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FUNCTIONAL RELATIONS OF SOLUTIONS OF q-DIFFERENCE

EQUATIONS

THOMAS DREYFUS, CHARLOTTE HARDOUIN, AND JULIEN ROQUES

Abstract. In this paper, we study the algebraic relations satisfied by the
solutions of q-difference equations and their transforms with respect to an
auxiliary operator. Our main tool is the parametrized Galois theories devel-
oped in [HS08] and [OW15]. The first part of this paper is concerned with
the case where the auxiliary operator is a derivation, whereas the second part
deals a q′-difference operator. In both cases, we give criteria to guaranty the
algebraic independence of a series, solution of a q-difference equation, with
either its successive derivatives or its q′-transforms. We apply our results to
q-hypergeometric series.
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Introduction

The study of the differential transcendence of special functions is an old and dif-
ficult problem. Only very recently, systematic methods in order to tackle this kind
of question were discovered. Indeed, after the seminal work of Cassidy and Singer
in [CS07], several authors developed Galoisian approaches in order to study the dif-
ferential or difference relations between solutions of linear differential or difference
equations; see e.g. Hardouin and Singer [HS08], Di Vizio, Hardouin and Wibmer
[DVHW14b, DVHW14a] and Ovchinikov and Wibmer [OW15]. For instance, this
led to a short and comprehensive proof of Hölder’s theorem asserting the differen-
tial transcendence of Euler’s Gamma function; see [HS08]. Also, this enabled the
authors of the present paper to study the differential transcendence of generating
series issued from the theory of automatic sequences, such as the Baum-Sweet or the
Rudin-Shapiro generating series, which turn out to satisfy linear Mahler equations;
see [DHR15]. In the present paper, we take a close look at the differential algebraic
relations satisfied by solutions of linear q-difference equations.Very little was known
about the differential or difference algebraic relations between these solutions. The
first results in this direction, due to Bézivin ([BB92]) and Ramis ([Ram92]), assert
that a non rational solution of a linear q-difference equation do not satisfy a linear
dependence relation with its successive transforms with respect to a derivation or a
q′-difference operator provided that q′ is multiplicatively independent of q. Later,
the parametrized Galois theories developed by Hardouin and Singer in [HS08] and
Ovchinnikov and Wibmer in [OW15] allowed their authors to give complete crite-
ria for the differential or difference transcendence for the solutions of q-difference
equations of order one or of systems of such equations. For irreducible q-difference
equations, the results of [HS08] allowed to characterize the dependencies of the so-
lutions via the existence of a linear compatible equation in the auxiliary operator.
Our paper is mainly concerned with q-difference equations of order greater than
two and combines the results of Bézivin and Ramis with the parametrized Galois
theories mentioned above. This paper is divided in two parts.

∗ ∗ ∗
In the first part, we study the algebraic relations between the successive derivatives
of the solutions of linear q-difference equations. These relations are encoded by the
parametrized difference Galois groups introduced by Hardouin and Singer in [HS08].
The basic (and, at first sight, quite optimistic) question is: if we know the algebraic
relations between the solutions, what can be said about the differential algebraic
relations? In Galoisian terms, an equivalent question is: if we know what the non
parametrized difference Galois group is, what can be said about the parameterized
difference Galois group? Our answer reads as follows. Consider a linear q-difference
equation

(0.1) an(z)y(q
nz) + an−1(z)y(q

n−1z) + · · ·+ a0(z)y(z) = 0

where a0(z), . . . , an−1(z), an(z) ∈ C(z), a0(z)an(z) 6= 0, and where q is a non zero
complex number with |q| 6= 1. Let G be the difference Galois group of this equa-
tion. This is an algebraic subgroup of GLn(C) which reflects the algebraic relations
between the solutions of the equation. Let Gδ be its parametrized difference Galois

group. This is a differential algebraic subgroup of GLn(C̃), where C̃ is a differential
closure of C. As mentioned above, this parametrized difference Galois group re-
flects the differential algebraic relations between the solutions of the equation. The
main result of the first part of the present paper (see Theorem 3.1) can be stated
as follows.
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Theorem. Assume that the derived subgroup G◦,der of the neutral component G◦

of G is an irreducible almost simple algebraic subgroup of SLn(C). Then, Gδ is a

subgroup of G(C̃) containing G◦,der(C̃).

For instance, we have the following consequence (see Proposition 2.4).

Proposition. Let h(z) be a non zero Laurent series solution of (0.1). Let G be
the difference Galois group of (0.1).

• Assume that G contains SLn(C) (with n ≥ 2) or Spn(C) (with n even).
Then h(z), . . . , h(qn−1z) are differentially algebraically independent over
C(z).

• Assume that G contains SOn(C) with n ≥ 3. Then h(z), . . . , h(qn−2z) are
differentially algebraically independent over C(z).

An important family of q-difference equations is given by the generalized q-
hypergeometric equations. Assume that 0 < |q| < 1. Let us fix n ≥ s, two integers,
let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s, λ ∈ C×, and defines
σq(f(z)) = f(qz). Let us consider the generalized q-hypergeometric operator:

zλ

n∏

i=1

(aiσq − 1)−
s∏

j=1

(
bj
q
σq − 1

)
.

When b1 = q, this operator admits as solution the q-hypergeometric series:

nΦs(a, b, λ, q; z) =

∞∑

m=0

(a; q)m
(b; q)m

λmzm

=

∞∑

m=0

n∏

i=1

(1 − ai)(1 − aiq) . . . (1− aiq
m−1)

s∏

j=1

(1 − bj)(1 − bjq) . . . (1 − bjq
m−1)

λmzm.

Using [Roq08, Roq11, Roq12], we see that, in many cases, the algebraic group
G◦,der is either SLn(C), SOn(C) or the symplectic group Spn(C) (for n even).
Therefore, the above results ensure that, in many cases, the q-hypergeometric series
are differentially transcendental. To the best of our knowledge, the only previously
known result in this direction was due to Hardouin and Singer [HS08] about q-
hypergeometric equations of order 2.

The first part of the present paper is organized as follows. Section 1 contains
reminders about difference Galois theory. Section 2 contains reminders and com-
plements about the parametrized difference Galois theory developed in [HS08]. In
particular, we study the notion of projective isomonodromy. Roughly speaking, we
show that if the difference Galois group of (0.1) is large, then we have two possi-
bilities: either the parametrized difference Galois is large, or any solution of (0.1)
satisfies a linear differential equation. In Section 3, we prove the above Theorem by
showing that the latter case in the previous alternative does not occur. In Section 4,
we apply our results to the q-hypergeometric equations.

∗ ∗ ∗
In the second part of the paper, we study the algebraic q′-difference equations

satisfied by the solutions of the equation (0.1), where q′ is a non zero complex
number such that |q| and |q′| are multiplicatively independent. These relations
are reflected by the parametrized difference Galois group introduced by Ovchinikov
and Wibmer in [OW15]. Our main results are formally similar to those mentioned
above. However, the proofs are more involved in this case because the parametrized
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difference Galois group are difference affine algebraic group schemes. These are
more subtle than the differential algebraic groups. We obtain the following result,
see Corollary 9.1.

Theorem. Let G be the difference Galois group of (0.1). Assume that the derived
subgroup G◦,der of the neutral component G◦ of G is either SLn(C), with n ≥ 2,
SOn(C), with n ≥ 3, or Spn(C), with n even, and assume that there exists h, a
non zero a convergent Laurent series solution of (0.1). Then, h is σq′-algebraically
independent over C(z).

Furthermore, assume that there exist b(z) ∈ C(z)× and c ∈ C×, m ∈ Z such that

det(A) = czmb(qz)
b(z) . Then, if G◦,der = SLn(C) or Spn(C) (resp. G = SOn(C)) then

h(z), . . . , h(q′n−1
z) (resp. h(z), . . . , h(q′n−2

z)) are σq′-algebraically independent
over C(z).

The second part of the paper is organized as follows. Section 5 contains re-
minders and complements about the parametrized difference Galois theory devel-
oped by Ovchinnikov and Wibmer in [OW15]. Then, we split our study in two
cases, depending on the σq′ -transcendence of the determinant of the fundamental
solution. Since the latter is solution of an order one q-difference equation, we have
to compute the parametrized difference Galois group of such equations. This is the
goal of Section 6. Then, in Section 7, we deal with projective isomonodromy, and
we find basically the same type of result as in the first part. If the difference Galois
group of (0.1) is large, then we have two possibilities: either the parametrized dif-
ference Galois group is large, or any solution of (0.1) satifies a linear q′-difference
equation. In Section 8, we prove that the latter case does not occur when the de-
terminant of the fundamental solution is σq′ -algebraic. Hopefully, in all cases, we
are able to prove the σq′ -transcendence of the meromorphic solutions of (0.1). We
apply our main results to the q-hypergeometric series in Section 9.

General conventions. All rings are commutative with identity and contain the
field of rational numbers. In particular, all fields are of characteristic zero.

Part 1. Differential relations of solutions of q-difference equations

1. Difference Galois theory

For details on what follows, we refer to [vdPS97, Chapter 1].
A σq-ring (R, σq) is a ring R together with a ring automorphism σq : R → R.

An ideal of R stabilized by σq is called a σq-ideal of (R, σq). If R is a field, then
(R, σq) is called a σq-field. To simplify notation, we shall, most of the time, write
R instead of (R, σq).

The ring of constants of the σq-ring R is defined by

Rσq = {f ∈ R | σq(f) = f}.

If Rσq is a field, it is called the field of constants.
A σq-morphism (resp. σq-isomorphism) from the σq-ring (R, σq) to the σ̃q-

ring (R̃, σ̃q) is a ring morphism (resp. ring isomorphism) ϕ : R → R̃ such that
ϕ ◦ σq = σ̃q ◦ ϕ.

Given a σq-ring (R, σq), a σ̃q-ring (R̃, σ̃q) is a R-σq-algebra if R̃ is a ring extension
of R and σ̃q |R = σq ; in this case, we shall often denote σ̃q by σq. Two R-σq-algebras

(R̃1, σ̃q1) and (R̃2, σ̃q2) are isomorphic if there exists a σq-isomorphism ϕ from

(R̃1, σ̃q1) to (R̃2, σ̃q2) such that ϕ|R = IdR.
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We fix a σq-field K such that k = Kσq is algebraically closed. We consider the
following linear difference system

(1.1) σq(Y ) = AY, with A ∈ GLn(K), n ∈ N∗.

