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Abstract

This paper is concerned with linear g-difference equations. Our main result is an explicit
formula for the Euler characteristic of the sheaf of analytic solutions attached to any linear
algebraic g-difference equation. This formula involves certain invariants attached to the so-
called intermediate singularities. As an application, we interpret the index of rigidity recently
introduced by Sakai and Yamaguchi in cohomological terms.

1 Introduction

This work grew out of an attempt by the first author to find a cohomological interpretation of the
index of rigidity for g-difference equations defined by Sakai and Yamaguchi in [11, §3]; and of an
attempt by the second author to understand the role of the so-called “intermediate singularities”
(those other than 0,0, see further below) in the global behaviour of rational g-difference equa-
tions. Only the former problem will be tackled here, we intend to pursue the latter one in a future
work.

The approach developed in the present paper relies on a sheaf ¥4 of analytic solutions attached
to any g-difference system

(1.0.1) Y(qz) = A(2)Y (2)

with g € C*, |g| # 1, and A(z) € GL,(C(x)). This is a sheaf over the Riemann surface Ef" =
c*/ qZ. It turns out that ¥4 is a locally free OE?In -module of rank n and, hence, defines a vector
bundle over EZ". One of our main results is an explicit formula for the Euler characteristic )(4)
of #4: we prove that it is the sum of local invariants of (1.0.1) attached to the intermediate sin-
gularities; see theorem 3.18. By intermediate singularities, we mean the poles of A or A~ on

PH(C)\ {0, e}
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When it is applied to the “internal End” of (1.0.1), this formula essentially gives Sakai and
Yamaguchi’s index of rigidity attached to (1.0.1); see paragraph 3.4. This is parallel to Katz’s [7,
Theorem 1.1.2].

This paper also includes a cohomological study of natural extensions of %4 to “completions”
of EZ". We refer to paragraphs 4 and 5 for the details.

Let us now explain the origin of our approach. The celebrated formula of Grothendieck-Ogg-
Shafarevitch [10] was transposed by Deligne to the case of differential equations (see “théoréme
de comparaison” in [3]), then used by Daniel Bertrand in [1, 2]. This is the same formula that
Katz uses in his study of rigidity. A long time ago, Daniel Bertrand asked one of us if it could be
transposed to g-difference equations. Our answer, which roughly follows the lines of [3, chap. 6],
is contained in the present paper.

2 General notations

e Oy, resp. My: sheaf of holomorphic, resp. meromorphic, functions over a Riemann surface
X.

o O, := Oxy, M, := My ,: shorthand for the stalks of those sheaves at x € X (usually unam-
biguous).

o C{x}:= Oco. C({x}) := Mcy.

e u,: a local coordinate centered at x € X (thus a uniformizer of the discrete valuation ring
Ox 1); vx(f): uy-adic valuation of f € Oy ,.

e g€ C*suchthat |g| > 1; 0,f(x) := f(gx).

° E‘;" =C*/ g% seen as a Riemann surface (complex torus); m: C* — EZ" is the canonical
covering.

e a:=1(a); [a;q] := aq”.

e We will freely use the identification : Field of 6,-invariant meromorphic functions over C*
= Field of meromorphic functions over EZ" i.e.

M(C*)% = M(ED).

3 Euler characteristics of some sheaves of modules over EZ”

3.1 Some basic constructs
3.1.1 g-difference systems

Let A € GL,(C(x)). The associated g-difference system is:

(3.0.1) 6,X = AX.
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The singular locus of equation (3.0.1) is defined as:
Sing(A) := {poles of A} U {poles of A~!} = {poles of A} U {zeroes of detA}.

Thus, if U C C* is an open subset which does not meet Sing(A), then A is regular on U, meaning
that it is holomorphic over U as well as its inverse A~ !,

Let R a difference algebra over the difference field (C(x),5,). The solutions of (3.0.1) in R
form the C-vector space:
Sol(A,R) :={X € R" | 6,X = AX},
where we consistently identify R" with the space of column vectors Mat, | (R). A fundamental

matricial solution of (3.0.1) in R is a matrix X € GL,(R) such that 6,.X = AX.

Let K be a difference field extension of (C(x),0,). The gauge transform of A by F € GL,(K)
is:
F[A] := (0,F)AF ' € GL,(K).

We say that A, B € GL,(C(x)) are rationally equivalent if B = F[A] for some F € GL,(C(x)). The
same relation with F € GL,(C({x})) (resp. F € GL,(C({x~'}))) defines local analytic equiv-
alence at 0 (resp. at o). Note that in this case one has automatically F € GL, (M (C)) (resp.
F € GL, (M (C* U{e}))).

If B= F[A] and if 6,X = AX, then, setting Y := FX, one has 6,Y = BY. Thus, if F €
GL,(C(x)) and if R is a difference algebra over (C(x),0,), we have:

FSol(A,R) = Sol(B,R).

We have similar statements for local analytic equivalence.

3.1.2 Some sheaves of functions

Note that 6, operates on the direct image sheaves T, Oc~ and 7. Mc~ and that we have the follow-
ing obvious identifications for the fixed subsheaves:

Opp = (M.0c)%1, Mg = (M. M ).

