. Proposition 3 ensures that the series

∞
∑

j=0

αT (α) · · ·T j−1(α)A(T j(α))

converges. Moreover, Lemma 3 implies that |BM (β)| ≪ log(1/β) for all β ∈ (0, 1
2
] and

M ≥ 1, and that |BM(β)| ≪ 1 for all β ∈ (1
2
, 1] and M ≥ 1. (In both cases, the implicit

constants are absolute.) Therefore,

αT (α) · · ·T ℓN (α)−1(α)
∣

∣

∣
B⌊···⌊⌊Nα⌋T (α)⌋···T ℓN (α)−1(α)⌋(T

ℓN (α)(α))
∣

∣

∣

≪
{

αT (α) · · ·T ℓN (α)−1(α) log
(

1/T ℓN (α)) (α)
)

if T ℓN (α)(α) ≤ 1
2

αT (α) · · ·T ℓN (α)−1(α) if T ℓN (α)(α) > 1
2

≪







1
qℓN (α)

log
(

qℓN (α)+1

qℓN (α)

)

if T ℓN (α)(α) ≤ 1
2

1
qℓN (α)

if T ℓN (α)(α) > 1
2

(3.11)

which tends to 0 as N → +∞. Eq. (3.5) ensures that Φ(α) converges.
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To prove the converse statement, we now assume that Φ(α) is convergent. We separate
two cases.

a) We first assume that there exists c > 0 such that, for allN large enough, T ℓN (α)(α) > c.

Then
log qℓN (α)+1

qℓN (α)
→ 0 as N → +∞. So

αT (α) · · ·T ℓN (α)−1(α)B⌊···⌊⌊Nα⌋T (α)⌋···T ℓN (α)−1(α)⌋(T
ℓN (α)(α))

tends to 0 as N → +∞ (recall inequality (3.11)). Hence, (3.5) ensures that

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)A(T j(α))

converges as N → +∞. This is equivalent to the convergence of
∑∞

j=0
log qj+1

qj
in virtue of

Proposition 3.

b) We assume that a) does not hold, i.e. that there exists an increasing sequence of
integers (Nk)k≥0 such that T ℓNk

(α)(α) → 0 as k → +∞. Since

ℓN (α)
∑

j=0

αT (α) · · ·T j−1(α)A2(T
j(α)),

converges as N → +∞ (because A2 is bounded), (3.5) ensures that

ℓN (α)−1
∑

j=0

αT (α) · · ·T j−1(α)A1(T
j(α))

+ αT (α) · · ·T ℓN (α)−1(α)
(

A1(T
ℓN (α)(α)) +B⌊···⌊⌊Nα⌋T (α)⌋···T ℓN (α)−1(α)⌋(T

ℓN (α)(α))
)

is convergent as N → +∞.
But

∑

0≤j≤ℓN (α)−1
T j(α)≥η

αT (α) · · ·T j−1(α)A1(T
j(α))

converges as N → +∞ (because A1 is bounded on [η, 1]). Hence, setting

xk =
∑

0≤j≤ℓNk
(α)−1

T j(α)<η

αT (α) · · ·T j−1(α)A1(T
j(α))

and

yk = αT (α) · · ·T ℓNk
(α)−1(α)

(

A1(T
ℓNk

(α)(α))

+B⌊

···⌊⌊Nkα⌋T (α)⌋···T ℓNk
(α)−1

(α)
⌋(T ℓNk

(α)(α))
)

,
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we obtain that xk + yk converges as k → +∞. But for any integer j such that T j(α) < η,
we have A1(T

j(α)) ≥ 0 and, for all k large enough,

A1(T
ℓNk

(α)(α)) +B⌊

···⌊⌊Nkα⌋T (α)⌋···T ℓNk
(α)−1

(α)
⌋(T ℓNk

(α)(α)) ≥ 0.

Therefore (xk)k≥0 is an increasing sequence of positive numbers and yk is positive for all
large enough k. It follows that (xk)k≥0 is convergent, providing the desired result by
Proposition 3.

This completes the proof of Theorem 2.
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