By [vdPS97, §1.1], there exists a K-σq-algebra R such that

1) there exists U ∈ GLn(R) such that σq(U) = AU (such a U is called a
fundamental matrix of solutions of (1.1));

2) R is generated, as a K-algebra, by the entries of U and det(U)−1;
3) the only σq-ideals of R are {0} and R.

Such a R is called a Picard-Vessiot ring, or PV ring for short, for (1.1) over K.
By [vdPS97, Lemma 1.8], we have Rσq = k. Two PV rings are isomorphic as
K-σq-algebras. A PV ring R is not always an integral domain. However, there
exist idempotents elements e1, . . . , es of R such that R = R1 ⊕ · · · ⊕ Rs where the
Ri = Rei are integral domains which are transitively permuted by σq. In particular,
R has no nilpotent element and one can consider its total ring of quotients QR, i.e.,
the localization of R with respect to the set of its nonzero divisors, which can be
decomposed as the direct sum QR = K1⊕· · ·⊕Ks of the fields of fractions Ki of the
Ri. The ring QR has a natural structure of R-σq-algebra and we have QR

σq = k.
Moreover, the Ki are transitively permuted by σq. We call the σq-ring QR a total
PV ring for (1.1) over K.

The difference Galois group Gal(QR/K) of R over K is the group of K-σq-
automorphisms of QR commuting with σq:

Gal(QR/K) = {φ ∈ Aut(QR/K) | σq ◦ φ = φ ◦ σq}.
Abusing notation, we shall sometimes denote by Gal(QR/F ) the group
{φ ∈ Aut(QR/F ) | σq ◦ φ = φ ◦ σq} for F a K-σq-subalgebra of QR.

An easy computation shows that, for any φ ∈ Gal(QR/K), there exists a unique
C(φ) ∈ GLn(k) such that φ(U) = UC(φ). By [vdPS97, Theorem 1.13], the faithful
representation ρU :

Gal(QR/K) → GLn(k)

φ 7→ C(φ)

identifies Gal(QR/K) with a linear algebraic subgroup of GLn(k). If we choose
another fundamental matrix of solutions U , we find a conjugate representation.

A fundamental theorem of difference Galois theory ([vdPS97, Theorem 1.13])
says that R is the coordinate ring of a G-torsor over K. In particular, the dimension
of Gal(QR/K) as linear algebraic group over k coincides with the transcendence
degree of the Ki over K. Thereby, the difference Galois group controls the algebraic
relations satisfied by the solutions.

2. Parametrized Difference Galois theory

We shall use standard notions and notations of difference and differential algebra
which can be found in [Coh65] and [vdPS97].

2.1. Differential algebra. A δ-ring (R, δ) is a ring R endowed with a deriva-
tion δ : R → R (this means that δ is additive and satisfies the Leibniz rule
δ(ab) = δ(a)b+ aδ(b), for all a, b ∈ R). If R is a field, then (R, δ) is called a δ-
field. To simplify notation, we shall, most of the time, write R instead of (R, δ).

We denote by Rδ the ring of δ-constants of the δ-ring R, i.e.,

Rδ = {c ∈ R | δ(c) = 0}.
If Rδ is a field, it is called the field of δ-constants.
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Given a δ-ring (R, δ), a δ̃-ring (R̃, δ̃) is a R-δ-algebra if R̃ is a ring extension of R

and δ̃|R = δ; in this case, we often denote δ̃ by δ. Let K be a δ-field. If L is a K-δ-
algebra and a field, we say that L/K is a δ-field extension. Let R be a K-δ-algebra
and let a1, . . . , an ∈ R. We denote by K{a1, . . . , an}δ the smallest K-δ-subalgebra
of R containing a1, . . . , an. Let L/K be a δ-field extension and let a1, . . . , an ∈ L.
We denote by K〈a1, . . . , an〉δ the smallest K-δ-subfield of L containing a1, . . . , an.

The ring of δ-polynomials in the differential indeterminates y1, . . . , yn and with
coefficients in a differential field (K, δ), denoted by K{y1, . . . , yn}δ, is the ring of
polynomials in the indeterminates {δjyi | j ∈ N, 1 ≤ i ≤ n} with coefficients in K.

Let R be be a K-δ-algebra and let a1, . . . , an ∈ R. If there exists a nonzero
δ-polynomial P ∈ K{y1, . . . , yn}δ such that P (a1, . . . , an) = 0, then we say that
a1, . . . , an are δ-algebraically dependent over K. Otherwise, we say that a1, . . . , an
are δ-algebraically independent over K.

A δ-field k is called δ-closed if, for every (finite) set of δ-polynomials F , if the
system of δ-equations F = 0 has a solution with entries in some δ-field extension
L, then it has a solution with entries in k. Note that the field of δ-constants kδ of

any δ-closed field k is algebraically closed. Any δ-field k has a δ-closure k̃, i.e., a

δ-closed field extension. Moreover if kδ is algebraically closed then k̃δ = kδ.
From now on, we consider a δ-closed field k.
A subset W ⊂ kn is Kolchin-closed (or δ-closed, for short) if there exists

S ⊂ k{y1, . . . , yn}δ such that

W = V(S) = {a ∈ kn | f(a) = 0 for all f ∈ S} .

The Kochin-closed subsets of kn are the closed sets of a topology on kn, called the
Kolchin topology. The Kolchin-closure of W ⊂ kn is the closure of W in kn for the
Kolchin topology.

Following Cassidy in [Cas72, Chapter II, Section 1, p. 905], we say that a sub-
group G ⊂ GLn(k) ⊂ kn×n is a linear δ-algebraic group (LDAG) if G is the

intersection of a Kolchin-closed subset of kn×n (identified with kn2

) with GLn(k).
For F ⊂ k a δ-subfield, we say that a linear δ-algebraic group G ⊂ GLn(k) is
defined over F if G is the zero set of δ-polynomials with coefficients in F . For G a
linear δ-algebraic group defined over F and L a δ-field extension of F , we denote
by G(L) the set of L-points of G.

A δ-closed subgroup, or δ-subgroup for short, of an LDAG is a subgroup which
is Kolchin-closed. The Zariski-closure of a linear differential linear algebraic group
G ⊂ GLn(k) is denoted by G and is a linear algebraic group defined over k.

2.1.1. Difference differential algebra. A (σq, δ)-ring (R, σq, δ) is a ring R endowed
with a ring automorphism σq and a derivation δ : R → R (in other words, (R, σq)
is a σq-ring and (R, δ) is a δ-ring) such that σq commutes with δ. If R is a field,
then (R, σq, δ) is called a (σq, δ)-field. If there is no possible confusion, we write R
instead of (R, σq, δ).

We have straightforward notions of (σq, δ)-ideals, (σq , δ)-morphisms, (σq , δ)-
algebras, etc, similar to the notions recalled in Sections 1 and 2.1. We omit the
details and refer for instance to [HS08, Section 6.2], and to the references therein,
for details.

In order to use the (σq, δ)-Galois theory developed in [HS08], we need to work
with a base (σq , δ)-field K such that k = Kσq is δ-closed. Most of the common
function fields do not satisfy this condition. The following result shows that we can
embed any (σq, δ)-field with algebraically closed field of constants into a (σq , δ)-field
with δ-closed field of constants (here constants are σq-constants).
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Lemma 2.1 ([DHR15, Lemma 2.3]). Let F be a (σq, δ)-field with k = F σq alge-

braically closed. Let k̃ be a δ-closed field containing k. Then, the ring k̃ ⊗k F is
an integral domain whose fraction field K is a (σq, δ)-field extension of F such that

Kσq = k̃.

2.2. Parametrized Difference Galois theory. For details on what follows, we
refer to [HS08].

Let K be a (σq, δ)-field with k = Kσq a δ-closed field. We consider the following
linear difference system

(2.1) σq(Y ) = AY

with A ∈ GLn(K) for some integer n ≥ 1.
By [HS08, § 6.2.1], there exists a K-(σq, δ)-algebra S such that

1) there exists U ∈ GLn(S) such that σq(U) = AU (such a U is called a
fundamental matrix of solutions of (2.1));

2) S is generated, as K-δ-algebra, by the entries of U and det(U)−1;
3) the only (σq, δ)-ideals of S are {0} and S.

Such a S is called a (σq , δ)-Picard-Vessiot ring, or (σq , δ)-PV ring for short, for (2.1)
over K. It is unique up to isomorphism of K-(σq, δ)-algebras. A (σq, δ)-PV ring is
not always an integral domain. However, there exist idempotent elements e1, . . . , es
of S such that S = S1 ⊕ · · · ⊕Ss where the Si = Sei are integral domains stable by
δ and transitively permuted by σq. In particular, S has no nilpotent element and
one can consider its total ring of quotients QS . It can be decomposed as the direct
sum QS = K1 ⊕ · · · ⊕Ks of the fields of fractions Ki of the Si. The ring QS has
a natural structure of S-(σq, δ)-algebra and we have QS

σq = k. Moreover, the Ki

are transitively permuted by σq . We call the (σq, δ)-ring QS a total (σq, δ)-PV ring
for (2.1) over K.

The (σq, δ)-Galois group Galδ(QS/K) of S over (K, σq, δ) is the group of K-
(σq, δ)-automorphisms of QS :

Galδ(QS/K) = {φ ∈ Aut(QS/K) | σq ◦ φ = φ ◦ σq and δ ◦ φ = φ ◦ δ}.

Note that, if δ = 0, then we recover the difference Galois groups considered in
Section 1.

A straightforward computation shows that, for any φ ∈ Galδ(QS/K), there exists
a unique C(φ) ∈ GLn(k) such that φ(U) = UC(φ). By [HS08, Proposition 6.18],
the faithful representation ρU :

Galδ(QS/K) → GLn(k)

φ 7→ C(φ)

identifies Galδ(QS/K) with a linear δ-algebraic subgroup of GLn(k). If we choose
another fundamental matrix of solutions U , we find a conjugate representation.

The (σq, δ)-Galois group Galδ(QS/K) of (2.1) reflects the differential alge-
braic relations between the solutions of (2.1). In particular, the δ-dimension of

Galδ(QS/K) coincides with the δ-transcendence degree of the Ki over K (see [HS08,
Proposition 6.26] for definitions and details).