We shall now introduce various subsheaves of T, Mcx. Let V an open subset of Efl” and let
U :=n"(V), so that T, Mc~ (V) = Mc~ (U). We define the subsheaves 40, 4(=), 4, 4’ of 1, M



by:

3.0.2)
A0(V) := {f € Mc«(U) | f is holomorphic over U N D(0,r) for some r > 0},
(3.0.3)
AN (V) = {f € M« (U) | f is holomorphic over U N D(0, R for some R > 0},
(3.04)

A\V):={f € Mcx(U) | f is holomorphic over U}  ( thus 4 = 1, Ocx),

3.0.5)
A" (V) :={f € Mc«(U) | f has at worst a finite number of poles over any g-spiral [a;q] C U}.

It is easily seen that 4 ¢ A0 N g c 7',

3.1.3 Some sheaves of solutions

To any subsheaf B of 1, Mcx, we shall associate a sheaf of solutions on Ef]’” for which the sections
over an open subset V C EZ" are the solutions X € B(V)" of (3.0.1). Taking successively for B the

sheaves 4, 4/, ﬂ(o), /‘Zl(""), we obtain sheaves of solutions on EZ" respectively denoted by %4, ,‘FA’ ,
¥, A(O), ¥, A(w). We check easily that 4 C TA(O) N TA(M) = F,. In the course of what follows, we shall

find out that all these sheaves are locally free of rank n over Ogg:, whence define holomorphic
vector bundles over EZ".

Remark 3.1 Taking B:=m.Mcx yields the sheaf of all meromorphic solutions, plainly a (7, Mcx )% =
MEgn -module. It was proved by Praagman in [8] that this is a free ME;n -module of rank n. Said
otherwise, there exists a fundamental matricial solution X € GL,(M (C*)) of (3.0.1). The proof
relies on the fact that it is a meromorphic vector bundle on the compact Riemann surface Eg" and

that such a bundle is free.

The proof of the following is immediate:

Lemma 3.2 Let F € GL,(C(x)) and B := F[A]. Then the automorphism X — FX of (T, Mcx )"
induces identifications:

F%5= %5,
Fr = 73",
FES) = g3

Actually the equalities on the second line, resp. on the third line, only require F to be local analytic
at 0, resp. at oo.

Note however that it is not generally true that F F4 = Fp. For instance, take A := 1 and F :=

1 _
1/(z—1) sothat B:= F[A] = < 1 Then, ¥ is isomorphic to Opa(—[1]), whereas F = Opan.

gz—1




3.2 Sheaves of solutions local at 0 and

Lemma 3.3 The sheaves ¥, A(O) and ¥, A(w) are locally free OEZn -modules of rank n.

Proof. - Let D(0,r), r > 0, any punctured disk on which A is regular. Let V be a trivializing
open subset of Eg" for the covering 7 so that n~! (V) is the disjoint union of the ¢*U, for k € Z,

where Ty is a homeomorphism onto V. We can assume that U C B(O,r). Let V/ C V be any
open subset and set U’ = =1 (V/) N U so that T~ (V') is the disjoint union of the g*U’ for k € Z.
Then any X € O~ (U’)" extends successively holomorphically to g~ 'U’, g~2U’, .. . through (3.0.1)
used as a recursive definition X (z) := A(z) "' X (¢z); and meromorphically to qU’, g*U’, ... through
(3.0.1) used as a recursive definition X (gz) := A(z)X(z). Thus, X extends uniquely to a solution
Xe TA(O) (V'). This implies that the restriction ( ?’A(O))W is isomorphic to (Ocx )?U = (Ogy){y- The
proof at oo is similar. []

The goal of this section is to prove the following:

Proposition 3.4 The Euler characteristics of the sheaves 7, A(O) and ¥, A(N) are given by the following
formulas:

(3.4.1) 2(F) = vo(detA) and x(F™) = veo(detA).

The proofs at 0 and oo are entirely similar, so we shall concentrate on the first case, which
occupies this whole section. The proof proceeds in three steps: first, reduction to the case of a
“pure isoclinic system’; then, reduction to the case of “integral slopes”; last, proof in this case.

Recall from [9] that one associates to A a Newton polygon, i.e. in essence slopes y; < --- < ti
in Q, with multiplicities ry,...,r, € N* such that rj +---+ry =n and ri; € Z for i € {1,... k}.
The set of these data is a local analytic invariant (actually, a formal invariant). Moreover, A is
locally isomorphic to (i.e. there exists F' € GL,, (M (C)) such that F[A] is equal to) a matrix of the
form:

(3.4.2)

where each B; has unique slope y; and has rank r;; and where U ; € Mat,l.yr_,.(C[z,z’l]) for 1 <
i < j < k. Up to some supplementary conditions on the B; and the U; ; (which we do not recall
here because they will not be used in what follows), this is the so-called Birkhoff-Guenther normal
form. If k = 1, the system is said to be pure isoclinic of (unique) slope ;.

3.2.1 Reduction to the case of a pure isoclinic system

From the fact just recalled and from lemma 3.2, we see that we can as well take A in the form
(3.4.2). The following fact is stated without proof in [9] (and other places).



Lemma 3.5 The functor A ~ ,‘FA(O) is exact.