A (σq, δ)-Galois correspondence holds between the δ-closed subgroups of

Galδ(QS/K) and the K-(σq, δ)-subalgebras F of QS such that every nonzero divi-
sor of F is a unit of F (see for instance [HS08, Theorem 6.20]). Abusing notation,

we still denote by Galδ(QS/F ) the group of F -(σq, δ)-automorphisms of QS . The
following proposition is at the heart of the (σq , δ)-Galois correspondence.
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Proposition 2.2 ([HS08, Theorem 6.20]). Let S be a (σq , δ)-PV ring over K. Let
F be a K-(σq, δ)-subalgebra of QS such that every nonzero divisor of F is a unit of

F . Let H be a δ-closed subgroup of Galδ(QS/K). Then, the following hold:

• QGalδ(QS/F )
S = {f ∈ QS | ∀φ ∈ Galδ(QS/F ), φ(f) = f} = F ;

• Galδ(QS/QH
S ) = H.

Let S be a (σq, δ)-PV ring over K for (2.1) and let U ∈ GLn(S) be a funda-
mental matrix of solutions. Then, the K-σq-algebra R generated by the entries of
U and det(U)−1 is a PV ring for (2.1) over K and we have QR ⊂ QS . One can

identify Galδ(QS/K) with a subgroup of Gal(QR/K) by restricting the elements of

Galδ(QS/K) to QR.

Proposition 2.3 ([HS08], Proposition 2.8). The group Galδ(QS/K) is a Zariski-
dense subgroup of Gal(QR/K).

2.3. Transcendence results. Let K be a (σq, δ)-field with k = Kσq a δ-closed
field. Let S be a (σq , δ)-PV extension for (2.1), with total field of fractions QS ,
let U ∈ GLn(S) be a fundamental matrix of solutions of the system (2.1), and

let Galδ(QS/K) be the representation of the (σq , δ)-Galois group associated to the
fundamental matrix of solutions U . We denote by SOn(k) the special orthogonal
group SOn(k) = {C ∈ SLn(k)|CtC = In} and, if n is even, by Spn(k) the symplectic

group Spn(k) = {C ∈ GLn(k)|CtJC = J}, J =

(
0 In/2

−In/2 0

)
, where In/2 is the

identity matrix of size n/2.

Proposition 2.4. Assume that n ≥ 2. Let U ∈ GLn(S) be a fundamental solution
matrix and let u = (u1, . . . , un)

t be a line (resp. column) vector of U . If there

exists C̃ ∈ GLn(k) such that the image of Galδ(QS/K) by the representation ρUC̃

contains

• SLn(k) or Spn(k) then u1, . . . , un are δ-algebraically independent over K;
• SOn(k) then any n− 1 distinct elements among the ui’s are δ-algebraically

independent over K;

Proof. Let H ⊂ GLn(k) be SLn(k) (resp. SOn(k) or Spn(k)). If the image of

Galδ(QS/K) by the representation ρUC̃ contains H then the image of Galδ(QS/K)

by the representation ρU contains H̃ = C̃HC̃−1. By the parametrized Galois
correspondence [HS08, Theorem 6.20], we have

• the field K0 = QH̃
S , made of the elements of QS fixed by H̃, is (σq , δ)-field

with K
σq

0 = k,
• QS is a (σq, δ)-PV field extension for (2.1) over K0,
• and in the representation attached to U , the (σq , δ)-Galois group

Galδ(QS/K0) coincides with H̃ .

Moreover, by [HS08, Prop.6.24], the K-δ-algebra S̃ = K0{U, 1
det(U)}δ is a

Galδ(QS/K0)-torsor. Thus, if we write S̃ as K0{X, 1
det(X)}δ/I for some δ-ideal

I then the following holds

• if H = SLn(k) then I equals {det(X) − f}δ the radical δ-ideal generated
by det(X)− f for some f ∈ K0;

• if H = SOn(k) then I equals {XC̃C̃tXt − F, det(X) − g}δ the radical δ-

ideal generated by XC̃C̃tXt − F for some F ∈ GLn(K0) and det(X) − g
for some g ∈ K0;

• if H = Spn(k) then I equals {XC̃JC̃tXt − F, det(X) − g}δ the radical δ-

ideal generated by XC̃JC̃tXt − F for some F ∈ GLn(K0) and det(X)− g
for some g ∈ K0.
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Let us prove the first claim. Suppose to the contrary that u1, . . . , un are δ-
algebraically dependent over K. Let us denote by (x1, . . . , xn)

t the corresponding
line (resp. column) of δ-indeterminates in X . Then, there exists a non zero δ-
polynomial P ∈ K0{x1, . . . , xn}δ that belongs to I. However, it is easily seen that
{det(X)− f}δ ∩K0{x1, . . . , xn}δ = {0}. This is a contradiction.

Let us assume that H = SOn(k) and set D = C̃C̃t. Let us denote by
X1 = (x1, . . . , xn)

t the line (resp. column) of δ-indeterminates in X correspond-
ing to u and by Xi for i 6= 1 the other lines (resp. columns) of X . Without loss of
generality, we can assume that X1 is the first line (resp. column) of X . We claim
that

(2.2) I ∩K0{x1, . . . , xn−1}δ = {0}.
It is equivalent to prove the claim with K0 replaced by an algebraic closure K0.
Indeed, if (2.2) holds with K0 replaced by an algebraic closure K0, some descent
arguments show that (2.2) holds over K0. Suppose to the contrary that there
exists L(x1, . . . , xn−1) ∈ I ∩K0{x1, . . . , xn−1}δ non zero. Let U0 ∈ GLn(K0) such
that U0DU

t
0 = F and det(U0) = g. We can decompose U0 as L0Q where L0 is

lower triangular and Q is in SOD = {Q ∈ GLn(K0)|QDQt = D and det(Q) = 1}.
Then, L0DL

t
0 = F and det(L0) = g. Set Y = L−1

0 X . Then, Y is a matrix of

δ-indeterminates and K0{X, 1
det(X)}δ = K0{Y, 1

det(Y )}δ. Denote by (y1, . . . , yn)
t

be the first line (resp. column) of Y . Moreover, I = {Y DY t − D, det(Y ) − 1}δ
and since L0 is invertible and lower triangular, L(x1, . . . , xn−1) = L̃(y1, . . . , yn−1)

for some non-zero δ-polynomial L̃(y1, . . . , yn−1) ∈ I∩K0{y1, . . . , yn−1}δ. This last
assertion contradicts the Gram-Schmidt process for the quadratic form Y DY t.

Let us assume that H = Spn(k) and set D = C̃JC̃t. Let us denote by
X1 := (x1, . . . , xn)

t the line (resp. column) of δ-indeterminates in X corresponding
to u and by Xi for i 6= 1 the other lines of X . Without loss of generality, we can
assume that X1 is the first line (resp. column) of X . We claim that

(2.3) I ∩K0{x1, . . . , xn}δ = {0}.
As above, it is equivalent to prove the claim with K0 replaced by an algebraic closure
K0. Suppose to the contrary that there exists L(x1, . . . , xn) ∈ I∩K0{x1, . . . , xn}δ
non zero. Let D = C̃JC̃t. Let U0 ∈ GLn(K0) such that U0DU

t
0 = F and

det(U0) = g. Let V ∈ K0
n

be the first line vector of U0. Since V is non zero, there

exists a basis e = {e1, . . . , en} of K0
n

such that e0 = V and e is a symplectic basis
for the symplectic form XDXt. This proves that one can write U0 = L0S where
S ∈ SpD = {S′ ∈ GLn(K0)|S′DS′t = D} and the first line of L0 is

(
1 0 . . . 0

)
.

Then, L0DL
t
0 = F and det(L0) = g. Set Y = L−1

0 X . Then, Y is a matrix of δ-

indeterminates and K0{X, 1
det(X)}δ = K0{Y, 1

det(Y )}δ. Denote by (y1, . . . , yn)
t be

the first line (resp. column) of Y . Moreover, I = {Y DY t − D, det(Y ) − 1}δ
and L(x1, . . . , xn) = L̃(y1, . . . , yn) ∈ I ∩ K0{y1, . . . , yn}δ for some non-zero δ-

polynomial L̃(y1, . . . , yn) ∈ I ∩K0{y1, . . . , yn}δ. Since any non-zero vector can be

completed into a symplectic basis of K0
n

for the symplectic form Y DY t, we get
that L̃(y1, . . . , yn) = 0 = L(x1, . . . , xn). This is a contradiction. �

2.4. Projective isomonodromy. Let K be a (σq, δ)-field with k = Kσq alge-

braically closed. Let k̃ be a δ-closure of k. Let C = k̃δ = kδ be the (algebraically

closed) field of constants of k̃. Lemma 2.1 ensures that k̃⊗kK is an integral domain

and that L = Frac(k̃⊗k K) is a (σq, δ)-field extension of K such that Lσq = k̃. We
let QS be the total ring of quotients of a (σq , δ)-PV ring S over L of the difference
system

σq(Y ) = AY
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where A ∈ GLn(K). The following proposition generalises [DHR15, Proposi-
tion 2.10].

Proposition 2.5. The following properties are equivalent:

(1) Galδ(QS/L) is conjugate to a subgroup of k̃×SLn(C);
(2) there exists B ∈ Kn×n such that

(2.4) σq(B)A = AB + δ(A) − 1

n
δ(det(A)) det(A)−1A.

Proof. We shall first prove that (1) holds if and only if there exists B ∈ Ln×n that
satisfies (2.4).

Let us first assume that Galδ(QS/L) is conjugate to a subgroup of k̃×SLn(C).
So, there exists a fundamental matrix of solutions U ∈ GLn(S) of σq(Y ) = AY such

that, for all φ ∈ Galδ(QS/L), there exist ρφ ∈ k̃× and Mφ ∈ SLn(C) such that
φ(U) = UρφMφ. Let d = det(U) ∈ S×. Note that φ(d) = dρnφ. Easy calculations
show that the matrix

B = δ(U)U−1 − 1

n
δ(d)d−1In ∈ Sn×n

is left invariant by the action of Galδ(QS/L), and, hence, belongs to Ln×n in virtue
of [HS08, Proposition 6.26], and that B satisfies equation (2.4).

Conversely, assume that there exists B ∈ Ln×n satisfying equation (2.4). Con-
sider

B1 = B +
1

n
δ(d)d−1In ∈ Sn×n.

Note that

σq(B1) = AB1A
−1 + δ(A)A−1.

Let U ∈ GLn(S) be a fundamental matrix of solutions of σqY = AY . We

have σq(δ(U) − B1U) = A(δ(U) − B1U). So, there exists C ∈ k̃n×n such that

δ(U)−B1U = UC. Since k̃ is δ-closed, we can find D ∈ GLn(k̃) such that
δ(D)+CD = 0. Then, V = UD is a fundamental matrix of solutions of σqY = AY

such that δ(V ) = B1V. Consider φ ∈ Galδ(QS/L) and let Mφ ∈ GLn(k̃) be
such that φ(V ) = VMφ; note that φ(d) = dρφ where ρφ = det(Mφ). On the

one hand, we have φ(δ(V )) = φ(B1V ) = (B1 + 1
nδ(ρφ)ρ

−1
φ In)VMφ. On the

other hand, we have φ(δ(V )) = δ(φ(V )) = δ(V Mφ) = B1VMφ + V δ(Mφ). So,
1
nδ(ρφ)ρ

−1
φ Mφ = δ(Mφ). So, the entries of Mφ = (mi,j)1≤i,j≤n are solutions of

δ(y) = 1
nδ(ρφ)ρ

−1
φ y. Let i0, j0 be such that mi0,j0 6= 0. Then, Mφ = mi0,j0M

′ with

M ′ = 1
mi0,j0

Mφ ∈ GLn(k̃
δ) = GLn(C). Since C is algebraically closed, we can

write M ′ = λM ′′ with λ ∈ C× and M ′′ ∈ SLn(C), whence the desired result.
To conclude the proof, we have to show that if (2.4) has a solution B in Ln×n

then it has a solution in Kn×n. This can be proved by using an argument similar
to the descent argument used in the proof of [DHR15, Proposition 2.6]. �

In what follows, we denote by NG(H) the normalizer of H in G.

Lemma 2.6. Let H be an irreducible subgroup of SLn(C). Then,

NGLn(k̃)
(H) = k̃×NSLn(C)(H).

Proof. Let M ∈ GLn(k̃) be in the normalizer of H . Consider N ∈ H .
We have MNM−1 ∈ H . In particular, we have δ(MNM−1) = 0, i.e.,
δ(M)NM−1 −MNM−1δ(M)M−1 = 0, so M−1δ(M) commutes with N . It fol-

lows from Schur’s lemma that M−1δ(M) = cIn for some c ∈ k̃×. So, the entries of
M = (mi,j)1≤i,j≤n are solutions of δ(y) = cy. Let i0, j0 be such that mi0,j0 6= 0.
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Then, M = mi0,j0M
′ with M ′ = 1

mi0,j0
M ∈ GLn(k̃

δ) = GLn(C). Since C is

algebraically closed, we can write M = λM ′′ for M ′′ ∈ SLn(C) and λ ∈ C×.

Hence, the normalizer of H in GLn(k̃) is included in k×NSLn(C)(H). It follows

that NGLn(k̃)
(H) ⊂ k̃×NSLn(C)(H). The other inclusion is obvious. �

For any algebraic subgroup G of GLn(k), let G◦ be the neutral component of G
and G◦,der be the derived subgroup of G◦. We recall that a linear algebraic group
G is almost simple if it is infinite, non-commutative and if every proper normal
closed subgroup of G is finite. In particular, G is connected. Moreover, G equals
its commutator group Gder.

Proposition 2.7. Assume that the difference Galois group G of σq(Y ) = AY
over the σq-field K satisfies the following property: the algebraic group G◦,der is an
irreducible almost simple algebraic subgroup of GLn(k) defined over C. Then, we
have the following alternative:

(1) Galδ(QS/L) is conjugate to a subgroup of k̃×NSLn(C)(G
◦,der(C)) contain-

ing G◦,der;

(2) Galδ(QS/L) is equal to a subgroup of G(k̃) containing G◦,der(k̃).

Furthermore, the first case holds if and only if there exists B ∈ Kn×n such that

(2.5) σq(B)A = AB + δ(A) − 1

n
δ(det(A)) det(A)−1A.

Proof. Let R be the L-σq-algebra generated by the entries of U and by det(U)−1;
this is a PV ring for σq(Y ) = AY over the σq-field L. Using [CHS08, Corollary

2.5], we see that Gal(QR/L) = G(k̃). So, Gal(QR/L)
◦,der = G◦,der(k̃). Since

Galδ(QS/L) is Zariski-dense in Gal(QR/L) (see Proposition 2.3), we have that

Galδ(QS/L)
derδ∗ is Zariski-dense in Gal(QR/L)

der = G◦,der(k̃). By [Cas72, Propo-

sition 42], Galδ(QS/L)
derδ is either conjugate to G◦,der(C) or equal to G◦,der(k̃).

Since Galδ(QS/L)
derδ is a normal subgroup of Galδ(QS/L), Lemma 2.6 ensures

that Galδ(QS/L) is either conjugate to a subgroup of k̃×NSLn(C)(G
◦,der(C)) con-

taining G◦,der(C) or is equal to a subgroup of G(k̃) containing G◦,der(k̃).
The remaining statement is a direct consequence of Proposition 2.5. �

3. Large (σq , δ)-Galois group of q-difference equations

In this section, we focus our attention on q-difference equations over C(z). Let us

consider the field C(z) and the algebraic closure C(z) of C(z) in (the algebraically
closed field)

⋃∞
j=1 C((z

1/j)). A non zero complex number q such that |q| 6= 1 being
given, the field automorphism

σq : C(z) → C(z)

f(z) 7→ f(qz)

gives a structure of σq-field on C(z). We have C(z)
σq

= C. The derivation δ = z d
dz

endows C(z) with a structure of (σq, δ)-field. Note also that C(z) is a (σq , δ)-subfield

of C(z) with C(z)σq = C.

Let (C̃, δ) be a δ-field that contains (C, δ) and which is δ-closed. According to
Lemma 2.1, the (σq, δ)-field

L = Frac(C̃⊗C C(z))

is a (σq, δ)-field extension of C(z) such that Lσq = C̃.

∗This is the Kolchin-closure of the derived subgroup of Galδ(QS/L); see [DHR15, Section
4.4.1].
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Consider the q-difference system

(3.1) σq(Y ) = AY

with A ∈ GLn(C(z)). In what follows, we let S be a (σq, δ)-PV ring over L for the

equation (3.1), QS be the total ring of quotients of S, and we denote by Galδ(QS/L)
the corresponding (σq , δ)-Galois group over L.

The theorem below shows that if the difference Galois group of a q-difference
system is large, the same holds for the parametrized difference Galois group.

Theorem 3.1. Let G be the difference Galois group of the q-difference system
(3.1) over the σq-field C(z). Assume that G◦,der is an irreducible almost simple

algebraic subgroup of SLn(C). Then, Galδ(QS/L) is a subgroup of G(C̃) containing

G◦,der(C̃).

Before giving the proof of Theorem 3.1, we state and prove some preliminary
results.

Lemma 3.2. Let G be the difference Galois group of (3.1) over the σq-field C(z).
Let H be the difference Galois group of (3.1) over the σq-field L. Then, H = G◦(C̃).
Hence, if G◦,der is an irreducible almost simple algebraic subgroup of GLn(C) then

Hder equals G◦,der(C̃) and is an irreducible almost simple algebraic subgroup of

GLn(C̃).

Proof. Since C(z) is an algebraic extension of C(z), [Roq15, Theorem 7] implies that

the difference Galois group G′ of (3.1) over the σq-field C(z) has the same connected

component as G. Moreover, since C(z) is algebraically closed, the difference Galois
correspondence implies that G′ is connected and therefore coincides with G◦. By

[CHS08, Corollary 2.5], the group H is isomorphic to G′(C̃). �

Lemma 3.3. Assume that the system (3.1), has a solution u = (u1, . . . , un)
t with

coefficients in
⋃∞

j=1 C((z
1/j)). Then, there exists a (σq, δ)-PV ring T over L of

(3.1) that contains the L-δ-algebra L{u1, . . . , un}δ.
Proof. The result is obvious if u = (0, . . . , 0)t. We shall now assume that

u 6= (0, . . . , 0)t. We equip

∞⋃

j=1

C((z1/j)) with the structure of (σq, δ)-field given by

σq(f(z)) = f(qz) and δ = z d
dz . It is easily seen that we have

∞⋃

j=1

C((z1/j))σq = C.

We let F = C(z)〈u1, . . . , un〉δ be the δ-subfield of

∞⋃

j=1

C((z1/j)) generated over

C(z) by the series u1, . . . , un; this is a (σq , δ)-subfield of
∞⋃

j=1

C((z1/j)) such that

F σq = C. By Lemma 2.1, C̃ ⊗C F is an integral domain and its field of fractions

L1 = L〈u1, . . . , un〉δ is a (σq, δ)-field such that L1
σq = C̃. We consider a (σq, δ)-PV

ring S1 for (3.1) over L1 and we let U ∈ GLn(S1) be a fundamental matrix of
solutions of this difference system. We can assume that the first column of U is
u. Then, the L-(σq, δ)-algebra T generated by the entries of U and by det(U)−1

contains L{u1, . . . , un}δ and is a (σq , δ)-PV ring for (3.1) over L. Whence the
result. �

Lemma 3.4. Let us consider a vector u = (u1, . . . , un)
t with coefficients in

∞⋃

j=1

C((z1/j)) which is solution of (3.1). Assume moreover that each ui satisfies
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some nonzero linear differential equation with coefficients in C(z). Then, the ui
actually belong to C(z).