Proof. - In the abelian category of g-difference systems over a fixed difference field K with dif-
ference operator G,, an exact sequence 0 — A’ — A — A” — 0 takes (up to isomorphism) the

form: ,
AU
1=y )

In the associated sequence 0 — ,‘FA(,O ) ,‘FA(O) — TA(,(,) ) 50 the significant morphisms take (over
any fixed V C EJ") the form X’ — (X’,0) and (X', X") + X". Then exactness is obvious, except
from right exactness 7, A(O) —F A(,(,) ) 5 0 which we now proceed to prove.

So let x € EZ" and let X" € ( fA(,?) )x» which we may represent by some X" € ?’A(,(,) ) (V) for some
open neighborhood V' C E7" of x; and we can as well assume that V' is a trivializing neighborhood
for the covering T so that T=! (V') is the disjoint union of the ¢*U, for k € Z, where Ty is a home-

omorphism onto V. Let D(0,r), r > 0, a punctured disk centered at 0 on which A is regular, so the

same holds for A’,A”. We choose the above U such that U C IO)(O7 r).

To lift X" to TA(O)(V), we have to find X’ such that X := (X’,X”) is a solution of (3.0.1), which
is equivalent (since we already know that 6,X" = A”X") to 6,X" = A’X’ + B, where B := UX".
Moreover, we want X to be holomorphic over IO)(O, 7YNr~1(V), for some ' > 0. So we choose
¥’ < r such that X" is holomorphic over IO)(O, #)N 7! (V) and proceed to solve the equation in

X'. Let U’ := g*U where k € Z is chosen in such a way that U’ C ]OD(O,r’). We set the value of
X' on U’ arbitrarily (we only require it to be holomorphic) and then use the functional equation
X' =A _1(GqX’ — B) to extend it successively to ¢~'U’, ¢g~2U’, ...: all these are holomorphic;
and the equation 6,X’ = A’X’ 4 B to extend X’ successively to qU’, q*U’, ...: those ones are
meromorphic. This X" and the corresponding X have the expected properties. [

We deduce from this lemma that (A having the form (3.4.2))

LT =0 ) + -+ (F).

Since obviously vo(detA) = vo(detB;) + - - - +vo(det By), we see that we just have to prove formula
(3.4.1) in the case of a pure isoclinic system.

3.2.2 Reduction to the case of integral slopes

We assume here that B € GL,(C({x})) is pure isoclinic of slope u = d/r. From [9] we know
that the change of variable (ramification) z = 7', ¢ = ¢'" yields a ¢'-difference system with matrix
B'(Z') := B(z) which is pure isoclinic with slope ¢/ = ru = d. For this system, formula (3.4.1) must
be interpreted with vo meaning the z’-adic valuation, i.e. vo(detB") = rvo(detB).



Letp: C* — C*, 7 +— z:=7". This induces a commutative diagram:

p

C*——C~

i n, \L TE
Ean 6 Ean
q q

i

where T’ : C* — EZ,” denotes the canonical projection.

Lemma 3.6 With these notations, p* TB(O) = TB(,O).

Proof. - Let V. C EJ" an arbitrary open subset, V' :=p (V) its preimage in EZ?, and U :=
' (V), U ;=" (V') = p~!(U) their respective preimages in C*. Any solution of c,Y =BY
analytic over U near 0 gives rise, by the changes of variables B'(7') = B(z), Y'(Z) =Y(z), to a
solution of 6,Y’ = B'Y” analytic over U’ near 0. The maps TB(O) (V) — TB(/O) (VY =Dp, TB(/O) (V) thus
defined make up a morphism of sheaves of linear spaces TB(O) — P, TB(/O), whence, by adjunction, a
morphism of sheaves of linear spaces p~' {FB(O) — TB(,O ) (the source here is the topological inverse
image sheaf) and then a morphism of sheaves of modules p* TLSO) — TB(,O). We now show that this
is an isomorphism. It is enough to do so by restriction to a basis of open subsets.

So let V C E, be a trivializing open subset for the covering p and let W/ C V' := p! (V) such
that W — V = p(W’) is a homeomorphism. Then a solution of 6,X = BX over (V) gives
rise to a solution X'(z') := X(z) of 64X’ = B'X’ over ' (W’). In this way, we get a C-linear
isomorphism from p—! TB(O) (W') to fB(,O) (W'). The isomorphism of modules

5* :}—B(O) (W/) = 571 :}-B(O) (W/) ®OE$H W) OEy’ (W/) ~ 71,3(10) (Wl)
follows, because here OEZ;w(W’ ) = Ogan (V). O

The following statement is obviously a particular case of much more general facts, but, for
lack of a convenient reference, we give a direct proof.

Lemma 3.7 Let p: X’ — X an isogeny of degree r between two complex tori and let F a locally
free sheaf on X. Then:

X(p*F) =ra(F).

Proof. - Since the inverse image functor is exact and since Y is additive for exact sequences, the
triangularisation of holomorphic vector bundles over compact Riemann surfaces [5, corollary of
theorem 10, p. 63] allow us to assume that ¥ has rank 1, F = Ox (D) for some divisor D. But then
p*F = Ox/(D'), where D' := p*D. Writing d := degD, so that deg D' = rd, we have, by Riemann-
Roch theorem for line bundles (with here g = 1), x(F) =degD =d and (p*F ) =degD’ =rd.