Proof. According to the cyclic vector lemma, there exists P ∈ GLn(C(z)) such that

Pu = (f, σq(f), . . . , σ
n−1
q (f))t for some f ∈

∞⋃

j=1

C((z1/j)), which is a solution of a

nonzero linear q-difference equation of order n with coefficients in C(z). Moreover,
f satisfies a nonzero linear differential equation with coefficients in C(z), because it
is a C(z)-linear combination of the ui. It follows from [Ram92, Theorem 7.6] that f
belongs to C(z). Hence, the entries of u = P−1(Pu) = P−1(f, σq(f), . . . , σ

n−1
q (f))t

actually belong to C(z), as expected. �

Proof of Theorem 3.1. Using Lemma 3.2 and Proposition 2.7, we are reduced to
prove that the (σq, δ)-Galois group over the (σq, δ)-ring L of σq(Y ) = AY is not

conjugate to a subgroup of C̃ ·NSLn(C)(G
◦,der(C)). Suppose to the contrary that it

is conjugate to a subgroup of C̃ ·NSLn(C)(G
◦,der(C)). Let

n
√
detA be a n-th root of

detA in C(z).
We consider A′ = ( n

√
detA)−1A ∈ SLn(C(z)). The second part of Lemma B.2

ensures that there exist c ∈ C× and r ∈ Q such that σq(Y ) = A′′Y , with

A′′ = czrA′ ∈ GLn(C(z)), has a nonzero solution u = (u1, . . . , un)
t with coeffi-

cients in
⋃∞

j=1 C((z
1/j)). We let S be a (σq, δ)-PV ring over the (σq , δ)-ring L

for σq(Y ) = A′′Y containing the entries of u. We let U ′′ ∈ GLn(S) be a fun-
damental matrix of solutions of σq(Y ) = A′′Y whose first column is u. Since
A′′ = hA for some h ∈ L×, the derived groups of the difference Galois groups of
the systems σq(Y ) = AY and σq(Y ) = A′′Y over L coincides and are therefore

equal to G◦,der(C̃). Indeed let R be a Picard-Vessiot ring over L for the sys-

tem σq(Y ) =

(
A 0
0 h

)
Y then there exists U ∈ GLn(R) and v ∈ R× such that

σq(U) = AU and σq(v) = hv. Then, L[U, 1
det(U) ] ⊂ R (resp. L[vU, 1

vn det(U) ] ⊂ R)

is a Picard-Vessiot ring for σq(y) = AY (resp σq(Y ) = A′′Y ) over L. In the rep-
resentation attached to U and vU , one can easily conclude to the equality of the
derived groups.

Now, since the (σq, δ)-Galois group of σq(Y ) = AY over L is conjugate to

a subgroup of C̃ · NSLn(C)(G
◦,der(C)), Proposition 2.7 ensures that there exists

B ∈ C(z)
n×n

such that

(3.2) σq(B)A = AB + δ(A) − 1

n
δ(det(A)) det(A)−1A.

An easy computation shows that

(3.3) σq(B)A′′ = A′′B + δ(A′′)− 1

n
δ(det(A′′)) det(A′′)−1A′′.

This equation ensures the integrability of the system of equations
{
σq(Y ) = A′′Y

δ(Y ) = (B + δd
nd )Y

where d = detU ′′ satisfies the q-difference equation σq(d) = (detA′′)d = (czr)nd.

So, there exists D ∈ GLn(C̃) such that V = U ′′D ∈ GLn(S) satisfies

(3.4)

{
σq(V ) = A′′V

δ(V ) = (B + δd
nd )V.
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We remind that σq ◦δ = δ◦σq. Note that δd
d

∈ S is such that σq
(
δd
d

)
= δd

d
+ nr.

So, L{ δd
d
}δ ⊂ S is a (σq, δ)-PV ring over the (σq, δ)-ring L. Since, the corresponding

(σq, δ)-Galois group is Kolchin-connected (because it is a δ-subgroup of the additive

group Ga(C̃)), we get that L{ δd
d
}δ is an integral domain and, hence, we can consider

its field of fraction L〈 δd
d
〉δ ⊂ QS .

Note that, since σq
(
δd
d

)
= δd

d
+ nr, we have σq

(
δ
(
δd
d

))
= δ( δd

d
), and therefore,

δ
(
δd
d

)
∈ Sσq = C̃. Consequently, L〈 δd

d
〉δ = L( δd

d
).

Using (3.4), we get δ(U ′′)D + U ′′δ(D) = δ(U ′′D) = δ(V ) = (B + δ(d)
nd )U ′′D so

δ(U ′′) =

(
B +

δ(d)

nd

)
U ′′ − U ′′δ(D)D−1.

The previous formula implies that the L( δd
d
)-vector subspace of QS generated by

the entries of U ′′ and all their successive δ-derivatives is of finite dimension. In
particular, any ui satisfies a nonzero linear δ-equation Li(y) = 0 with coefficients
in L[ δd

d
].

We claim that any ui satisfies a nonzero linear δ-equation with coefficients in L.

If nr = 0, we have σq
(
δd
d

)
= δd

d
+ nr = δd

d
, and therefore δd

d
∈ Sσq = C̃, which

proves our claim.
Assume that nr 6= 0. The equation Li(y) = 0 can be rewritten as∑ν
j=0 Li,j(y)(

δd
d
)j = 0 where the Li,j(y) are linear δ-operators with coefficients

in L, not all zero.
To prove our claim, it is sufficient to prove that δd

d
is transcendent over

L〈u1, . . . , un〉δ. Indeed, assume at the contrary that there is a non zero relation

(3.5)

κ∑

k=0

ak

(
δd

d

)k

= 0

with κ ≥ 1 and a0, . . . , aκ−1, aκ = 1 ∈ L〈u1, . . . , un〉δ. We can and will assume that
κ ≥ 1 is minimal. Applying σq to equation (3.5), we get

(3.6)

κ∑

k=0

σq(ak)

(
δd

d
+ nr

)k

= 0.

Since κ is minimal, the coefficients of any
(
δd
d

)k
in (3.5) and (3.6) are equal. In

particular, equating the coefficients of
(
δd
d

)κ−1
, we get

aκ−1 = σq(aκ−1) + κnr

and this is a contradiction (since aκ−1 ∈ ∪jC̃((z1/j)), the term of degree 0 in
aκ−1 − σq(aκ−1) is equal to 0 and, hence, is not equal to κnr 6= 0).

It follows that all the Li,j(ui) are equal to zero and this proves that δd
d

is tran-
scendent over L〈u1, . . . , un〉δ. This proves our claim, that is, any ui satisfies some
nonzero linear δ-equations with coefficients in L.

Since the ui belong to

∞⋃

j=1

C((z1/j)), we obtain that any ui satisfies a nonzero

linear δ-equation with coefficients in C(z). Since C(z) is an algebraic extension of
C(z), we get that any ui satisfies a nonzero linear δ-equation with coefficients in
C(z).

The vector u is a solution of σq(Y ) = A′′Y . Then, letting p be a denominator of r
and considering the pn-th tensor power of this q-difference system, we get that u⊗pn

satisfies a linear q-difference equation with coefficients in C(z). Since any ui satisfies
a nonzero linear δ-equation with coefficients in C(z), we find that u⊗pn satisfies a
nonzero linear δ-equation with coefficients in C(z). It follows from Lemma 3.4 that
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the entries of u⊗pn belong to C(z) and, hence, any ui belongs to C(z). Hence, the
first column of U ′′ is fixed by the difference Galois group of σq(Y ) = A′′Y over L

and this contradicts the fact that this group contains G◦,der(C̃), which is irreducible
by hypothesis. �

4. Applications

4.1. User friendly criterias for transcendence. The goal of this subsection is
to use Theorem 3.1, in order to give transcendence criterias. We refer to Section 3
for the notations used in this section.

Corollary 4.1. Let G be the difference Galois group of the q-difference system
(3.1) over the σq-field C(z). Let us assume that (3.1) admits a non zero vector

solution u = (u1, . . . , un)
t with entries in

⋃∞
j=1 C((z

1/j)).

• Assume that n ≥ 2 and G◦,der = SLn(C). Then, the series u1, . . . , un are δ-
algebraically independent over C(z). In particular, any ui is δ-algebraically
independent over C(z).

• Assume that n ≥ 3 and G◦,der = SOn(C). Then, the series u1, . . . , un−1

are δ-algebraically independent over C(z).
• Assume that n is even and G◦,der = Spn(C). Then, the series u1, . . . , un

are δ-algebraically independent over C(z).

Proof. Thanks to Lemma 3.3, there exists a (σq, δ)-PV ring S for the system (3.1)
over L containing L{u1, . . . , un}δ. Let U ∈ GLn(S) be a fundamental matrix of
solutions of the system (3.1) whose first column is u. Since G◦,der is equal to
SOn(C), (resp. SLn(C), resp. Spn(C)), with Theorem 3.1, we find that the (σq , δ)-

Galois group of (3.1) contains SOn(C̃), (resp. SLn(C̃), resp. Spn(C̃)). The results
of Section 2.3 yield the desired conclusion. �

Consider the following q-difference equation

(4.1) an(z)y(q
nz) + an−1(z)y(q

n−1z) + · · ·+ a0(z)y(z) = 0

for some integer n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with a0(z)an(z) 6= 0. In
what follows, by “difference Galois group of equation (4.1)”, we mean the difference
Galois group of the associated system

(4.2) σq(Y ) = AY, with A =




0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

− a0

an
− a1

an
· · · · · · −an−1

an




∈ GLn(C(z)).

Corollary 4.2. Let G be the difference Galois group of the q-difference system
(4.2) over the σq-field C(z). Let us assume that (4.2) admits a non zero solution

g ∈ ⋃∞
j=1 C((z

1/j)).

• Assume that n ≥ 2 and G◦,der = SLn(C). Then, the series
g(z), g(qz), . . . , g(qn−1z) are δ-algebraically independent over C(z).

• Assume that n ≥ 3 and G◦,der = SOn(C). Then, the series
g(z), g(qz), . . . , g(qn−2z) are δ-algebraically independent over C(z).

• Assume that n is even and G◦,der = Spn(C). Then, the series
g(z), g(qz), . . . , g(qn−1z) are δ-algebraically independent over C(z).
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Proof. Let us note that if g(z) ∈
∞⋃

j=1

C((z1/j)) is a nonzero solution of (4.1),

then u1 = (g(z), g(qz), . . . , g(qn−1z))t is a nonzero solution of (4.2) with entries
in
⋃∞

j=1 C((z
1/j)). This is a direct consequance of Corollary 4.1. �

4.2. Generalized Hypergeometric series. In this subsection, we follow the no-
tations of [Roq11, Roq12] and we assume that 0 < |q| < 1. Let us fix n, s ∈ N∗, let
a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s, λ ∈ C×, and consider the
q-difference operator:

(4.3) zλ
n∏

i=1

(aiσq − 1)−
s∏

j=1

(
bj
q
σq − 1

)
.

When b1 = q, this operator admits as solution the power series:

nΦs(a, b, λ, q; z) =

∞∑

m=0

(a; q)m
(b; q)m

λmzm

=

∞∑

m=0

n∏

i=1

(1 − ai)(1 − aiq) . . . (1− aiq
m−1)

s∏

j=1

(1 − bj)(1 − bjq) . . . (1 − bjq
m−1)

λmzm.

Until the end of the subsection, let us assume that s = n ≥ 2 and that
a = (a1, . . . , an) ∈ (qQ)n, b = (b1, . . . , bs) ∈ (qQ \ q−N)s.

According to [Roq11], the operator (4.3) is irreducible over C(z) if and only if,
for all (i, j) ∈ {1, . . . , n}2, ai 6∈ bjq

Z. We say that (4.3) is q-Kummer induced if it
is irreducible, and there exists a divisor d 6= 1 of n, and two permutations µ, ν of
{1, . . . , n}, such that, for all i ∈ {1, . . . , n}, ai ∈ aµ(i)q

1/dqZ, and bi ∈ bν(i)q
1/dqZ.

Theorem 4.3 ([Roq11], Theorem 6). Let us assume that (4.3) is irreducible and
not q-Kummer induced. Let G be the difference Galois group of the q-difference
system (4.3) over the σq-field C(z). Then, G◦,der is either SLn(C), SOn(C) (only
when n is odd), or Spn(C) (only when n is even). Moreover, G◦,der is SOn(C)
(resp. Spn(C)) if and only if

• ∏n
i=1 ai ∈ qZ

∏n
j=1 bj;

• there exists c ∈ C∗, there exist two permutations µ1, µ2 of {1, . . . , n}, such
that, for all i, j ∈ {1, . . . , n}, caiaµ1(i) ∈ qZ, cbjbµ2(j) ∈ qZ;

• n is odd (resp. even).

Theorem 4.3 and Corollary 4.2 yield the following result.

Corollary 4.4. Let us assume that (4.3) is irreducible and not q-Kummer induced.
Let G be the difference Galois group of the q-difference system (4.3) over the σq-
field C(z) and let Gδ, be the δ-Galois group of the q-difference system (4.3) over
the field L.

• Assume that G◦,der equals SLn(C), (resp. SOn(C), with n odd, resp.

Spn(C), with n even). Then, Gδ contains SLn(C̃), (resp. SOn(C̃), resp.

Spn(C̃)).
• Furthermore, if b1 = q, then nΦn(a, b, λ, q; z), . . . , σ

κ
q (nΦn(a, b, λ, q; z)) with

κ = n−1 (resp. κ = n−2, resp. κ = n−1) are δ-algebraically independent
over C(z).

Proof. The first point is a straightforward consequence of Theorems 3.1, and 4.3.
We conclude with Corollary 4.2. �
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4.3. Irregular generalized Hypergeometric functions. In this subsection, we
assume that n > s, n ≥ 2. Let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈
(qR \ q−N)s, λ ∈ C×, 0 < |q| < 1.

The following result is proved in [Roq12].

Theorem 4.5. Let G be the difference Galois group of the q-difference system
(4.3) over the σq-field C(z). For (i, j) ∈ {1, . . . , n}× {1, . . . , s}, let αi, βj ∈ R such
that ai = qαi and bi = qβj . Assume that for all (i, j) ∈ {1, . . . , n} × {1, . . . , s},
αi − βj /∈ Z, and that the algebraic group generated by Diag(e2iπα1 , . . . , e2iπαn) is
connected. Then, G = GLn(C).

Corollary 4.6. Let Gδ, be the δ-Galois group of the q-difference system (4.3)
over the field L. Assume that for all (i, j) ∈ {1, . . . , n} × {1, . . . , s}, we have
αi − βj /∈ Z, and that the algebraic group generated by Diag(e2iπα1 , . . . , e2iπαn)

is connected. Then, Gδ = GLn(C̃). Furthermore, if b1 = q, then the series

nΦs(a, b, λ, q; z), . . . , σ
n−1
q (nΦs(a, b, λ, q; z)) are δ-algebraically independent over

C(z).

Proof. Theorems 3.1 and 4.5 ensure that Gδ contains SLn(C̃). So, the group Gδ

equals to GMSLn(C̃), where GM ⊂ C̃× is the δ-Galois group of the q-difference

equation σqy = det(A)y = (−1)nzλ+(−1)s+1

zλ
∏

n
i=1 ai

y, and A is the matrix associated to

(4.3). It is easily seen that there do not exist c ∈ C×, m ∈ Z, and f ∈ C(z)× such

that det(A) = cz−1 σq(f)
f . By [HS08, Corollary 3.4], we deduce that GM = C̃×. We

conclude with Corollary 4.2. �

Part 2. q′-difference relations of solutions of q-difference equations

5. Parametrized difference Galois theory

5.1. Difference algebra. We refer to [OW15] for more details on what follows.
By a (σq, σq′)-ring, we mean a ring equipped with two commuting automorphisms
σq and σq′ . The definition of (σq , σq′)-fields, K-(σq, σq′)-algebras for K a (σq, σq′)-
field and (σq , σq′)-ideals are straightforward.

We say that a K-(σq, σq′)-algebra R is σq′ -finitely generated if there exist
a1, . . . , an such that R is generated as K-algebra by the ai’s and their transforms
via σq′ . We then write R = K{a1, . . . , an}σq′ . We say that a K-(σq, σq′)-field R is
σq′ -finitely generated if there exist a1, . . . , an such that R is generated as K-field
by the ai’s and their transforms via σq′ . We then write R = K〈a1, . . . , an〉σq′ .

Let (k, σq′) be a difference field. Let R be a k-σq′ -algebra. If R is a field, we
say that R is inversive if σq′ is surjective on R. We call R σq′ -separable if σq′ is

injective on R⊗k k̃ for every σq′ -field extension k̃/k.
The ring of σq′ -polynomials in the differential indeterminates y1, . . . , yn and with

coefficients in (k, σq′), denoted by k{y1, . . . , yn}σq′ , is the ring of polynomials in

the indeterminates {σj
q′yi | j ∈ N, 1 ≤ i ≤ n} with coefficients in k. Let R be

a K-σq′-algebra and let a1, . . . , an ∈ R. If there exists a nonzero σq′ -polynomial
P ∈ K{y1, . . . , yn}σq′ such that P (a1, . . . , an) = 0, then we say that a1, . . . , an
are σq′ -algebraically dependent over K. Otherwise, we say that a1, . . . , an are σq′ -
algebraically independent over K.

We would like to prove some lemmas about the extension of constants.

Lemma 5.1. Let F be a (σq, σq′)-field and let k = F σq be the field of σq-constants

of F . We assume that k is an inversive σq′-field. Let k̃ be a regular † σq′-field

†See [Bou03, A.V.141] for the definition.
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extension of k considered as a field of σq-constants. Then, the ring k̃ ⊗k F is an

integral domain whose fraction field F̃ is a (σq, σq′)-field extension of F such that

F̃ σq = k̃.

Proof. Since k̃ is a regular extension of k, the ring k̃ ⊗k F is an integral domain.

Moreover since k̃ is a σq′-separable σq′-field extension of k by [DVHW14b, Corol-

lary A.14], the operator σq′ is injective on k̃⊗k F and thus extends to F̃ . The rest
of the proof is essentially [DHR15, Lemma 2.3]. �

Lemma 5.2. Let F be a (σq, σq′)-field and let k = F σq be the field of σq-constants

of F . We assume that k is an inversive σq′-field. Let k̃ be a regular σq′-field
extension of k considered as a field of σq-constants. By Lemma 5.1, we can consider

the (σq, σq′)-field F̃ = Frac(k̃ ⊗k F ). Let A ∈ GLn(F ) and let Vk (resp. V
k̃
) be

the solution space of σq(Y ) = AY in Fn (resp. in F̃n). Then, V
k̃
= Vk ⊗k k̃.

Proof. Obviously, we have Vk ⊗k k̃ ⊂ V
k̃
. Let f ∈ V

k̃
be a non zero solution. Set

S = F ⊗k k̃. Let us consider

a = {r ∈ S|rf ∈ S}.
Since σq(f) = Af , the ideal a is a non zero σq-ideal of S. By [vdPS97, Lemma
1.11], the ring S is σq-simple. Therefore 1 ∈ a and f ∈ S. Let (ei)i∈I be a basis

of k̃ over k and let us write f =
∑

i∈I fiei with fi ∈ F . Then, σq(f) = Af implies
σq(fi) = Afi, which ends the proof. �

5.2. Parametrized Difference Galois theory. We fix q ∈ C∗ with |q| 6= 1. Let
Mer(C×) be the field of meromorphic functions over C×. The field automorphism

σq : Mer(C×) → Mer(C×)

f(z) 7→ f(qz)

gives a structure of σq-field on Mer(C×) such that Mer(C×)σq = CE , the field

of elliptic functions on the elliptic curve Eq = C×/qZ. Let us set CE =
⋃

r∈N∗

CEr
,

where CEr
= {f(z) ∈ Mer(C×)|σr

q (f(z)) = f(z)}.
We denote by CE(z) the field compositum of C(z) and CE in Mer(C×). Then

CE(z) is a σq-field and CE(z)
σq = CE .

Lemma 5.3. The field CE(z) is relatively algebraically closed in Mer(C×). More-
over, any finite field extension F ⊂ Mer(C×) of CE(z) stable under σq is of the
form CEr

(z) for some non-negative integer r.

Proof. Using a multiplicative version of the proof [DR15, Proposition 6], one can
show that any finite extension stable under σq of CE is of the form CEr

for some
non-negative integer r. This proves that the relative algebraic closure of CE in
Mer(C×) is contained in CE . Conversely, any element u of CE is contained in
some CEr

for some non-negative integer r. This implies that the polynomial
µ(X) = (X − u)(X − σq(u)) . . . (X − σr−1

q (u)) belongs to CE [X ] and annihilates

u. Thus CE is relatively algebraically closed in Mer(C×) .

Let F/CE(z) be a finite field extension in Mer(C×) stable under σq. The field
of constants C of F , i.e., the elements of F algebraic over CE , is stable under σq
(because CE is stable under σq). Thus, there exists a non negative integer r such
that C = CEr

. Then, by [Sti09, Corollary III.5.8], the extension F/CEr
(z) is either

ramified or F = CEr
(z). Since F ⊂ Mer(C×), the extension can not ramify and

F = CEr
(z). �
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Let q′ ∈ C× not a root of unity. We can consider the automorphism of Mer(C×)
defined by σq′(f(z)) = f(q′z) for all f ∈ Mer(C×).

Example 5.4. The fields Mer(C×), CE(z), CE(z), and C(z) equipped with σq and
σq′ as above are (σq, σq′)-fields.