Remark 3.8 For any finite morphism p : X’ — X and any coherent sheaf ¥’ on X', we have
equality of the cohomology groups: H' (X', F') = H (X, p«F') [4, p. 63], thus in the case of our



lemma ¥ (p.p*F) =x(p*F) = r¢(F). However, even in the case of an etale covering, it is not
true that p.p* F ~ F'. For instance, taking ¥ := Oy, we see that p, p* Oy is locally free of rank r
but its global sections has dimension 1: indeed, p*Ox = Ox’.

Combining our two lemmas, we get the equality:

1 F) = (7).

Since we found that vo(detB") = rvo(detB), we see that it is enough to prove formula (3.4.1) for
B, i.e. for a pure isoclinic system with integral slope.

3.2.3 Proof in the case of a pure system with integral slopes

From [9] any pure isoclinic system with slope u € Z is equivalent to one with matrix B = z*C,
C € GL,(C). Then:

3" == Oxgn () © e,

and Jc is a flat vector bundle of rank r. Again from general facts, it follows that ( TB(O)) = ru, but
for the lack of convenient reference, we give a direct argument.

Lemma 3.9 IfB=7'C, C € GL,(C), then x(TB(O)) =Ty

Proof. - We can assume that C is triangular (conjugacy is a particular case of gauge equivalence),
so that 73(0) is an iterated extension of r sheaves of the form TC(ZS), ¢ € C*. By additivity of
X, we are drawn to prove that y( TC(ZS)) = u. But a nontrivial meromorphic section of Z‘(ZS) can
be obtained as s := 8, ' (2)8,(cz), where the theta function 8, € O(C*) satisfies 6,0, = 7, and

dive<(64) = Y [a] (see [9]), so that the degree of the section s is u, and we can apply Riemann-
a€[—1;q]
Roch theorem again. [

Since detB = z’#detC, the formula follows in this case. This terminates the proof of proposi-
tion 3.4.

Remark 3.10 A somewhat different proof is possible along the following lines. Using the results
of this section, one can prove (using the notations of proposition 3.4) that:

(3.10.1) det 7" = 70

Indeed, the equality is easy when A has integral slopes, using the existence of a triangular form
with diagonal terms cz* and lemma 3.5; and one can reduce to this case by extension of the base
justasin 3.2.2. Once equality (3.10.1) is proved, the theorem of Riemann-Roch for vector bundles
over compact Riemann surfaces [5] allows one to conclude immediately.



3.3 Sheaves of solutions related to intermediate singularities

In this section, we intend to compute 3 (7,) as a sum of local terms defined at 0, e and at the
“intermediate singularities”, i.e. points in Sing(A). The reason for using 7, instead of ¥4 is the
fact, mentioned at the end of subsection 3.1, that the former is in some sense intrinsic (up to
rational isomorphisms) while the latter is not. This is related to so-called “resonancies” and we
shall first show how to deal with them.

3.3.1 Resonancies

Definition 3.11 A singularity a € Sing(A) is called resonant! if ga € Sing(A) for some k € Z,
k # 0. The system A is said to be nonresonant if it has no resonant singularities, i.e. if Sing(A) N
gV Sing(A) = 0.

Lemma 3.12 If A is nonresonant, then F4 = TA’.

Proof. - Let a € C* and let X a meromorphic solution of (3.0.1). In order to prove the lemma, it is
sufficient to prove that X is either holomorphic over [a;g| or has infinitely many poles over [a;g].
If a & g%Sing(A), the relation X (gz) = A(z)X (z) and the fact that A is regular over [a; ] imply that
X either has no poles over [a;¢] or has infinitely many poles over [a;¢g]. It remains to consider the
case a € ¢2Sing(A). Up to replacing a by aq’ for some j € Z, we can assume that a € Sing(A).
Then, no ¢*a with k # 0 belongs to Sing(A), so we deduce that the same dichotomy as above holds
separately over both half g-spirals ag™N and ¢" . In any case, the conclusion follows. [J

Lemma 3.13 Forevery A € GL,(C(x)), there exists a rational gauge transformation F € GL,(C(x))
such that F[A] has all its singularities within the fundamental annulus C(1,|q|):

Va € Sing(F[A]) , 1 <la| <lq].
In particular, F[A] is nonresonant.

Proof. - Note that A = uA¢ where u € C(x)” and Ay € GL,(C(x)) NMat,(C[x]). We may write
in the same way F = fFp, and then clearly F[A] = f[u]Fy[Ao]. We shall deal separately with the
scalar components f,u and with the polynomial components Fy,Ay.

Write u = c[](z— a;)"%, c € C*. Then, if for instance |a;| > |¢|, the gauge transform (z—a;)"/[u]
has singularity a; replaced by a; /g, so, iterating, we can move it to the fundamental annulus. The
case where |a;| < 1 is tackled similarly. In this way we get Sing f[u] C C(1,|q]).

Since Ay is polynomial, its singularities are the zeroes of detAy. So let a such that det(Ay(a)) =
(detAp)(a) = 0 and let Xy € C" non trivial such that Ag(a)Xp = 0. Complete X to a basis of C",
thus yielding P € GL,(C) such that P has first column Xo. Then the first column of P~'AP van-
ishes at a, so it is a multiple of z— a in C[x]". Now assume for instance that |a| > |g| and use the
gauge transformation S := Diag(z —a, 1,...,1): we see that S[P~'AP] = (SP~")[A] has the same
singularities as A except that one zero a of the determinant has been replaced by a/q. Iterating,

'The notion of resonancy comes from the local study of g-different systems, where one has to get rid of resonant
exponents (eigenvalues of the fuchsian components of the system), [9].



we may move it to the fundamental annulus. The case where |a| < 1 is tackled similarly. In this
way we get the wanted property. [

Note that, writing B := F[A] we then have:

(Fr" = 7" ad F 5} = 73) = 7.0 /71 =~ 70 ) Fy = 70 | F.