Given a (σq, σq′)-field K and A ∈ GLn(K), the (σq , σq′)-Galois theory developed
in [OW15] aims at understanding the algebraic relations between the solutions of
σq(Y ) = AY and their successive transforms with respect to σq′ from a Galoisian
point of view. We will not recall here the theoretic aspects of this parametrized
Galois theory in their greatest generality. However, we describe the definitions and
results of [OW15] in the specific situation where the (σq , σq′)-field K is precisely
CE(z). In this part of the paper, the word parametrized refers to the parametric
action of the operator σq′ whereas in the first part, it was related to the parametric
action of the derivative. Therefore the word parametrized do not refer to the same
parametric action depending on the part of the paper. Since the two parts are
almost independent, this convention will not lead to confusions. It will also avoid
heavy terminology.

Definition 5.5 ([OW15], Definition 2.4). Let A ∈ GLn(CE(z)). A (σq, σq′)-PV
field extension QS for σq(Y ) = AY over CE(z) is a (σq , σq′)-field extension of CE(z)
such that:

• there exists U ∈ GLn(QS) such that σq(U) = AU ,
• QS = CE(z)〈U〉σq′ ,

• QS
σq = CE(z)

σq = CE .

Furthermore, S = CE(z){U, 1
det(U)}σq′ is a (σq, σq′)-PV ring for σq(Y ) = AY over

CE(z), which means that it is a σq′ -simple ring, i.e., the σq′ -ideals of S are {0}
and S.

Proposition 5.6. Let A ∈ GLn(CE(z)). There exists a unique (σq , σq′)-PV field
QS for σq(Y ) = AY over CE(z) in Mer(C×).

Proof. By [Pra86, Theorem 3], there exists U ∈ GLn(Mer(C×)) such that
σq(U) = AU . Consider the (σq, σq′)-field QS = CE(z)〈U〉σq′ ⊂ Mer(C×). Since

CE(z)
σq = CE ⊂ Qσq

S ⊂ Mer(C×)σq = CE , the (σq , σq′)-field QS is a (σq, σq′)-PV
field for σq(Y ) = AY over CE(z).

Let us prove the uniqueness. Let L = CE(z)〈V 〉σq′ ⊂ Mer(C×), be a (σq, σq′)-

PV field for σq(Y ) = AY over CE(z), and let V ∈ GLn(L) be a fundamental
solution matrix. Since Mer(C×)σq = CE , there exists C ∈ GLn(CE) such that
V = U.C. This implies L = QS . �

One could be tempted to define the (σq, σq′)-Galois group of the (σq, σq′)-PV
field QS for σq(Y ) = AY over CE(z), as the group of (σq, σq′)-automorphisms of
QS over CE(z). It appears that this approach is too naive for two reasons. The
first one is that the defining equations of such a (σq , σq′)-Galois group would be
σq′ -difference algebraic equations. Similarly to the continuous parameter context,
we shall need to look at zeroes of these equations in a σq′ -difference closure of CE .
The second problem is more serious and is related to the fact that the zeroes of a
difference algebraic equation in a field do not capture all the geometric information
of the equation. Therefore, one has to look at zeroes in rings (see for instance the
discussions in [vdPS97]).

Example 5.7. Consider the following system of difference equations (S1) = {y2 = 1}
and (S2) = {y2 = 1 and σq′(y) = y} over C. We denote by VS1(R) (resp.
VS2(R)) the zeroes of (S1) (resp. (S2)) in some C-σq′-algebra R. Then,
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VS1(k) = VS2(k) = {1,−1} for any σq′ -field extension k of C. However, if we
consider the ring of sequences (an)n∈Z ∈ CZ with the action of σq′ given by the
shift operator, then VS1(C

Z) = {(an)n∈Z|an = 1 or − 1 for all n ∈ Z} whereas
VS2(C

Z) = C the set of constant sequences.

Therefore, we need to adopt the following functorial approach. We denote by
AlgCE ,σq′

the category of CE -σq′-algebras and by Sets the category of sets.

Definition 5.8 ([OW15], Definition 2.50). Let A ∈ GLn(CE(z)) and let
QS = CE(z)〈U〉σq′ ⊂ Mer(C×) be the (σq, σq′)-PV field for σq(Y ) = AY over

CE(z). Set S = CE(z){U, 1
det(U)}σq′ . Then, the (σq, σq′)-Galois group of QS over

CE(z) is defined as the functor:

Galσq′ (QS/CE(z)) : AlgCE,σq′
→ Sets

B 7→ Aut(σq,σq′ )(S ⊗CE
B/CE(z)⊗CE

B),

where, σq acts as the identity on B and Aut(σq,σq′ )(S ⊗CE
B/CE(z)⊗CE

B) is the
group of automorphisms of S ⊗CE

B inducing the identity on CE(z) ⊗CE
B and

commuting with σq′ and σq.

It is proved in [OW15, Lemma 2.51] that this functor is represented by a
finitely σq′ -generated CE -σq′-Hopf algebra CE{Galσq′ (QS/CE(z))} (see Section 5.1
and A.1 for definition). Therefore, Galσq′ (QS/CE(z)) is a σq′ -algebraic group
scheme (see Definition A.2). For a brief introduction to σq′-group schemes, we
refer to Section A.

In the notation of Definition 5.8, if B is a CE-σq′-algebra, then the matrix
U ⊗ 1 ∈ GLn(QS ⊗CE

B) is a fundamental solution matrix of σq(Y ) = AY in
QS ⊗CE

B. Then, for any φ ∈ Galσq′ (QS/CE(z))(B), the matrix φ(U ⊗ 1) is also
a fundamental solution matrix of σq(Y ) = AY in QS ⊗CE

B. Thus, there exists
[φ]U ∈ GLn((QS ⊗CE

B)σq ) = GLn,CE
(B) such that φ(U ⊗ 1) = (U ⊗ 1)[φ]U . Here

GLn,CE
is the σq′-algebraic scheme corresponding to the general linear algebraic

group of size n over CE (see Example A.4).

Proposition 5.9. The functor ρU :

Galσq′ (QS/CE(z)) → GLn,CE

φ ∈ Galσq′ (QS/CE(z))(B) 7→ [φ]U ∈ GLn,CE
(B),

where B ∈ AlgCE ,σq′
is a σq′-closed embedding (see [DVHW14b, Definition A.3]).

Proof. The proof is the exact analogue of [DVHW14b, Proposition 2.5] and its proof
is between the lines of [OW15, Lemma 2.51]. �

This proposition allows to identify the (σq , σq′)-Galois group with a σq′-subgroup
scheme of GLn,CE

via the choice of a fundamental solution matrix U . An-
other choice of fundamental solution matrix leads to a conjugate representation.
Therefore, Galσq′ (QS/CE(z)) is entirely determined by a σq′ -Hopf ideal I of
CE{GLn,CE

} = CE{X, 1
det(X)}σq′ (see Example A.4). The elements of I are

σq′ -polynomials and we call them the defining equations of Galσq′ (QS/CE(z)) in
GLn,CE

.
In (σq , σq′)-Galois theory, one has a complete Galois correspondence ([OW15,

Theorem 2.52 and Lemma 2.53]). We only recall the following results.

Proposition 5.10. Let A ∈ GLn(CE(z)) and let QS ⊂ Mer(C×) be the (σq, σq′)-
Picard-vessiot extension of σq(Y ) = AY over CE(z) defined in Proposition 5.6.
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Then,

QGal
σ
q′ (QS/CE(z))

S =

{x =
r

s
∈ QS|∀B ∈ AlgCE ,σq′

, ∀g ∈ Galσq′ (QS/CE(z))(B),

g(r ⊗ 1).(s⊗ 1) = (r ⊗ 1).(g(s⊗ 1))} = CE(z).

Moreover, we have σq′-dim(Galσq′ (QS/CE(z))) = σq′-trdeg(QS/CE(z)) (for pre-
cise definitions see [DVHW14b, §A.7]).

The last equality means that the complexity of the defining equations of
Galσq′ (QS/CE(z)) corresponds precisely to the complexity of the σq′-difference
algebraic relations satisfied by the solutions of the system σq(Y ) = AY in QS .

The relation between the (σq , σq′)-Picard-Vessiot theory and the non
parametrized Picard-Vessiot theory as developed in [vdPS97] is explained below.
We shall define the difference Galois group of σq(Y ) = AY over CE(z) as follows.
It is a schematic version of the difference Galois group defined in Section 1 (here,
the field of constants is not algebraically closed).

Proposition 5.11. Let A ∈ GLn(CE(z)) and let QS = CE(z)〈U〉σq′ ⊂ Mer(C×)

the (σq, σq′)-PV field for σq(Y ) = AY over CE(z). Set QRCE
= CE(z)(U) and

RCE
= CE(z)[U,

1
det(U) ]. The Galois group of QRCE

over CE(z) is the functor:

Gal(QRCE
/CE(z)) : AlgCE

→ Sets,

B 7→ Autσq (RCE
⊗CE

B/CE(z)⊗CE
B),

where σq acts as the identity on B. This functor is representable by a CE-finitely
generated algebra.

Proof. Since CE ⊂ Qσq

RCE
⊂ Qσq

S = CE , the above functor is representable by a

finitely generated CE -algebra (see [CHS08, Proposition 2.2]). �

If A ∈ GLn(C(z)), one can consider the difference Galois group of σq(Y ) = AY
over C(z) as in Section 1. It is an algebraic group scheme defined over C. The
proposition below shows how this last group is related to the (σq, σq′)-Galois group
of the system over CE(z).

Proposition 5.12. Let A ∈ GLn(C(z)) and let QS ⊂ Mer(C×) be the (σq, σq′)-PV
extension of σq(Y ) = AY over CE(z) defined in Proposition 5.6. Let Gal(QR/C(z))
be the difference Galois group of the system over C(z). Then,

• the identity component of the group Gal(QR/C(z)) is isomorphic to
Gal(QRCE

/CE(z)) over an algebraic closure of CE;

• the (σq, σq′)-Galois group Galσq′ (QS/CE(z)) is a Zariski dense subgroup of
Gal(QRCE

/CE(z)) (see Proposition A.5).

Proof. The second statement is a discrete analogue of [DVHW14b, Proposi-
tion 2.15].