3.3.2 Computation of y(7,) for a nonresonant system

Let A € GL,(C(x)) nonresonant, so that 7, = F4. We know that 74 C ,‘FA(O) . From the argument in
the proof of lemma 3.12, we know that at every x = nt(a), a & Sing(A), we have (F4), = (5‘;1(0) )x

so that the coherent sheaf ﬂ-’A(O) / Fa is concentrated at w(Sing(A)). However, if a € Sing(A), the
relation X (gz) = A(z)X(z) shows that a solution X maybe holomorphic at a but not at ga and
conversely, i.e. the inclusion 74 C TA(O) will generally be strict. Now, since Sing(A) N [a;q] = {a},
again arguing as in the proof of lemma 3.12, we know at least that the polarity of X is “the same”
all along g Na (i.e., if some ¢ ¥a with k € N is a pole of X then any element of g Na is a pole of
X), and also all along ¢" a..

Lemma 3.14 LetR:= Ocx , = Opgr x ( thus a discrete valuation ring). Then we have isomorphisms
of R-modules: . R - R
(% )/TA)X ~ RAAIRY (7 /TA)X N
Proof. - If a ¢ Sing(A), the stalks are trivial and, since A € GL,(R), so are the modules R"/(R" N

A~'R") and R"/(R"NAR"), so the isomorphisms are valid. We assume that a € Sing(A).
Let U a connected neighborhood of a small enough that  induces a homeomorphism U — V :=
n(U) and that U N Sing(A) = {a}. Then the restriction maps %4 (V) — (%a)x and TA(O) (V) —
(7, A(O) )x are bijective.
As we already saw, a solution X € ¥, A(O) (V) can be taken arbitrarily in Ocx (U )" and then extended
using the functional equation X (z) = A(z) !X (gz). This yields an identification of (¥, A(O)) « with
R". Under this identification, the condition that X belongs to %4 (V) is that all X (¢*z), k > 1 be
holomorphic; since the polarity of a solution is the same along ¢~ a, it is enough to check it for
X(qz) = A(2)X(z), i.e. it is enough to require that AX € R", whence the identification of (F4).
with R” NA~'R" and, in the end, of ( 7 fA) with R"/(R"NA~'R").

X

The isomorphism at oo is proven in the same way. [

Lemma 3.15 Let R a discrete valuation ring, u a uniformizer, K the fraction field of R and A €
GL,(K). Write A = PDQ, P,Q € GL,(R) and D = Diag(u®',...,u®),d < --- <d,. Then we have
isomorphisms of R-modules:

R" R R" R
RTNAR" _dH uiR® R'NA-TR _dH u-hR

;>0 ;<0
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Proof. - The given decomposition A = PDQ comes from the theorem of invariant factors for
finitely generated modules over principal ideal rings. We shall only prove the second formula, the
first one being similar (and simpler). Since P,Q € GL,(R), one has QR" = P~ 'R" = R" and:

R® R" N OR" - OR" R
R'NA-IR"  R'NQ-'D-'P-1R" ~ Q(R"NQ~'D-1P~1R")  QR*ND-'P~'R"  R'ND-'R"’

n
and R"ND~'R" = [T (RNu~%R). Last:

i=1

Rifk<0,

RNu'R =
WRif k > 0.

We introduce the following notations. Let a € C* and x = n(a). We write O, := O x =
Ocx 4. If a € Sing(A) and R := O,, we write A,(A) = A¢(A) the multiset of all the d; appearing as
exponents of the diagonal part D of A in the two lemmas above, and A™, resp. A~ the submultisets
of positive, resp. negative exponents. For a nonsingular a, we can consider that A,(A) consists in
n times 0, and that AT, A~ are empty. To summarize:

Proposition 3.16 The coherent sheaves T, A(O) /Fa and T, A(w) / Fa are supported at t(Sing(A)). They
are skyscraper sheaves with stalks:

(0m),= T S (A7), = T1

deAy (A)

O

Corollary 3.17 For a nonresonant A € GL,(C(x)), the Euler characteristic of F4 is given by

1 (Fa) = vo(detd) — Y dimc<ﬂ(0)/ﬂ>x:vo(dem)+ Yy Y 4

xemn(Sing(A)) acSing(A) deA; (A)
and also by
L(Fa) = va(detd) — Y dime ( F) fA> —va(etd)— Y Y d
xem(Sing(A)) x a€Sing(A) deA] (A)

Proof. - Since the cohomology in degree > 1 of skyscraper sheaves is trivial, we obtain:

X (TA(O)/SFA) = Y dimc (TA(O)/TA)X.

xem(Sing(A))

Using the additivity of the Euler characteristic, we get:

x(F)=uH) - Y dime(F7/%) .

xemn(Sing(A))
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But, we have already seen that y( fA(O)) = vp(detA). Moreover, proposition 3.16 ensures that, for
all x € m(Sing(A)), dimc (_‘FA(O)/TA> = Yyea; (4)(—d). Whence the first formula. The proof of
the second formula is similar. [J )

3.3.3 Computation of y(7,) in the general case

We now release all resonancy conditions: we consider an arbitrary A € GL,(C(x)). We introduce
the following notations for every x € EZ":

¢ (A) :=dim¢ <TA(O)/TA/)X,
£+ (A) == dimg (TA(”)/TA’)X,
0(A) =0 (A)+ L7 (A).

Note that the dimensions over C are as well lengths of O,-modules. Also, if x € m(Sing(A)), we
have ¢ (A) = ( (A) = {x(A) =0.

Theorem 3.18 (i) For an arbitrary A € GL,(C(x)):

X(F4) = vo(detd) — ) £, (A),

erg”
X(Fi) = vea(detd) — Y £F(A),

erZ"
20(F4) = vo(detA) + va(detd) — Y £(A).

xeEJ"
(ii) For a nonresonant A € GL,(C(x)):

X(Fa) = x(F4),

GAa)="% 4
deA (A)
A=Y (=
deAy (A)

Proof. - We know that there exists F € GL,(C(x)) such that B := F[A] is nonresonant. Since
FF, = Fp and FTA(O) = ﬂ-’B(O), we see that 7, = Fp and TA(O)/T’ = fB(O)/ﬂ-’é. Therefore, using
proposition 3.17, we obtain:

X () = x(75) = vo(detB) — ¥ dime (7" /3)

x
erZ"

—v(detd) — ¥ dime (TA(O)/TA) —vo(detd) — ¥ £, (A).

an X an
xeEY x€E]
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The proof of the second formula is similar and the third formula is an obvious consequence of the
first and second ones.

The last part of the result, about the nonresonant case, is a direct consequence of the para-
graph 3.3.2.

3.4 Application to a formula of Sakai and Yamaguchi

3.4.1 Euler characteristics and index of rigidity

Recall from [9] that the “internal End” of a g-difference system A € GL,(C(x)) is defined as:
End(A) :=A" ®A4,

where the “dual” AV of A is the contragredient ‘A~!. Some identification of C" ® C" with c”
must be fixed in order to be able to consider End(A) as a matrix B € GL,»(C(x)). We intend here
to compute () and to compare it to the rigidity index introduced by Sakai and Yamaguchi in
[11, §3]. An important preliminary fact is that, for any scalar f € C(x)™:

End(fA) = End(A).

Therefore, we may and will assume that A is polynomial and that its coefficients have no common
factor. From general linear algebra, detB = (det’A~!)"(detA)" = 1. Obviously, SingB = SingA
(the inclusion might have been strict if the coefficients of A had a common factor); this singular
set is the set of zeroes of detA over C*. We write N the number of these zeroes, counted with
multiplicities. Also, from now on, we assume A (and therefore B) to be nonresonant.

Let a € SingA and A = PDQ the corresponding decomposition as in 3.3.2. Then AV = PVDV Q"
whence B = (PY @ P)(DY ® D)(Q" ® Q). Since PV ® P and Q" ® Q are regular at a, we see that
Ay(B) = Ay(A) — Aq(A), meaning that if A,(A) is the multiset d; < --- < d,, then A,(B) is the
multiset of all ; —d;, i,j = 1,...,n. Thus, writing x := 7t(a):

GB)= Y (d-d)= Y d—- Y d=Y (j—l)dj—Z(n—i)di:i@i—l—n)di.

1<i<j<n 1<i<j<n 1<i<j<n 1<j<n 1<n i=1

‘We deduce:

N

1 n
nva(detd) — 2 0o(B) = Y- (2n =20+ Vi = Y (20 = Dey-is1 = dy+-3dyy ++-+ (20— 1)dy =
i=1 i=1

di(1434-+2n—1)+(d—d))1+34 -+ (2n—3)) +---
=n’di+(n—1)*(dy—dy)+---+1%(d, — dy_1),

that is e% 4+ e?,, where p :=d, and ey,...,e, is the dual Young tableau of the Young tableau

dy,...,d,. Summing these equalities for all a € Sing(A), we get, with obvious notations:
WFg)= Y, Yeila)—nN.
aeSing(A)
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This is the part of Sakai-Yamaguchi’s index of rigidity [11, §3] that depends only on intermediate
singularities a € Sing(A) C C* and not on 0 and oo.

3.4.2 Taking into account 0 and oo

We shall now introduce a topological space ]@q/” and a sheaf on it in order to take into account 0
and co. We consider the set .
E¢" = {0} UEZ" U {oo}.

We endow this set with the following topology: a basis of open sets is given by the open sets
of EZ", and by the subsets {0} and {e}, so that E“” has three connected components E2, {0}

and {eo}. For any A € GL,(C(x)), we let fA be the sheaf on E“” such that (ﬂ)‘Ean = ¥, and

with stalks at 0 and e given by (ﬂ)o = Sol(4,C({z})) and (}rA)oo = Sol(A,C({z™'})). Then, we
obviously have

L(F) = x(F4) +dimc Sol(4, C({z})) +dime Sol (4, C({z~'1)).

We shall now apply this formula to the above B € GL,2(C(x)) when A is regular singular at0
and oo i.e. we assume that there exist A(?), A(*) € GL,(C), F)(z) € GL,(C({z})) and F**)(z) €
L,(C({z™'})) such that

FO(g2)A0 = A(2)F O (2) and F*) (g2)A™) = A(2)F*)(2).

We can and will assume that both A( ) and A are nonresonant i.e. that, for any eigenvalue A, u
of A (resp. A)), we have A/u & g% . Then, we have

dime Sol(B,C({z})) = dimc Z(A”)) and dim¢ Sol(B,C({z™'})) = dimc Z(A*))
where Z(-) denotes the centralizer in Mat,(C). So,

1F =Y Y eHa)+dimcZ(A©) +dimcZ(A™)) —nN.
a€cSing(A)

This is Sakai-Yamaguchi’s index of rigidity [11, §3].

It would have been more natural to look for a connected topological space X (instead of the non
connected EZ") and for a sheaf # on X such that x(F) is the index of rigidity of A. Unfortunately,
we were not able to find such a topological space. However, this led us to compute the Euler
characteristics of natural “extensions” of ¥4 of independent interest; this is the content of the rest
of the paper.

4 A natural extension of ¥ f{ and its Euler characteristic

‘We consider the set o
Eg” ={0}u E‘;” LI {eo}.

14



We endow this set with the following topology: the open sets of EZ" are the open subsets of E¢",
and the subsets {0} LIE,, E, LI {o} and E2".
We denote by @ : P!(C)*" — EJ" the natural continuous map.

Let V an open subset of EZ" and let U := @ (V). We consider the subsheaf 4'(V) of
. Mp1 ¢y given by

(4.0.1) (V)= (VOE) N Mpi ¢y (U).

Note that
/ _ !
A B = a.

As in paragraph 3.1.3, we associate to the sheaf 4’ the sheaf of solutions on Eign denoted by

?A’. The sections of this sheaf on an open subset V of EZ" are given by

W) ={Fe@V)" |v2e ' (v),0,(F)(2) =ARF(2)}

Note that o
(F) s = Fa-

In order to compute the Euler characteristic of this sheaf, we will need the following lemmas.

Lemma 4.1 Any sheaf of abelian groups on the topological subspace {0} UEZ" (resp. Eg" LI {e})
of B¢ is acyclic.

Proof. - Let F be a sheaf of abelian groups on {0} UEZ". Let 0 — F — I' be an injective
resolution of 7. Taking the stalks at 0, we get the exact sequence 0 — Fo — I;,. Since {0} UEZ" is
the only open subset of {0} LI EJ" containing 0, we see that the stalks at 0 coincide with the global
sections so that the sequence of global sections obtained from 0 — F — [ is exact, whence the
result. J

Lemma 4.2 Let ¥ be a sheaf of C-vector spaces on E¢". Assume that H° ({0} EJ", F), HO(EZ" L
{oo}, F) and any H* (E", F) are finite dimensional. Then, the H k (TZM, F) are finite dimensional
and we have

X(W? ) = *X(Ezn’ 7|E3”) +h0({0} UEgn’ ff) +hO(ELqm U {oo}’ f)

Proof. - The Mayer-Vietoris long exact sequence for F with respect the open covering {{0} LI

E" ES" U {e0}} of EZ" reads as follow:

= HYUES', F) — HYE, F) — HA({0}UEY", ) & H* (B L {e=}, F)
—)Hk(EZn,T)—)Hk—i—l(Einl,.‘]'—)—)'“
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Using Lemma 4.1, we see that, for all k > 1, H* (EZ”, F) and Hk“(EiZ”, F) are isomorphic C-
vector spaces. Moreover, the first terms of the Mayer-Vietoris sequence give:

-0 = HO(E&, F) — H ({0} UEZ, F) @ HO(EX" Li {0}, F)
— HO(E", F) — H' (EZ", F) = 0

So that,

B (B, F) = KBS, F) — (' ({0} By, ) + hO(Bg U {es}, ) + h (B, F )
= (B, F) = (RO ({0} DB, )+ hO (B Li{eo}, ) + W (BT F).

Applying this lemma to ?A’ and using theorem ??, we get the following result:

Theorem 4.3 For an arbitrary A € GL,(C(x)):

X(F{) = —vo(detA)+ Y £, (A)+dimc Sol(A,Ro) +dimc Sol(A,R..),

xEEg"
X(F) = —veo(detA) + Y 47 (A)+ dimc Sol(A,Ro) + dime Sol(A, R..),
xEEg"
22(F4) = —vo(detA) — veo(detA) + Y £:(A) +2dimc Sol(A, Ro) + 2dimc Sol(A, R..)

xeEg
where Ry (resp. R) is the C-vector space of meromorphic functions over C (resp. C* LI {eo})

with at most finitely many poles on any g-spiral [a;q] C C*.

5 Another natural extension of 7,
Let EZ" be a copy of EJ". We consider the set
X = {0} UE;" U{eo} UEZ".
We endow X with the following topology: the open subsets of X are of the form
e ULIU  where U (resp. U’) is a subset of E¢" (resp. E‘qm/) such that U’ C U,
e {0} UEJ" LU where U’ is an open subset of
e EJ"U{co} UU" where U’ is an open subset of E";
o {0} UEJ" LU {eo} LUU' where U’ is an open subset of EZ”'.

We let B be the sheaf on X whose sections on an open subset V of X are the meromorphic
functions f(z) onm~ ! (VN EZ") (where m: C* — EZ" is the natural projection) such that

16



e f(z) is meromorphic at 0if 0 € V;
e f(z) is meromorphic at e if 0 € V;

e f(z) is meromorphic on 7~ (V NE,) Wit,h at most finitely many poles on any g-spiral
lasq) c W~ (V NE,) (where ' : C* — EJ" is the natural projection).

The restriction maps are the natural ones (restriction of functions).
The corresponding sheaf of solutions on X is given, for any open subset V of X, by

Hi(V)={F € (B(V))" |Vzen (VNEY),04(F)(z) =A(z)F(2)} .
This section is devoted to the proof of the following result.
Theorem 5.1 We have:
e forallk>?2, H'(X,5) =0,
o dimcH! (X, H]) = oo;
o HO(X,H]) = Sol(A,C(x));

In order to prove this result, we state and prove some lemmas.

5.1 Lemmas
We let Y be the topological subspace of X given by
Y =E"UES".

We denote by
i:Ef' > Yandj:ES" =Y

the natural (continuous) inclusions.
Let  be a sheaf of abelian groups on EZ". We set

Lemma 5.2 Let F be a sheaf of abelian groups on Eg". We have, for all k > 0,
kiy T\ _ gk

Proof. - This follows from the facts that the direct image functor i, is exact (be careful, since i is
the inclusion of an open subset, the exactness of i, is not a general fact but is true in our special
case) and sends flasque sheaves on flasque sheaves (this is a general fact for direct images). [

Lemma 5.3 Let F be a sheaf of abelian groups onY. Assume that i~ F is acyclic. Then, for all
k >0, we have
HYY, F) = HNEY j' ).
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Proof. - We start with the exact sequence ([6, II, Exercise 1.19])

(5.3.1) 0 ii i TF =ii ' F i F = jj N 1F =0,

where i, is the extension by zero outside EZ" functor. Note that
HA(Y, joj i ) = HAEY N ) = (B ).

(The first equality is general [6, III, Lemma 2.10] because E‘q”" is closed in Y; the second one
follows from the fact that there is an obvious identification of the topological space E;”/ with EZ",

—~—

and that j_lz'*1 F corresponds to i~'F under this identification.) Since iF s acyclic, we get
that j, j~'i~1 ¥ is acyclic. Considering the long exact sequence of cohomology group obtained

from (5.3.1), we obtain that, for all k > 2,
HY(Y,ii ' F) = HE(Y,i 1 F) =0

(the last equality follows from Lemma 5.2 and from the fact that i ' # is acyclic by assumption)
and we also obtain the exact sequence

0 HOY,ii ' F) = HOY,i F) = HO(Y, jj i F) — H(V,ii ' F) — H (Y, T F) — -

But, we have - o -
HOY, o i F) = HO B i F) = HO(V,i 1 F)

and the map H°(Y ,ij? ) — HO(Y, j. jfli/:l?f ) is actually the identity. Moreover, lemma 5.2
ensures that H' (Vi1 F) = H! (EZ”,iilf) = 0. It follows that

HY(Y,ii 'F)=0.
Using the long exact sequence of cohomology groups obtained from the exact sequence
0—ii 'F—F—jj'F—0,
we get, forall k > 1,
H (Y. F) = H (V. joj ' F) = HY(E]" ' ).

This equality is obviously true for k = 0. O

5.2 Proof of theorem 5.1

In order to compute the cohomology of #; on X, we first use the Mayer-Vietoris long exact
sequence for the open covering {{0} UEZ", EZ" LI {eo} LI EZ”’} of X:

e HE VB 947) — HA (X, 2]) — HE ({0} DB, 360) & HH (B U {oa) RS 34))
%Hk(EZna}[X) _>Hk+1(X7"]-[A/) —
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But, for k > 2, we have H*~!(E%", #{{) = H*(E%", #{}) = 0 (because the restriction of #; to EZ" is
a meromorphic fiber bundle) and H*({0} L EZ", #,) = 0 (follows from lemma 4.1), so

HY(X, 94]) = HY (B L {eo} LS, 54)).

Now, we use the Mayer-Vietoris long exact sequence for the open covering {E{" U {eo},Y } of
E2" L {oo} UE:
o HEVES 24) — HE(BS U {oo} UESY  94]) — HH (B2 U {oo}, #]) & HE(Y, 7))
— H (B2, 1) — H*" (B2 U {oo} LB H]) — -
Arguing as above, we get that, for k > 2,
HE(BS 3 (oo} RS 94]) = HY (Y, 24]).

But, i ! 5{4 is acyclic (it is a meromorphic vector bundle on EZ”), so lemma 5.3 ensures that, for
i>0,
HY(Y, 94) = HE (B ' 91).

Therefore, we have proved that, for k > 2,

0.

(5.3.2) HY (X, 94;) = H*(Y, 94}) = HY(B4" , j~' )

Moreover, the first terms of the first Mayer-Vietoris sequence above gives:

0 HO(X, 360) — H({0} UES", 34) & HO (3" U {oo} UL, 360) — HO(EL", 96)
S H (X, ) -

But HO({0} UE, #4) and HO(EZ" LI {eo} LES™ , #]) are finite dimensional C-vector spaces,

whereas H° (Eg", #H,) is infinite dimensional. Therefore, H (X, #]) is infinite dimensional.
The last assertion of the theorem is obvious. [J
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