To prove the first statement, we need to introduce another Galois group as
follows. By [CHS08, Proposition 2.22 and Theorem 2.9], the group functor

Gal(QRCE
/CE(z)) : AlgCE

→ Sets

B 7→ Autσq (RCE
⊗CE

B/CE(z)⊗CE
B),

is representable and defines an algebraic group scheme over CE , which is isomor-
phic to Gal(QR/C(z)) over an algebraic closure of CE . Since CE(z) is an algebraic
extension of CE(z) with same field of constants, the schematic version of [Roq15,
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Proposition 6 ] shows that the identity component of Gal(QRCE
/CE(z)) is isomor-

phic to the identity component of Gal(QRCE
/CE(z)) over an algebraic closure of

CE . By [OW15, Theorem 2.52] for a parametric operator σq′ equal to the identity,
we find that the Galois group Gal(QRCE

/CE(z)) is connected because CE(z) is
relatively algebraic closed in QRCE

by Lemma 5.3. This ends the proof. �

Remark 5.13. Thus the difference Galois group of σq(Y ) = AY over CE(z) is always
connected. The same holds for its derived subgroup (see [Wat79, Theorem p. 74]).

5.3. Discrete Isomonodromy. In (σq, σq′)-Galois theory, one can define a notion
of discrete isomonodromy as follows.

Definition 5.14 ([OW15], Definition 2.54). Let A ∈ GLn(CE(z)). The system
σq(Y ) = AY is called σq′ -isomonodromic if there exists B ∈ GLn(CE(z)) and
d ∈ N such that

(5.1) σq(B)A = σd
q′(A)B.

Remark 5.15. Our definition is slightly more general than Definition 2.54 in [OW15],
where σq′ -isomonodromic means that there exists B ∈ GLn(CE(z)) such that
σq(B)A = σq′(A)B. However, we can apply most of the results of [OW15] by
replacing σq′ by σd

q′ .

We have the following Galoisian interpretation of σq′-isomonodromy. We say
that a σq′ -subgroup scheme H ⊂ GLn,k defined over a σq′ -field k is σd

q′ -constant

if, for all k-σq′ -algebra S, we have σd
q′(g) = g, for all g ∈ H(S). This is equivalent

to the fact that the defining ideal IH ⊂ k{X, 1
det(X)}σq′ of H ⊂ GLn,k contains the

polynomial σd
q′(X)−X (see Example A.6).

Proposition 5.16. Let A ∈ GLn(CE(z)) and let QS ⊂ Mer(C×) be the (σq, σq′)-
PV extension of σq(Y ) = AY over CE(z) defined in Proposition 5.6. The system
σq(Y ) = AY is σq′-isomonodromic over CE(z) if and only if there exists a regular

σq′-field extension C̃E of CE and an integer d ≥ 1 such that Galσq′ (QS/CE(z))C̃E

‡

is conjugated to a σd
q′-constant subgroup of GL

n,C̃E
.

We refer to [OW15, Theorem 2.55] for an analogous result in a different setting.
Note that, since CE is a σq′ -inversive field, [DVHW14b, Corollary A.14] implies

that any field extension of CE is σq′-separable (see Section 5.1).
Before proving Proposition 5.16, we need some intermediate lemmas about ex-

tension of σq-constants. We have the following result:

Lemma 5.17. Let C̃E be a regular σq′-field extension of CE and let QS/CE(z) be

a (σq, σq′)-PV extension for σq(Y ) = AY . By Lemma 5.1, we may consider C̃E(z)

(resp. Q̃S) the (σq, σq′)-field attached to CE(z)⊗CE
C̃E

§ (resp. QS⊗CE
C̃E). Then

Q̃S is a (σq , σq′)-Picard-Vessiot extension for σq(Y ) = AY over C̃E(z) and the

(σq, σq′)-Galois group G̃ of Q̃S/C̃E(z) is obtained from the (σq, σq′)-Galois group

G of QS/CE(z) by base extension, i.e., G̃ = G
C̃E

.

Proof. As Q̃S

σq

= C̃E = C̃E(z)
σq

, it is clear that Q̃S |C̃E(z) is a (σq, σq′)-Picard-

Vessiot extension. Let R ⊂ QS, (resp. R̃ ⊂ Q̃S), denote the corresponding

(σq, σq′)-Picard-Vessiot ring. Then R̃ is obtained from R ⊗CE
C̃E by localizing

‡The subscript C̃E means that we consider the base change of Galσq′ (QS/CE(z)) over CE to

C̃E .
§It is worth mentioning that since CE ( CE , C̃E(z) can not be identified with C̃E(z).
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at the multiplicatively closed set of all non-zero divisors of CE(z) ⊗CE
C̃E . It

follows that, for every C̃E-σq′-algebra S,

G
C̃E

(S) = Aut(σq ,σq′ )(R⊗CE
S|CE(z)⊗CE

S)

= Aut(σq ,σq′ )
(
(R ⊗CE

C̃E)⊗C̃E
S
∣∣∣(CE(z)⊗CE

C̃E)⊗C̃E
S
)
,

i.e.,

G
C̃E

(S) = Aut(σq ,σq′ )(R̃⊗
C̃E

S|C̃E(z)⊗C̃E
S) = G̃(S).

This ends the proof. �

Proof of Proposition 5.16. In [OW15, Theorem 2.55], it is proved that if the system

is σq′ -isomonodromic then there exists a σq′-field extension C̃E of CE and an integer
d ≥ 1 such that Galσq′ (QS/CE(z))C̃E

is conjugated to a σd
q′ -constant subgroup of

GL
n,C̃E

(see Remark 5.15). In the proof of [OW15, Theorem 2.55], we note that

any σq′-field extension C̃E of CE that contains a fundamental solution matrix of
a given equation of the form σd

q′(Y ) = DY for some D ∈ GLn(CE) is convenient.
We claim that we can find among these extensions a regular one. Indeed consider

C̃E = CE(X0, . . . , Xd−1) where the Xi’s are n× n-matrices of indeterminates. We

can endow C̃E with a structure of σq′ -extension of CE by setting σq′(Xi) = Xi+1

for i = 0, . . . , d − 1 and σq′(Xd−1) = DX0. Then, X0 ∈ GLn(C̃E) is a solution

of σd
q′(X0) = DX0 and since C̃E is a pure extension of CE , it is also a regular

extension.
Conversely, let us assume that there exists a regular σq′-field extension C̃E of CE

and an integer d ≥ 1 such that Galσq′ (QS/CE(z))C̃E
is conjugated to a σd

q′ -constant

subgroup of GL
n,C̃E

. Endow C̃E viewed as a field of σq-constants and consider the

(σq, σq′)-fields Q̃S and C̃E(z) as in Lemma 5.17. We find that the (σq, σq′)-Galois

group of Q̃S over C̃E(z) equals Galσq′ (QS/CE(z))C̃E
and is thus conjugate to a

σd
q′ -constant group over C̃E . By [OW15, Theorem 2.55], the system σq(Y ) = AY is

σq′ -isomonodromic over C̃E(z), i.e., there exist B̃ ∈ GLn(C̃E(z)) and d ∈ N× such

that σq(B̃) = σd
q′(A)B̃A−1. By Lemma 5.2, the solution space in C̃E(z)

n×n

of the

q-difference equation σq(Y ) = σd
q′(A)Y A−1 is generated as a C̃E-vector space by

the solution space of the equation in CE(z)
n×n. Since the condition det(Y ) 6= 0 is

an open condition, there exists B ∈ GLn(CE(z)) such that σq(B) = σd
q′(A)BA−1

and the system σq(Y ) = AY is σq′-isomonodromic over CE(z). �

5.4. Transcendence results. Let A ∈ GLn(CE(z)) and consider

(5.2) σqY = AY.

Let QS ⊂ Mer(C×) be the (σq , σq′)-Picard-vessiot extension of σq(Y ) = AY over
CE(z) defined in Proposition 5.6. Let U ∈ GLn(QS) be a fundamental matrix of
solutions of the system (5.2), and let Galσq′ (QS/CE(z)) be the representation of
the (σq, σq′)-Galois group associated to the fundamental matrix of solutions U .

Let SLn,CE
(when n ≥ 2), SOn,CE

(when n ≥ 3) and Spn,CE
(when n is even)

be the σq′ -group schemes over CE corresponding respectively to the special linear
group, the special orthogonal group and the symplectic group (see Section A).

Proposition 5.18. Assume that n ≥ 2. Let u = (u1, . . . , un)
t be a line (resp.

column) vector of U . If there exists C̃ ∈ GLn(CE) such that the image of the
(σq, σq′)-Galois group by the representation ρUC̃ associated to the fundamental ma-

trix of solutions UC̃ contains
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• SLn(CE) or Spn(CE), then u1, . . . , un are σq′-algebraically independent
over CE(z);

• SOn(CE), then any n − 1 distinct elements among the ui’s are σq′-
algebraically independent over CE(z);

Proof. Let H ⊂ GLn,CE
be SLn,CE

(resp. SOn,CE
or Spn,CE

). If the image of the
(σq, σq′)-Galois group by the representation associated to the fundamental matrix

of solutions UC̃ contains H , then the image of the (σq, σq′)-Galois group by the

representation associated to the fundamental matrix of solutions U contains H̃ =
C̃HC̃−1. By the parametrized Galois correspondence [OW15, Theorem 2.52], we
have

• the field K0 = QH̃
S , the elements of QS fixed by H̃ is (σq , δ)-field with

K
σq

0 = CE ,
• QS is a (σq, σq′)-PV field extension for σq(Y ) = AY over K0,
• and in the representation attached to U , the Galois group Galσq′ (QS/K0)

coincides with H̃.

Moreover, in virtue of [OW15, Lemma 2.49], the K-(σq, σq′)-algebra

S̃ = K0{U, 1
det(U)}σq′ is a Galσq′ (QS/K0)-torsor. Thus, if we write S̃ as

K0{X, 1
det(X)}σq′ /I for some σq′ -ideal I then the following holds

• if H = SLn,CE
then I equals {det(X) − f}σq′ the radical σq′-ideal by

det(X)− f for some f ∈ K0;

• if H = SOn,CE
then I equals {XC̃C̃tXt − F, det(X) − g}σq′ the radical

σq′-ideal by XC̃C̃tXt−F for some F ∈ GLn(K0) and det(X)− g for some
g ∈ K0;

• if H = Spn,CE
then I equals {XC̃JC̃tXt − F, det(X) − g}σq′ the radical

δ-ideal by XC̃JC̃tXt −F for some F ∈ GLn(K0) and det(X)− g for some
g ∈ K0.

The rest of the proof follows exactly the lines of Proposition 2.4. �

6. q-difference equations of rank one

We remind that q,q′ ∈ C× with |q| 6= 1. From now, we assume that |q| and |q′|
are multiplicatively independent. For any a(z) ∈ C(z), we denote by div a(z) the
divisor of a(z) on C×, i.e.,

div a(z) =
∑

α∈C×

vα(a(z)) [α]

where vα(a(z)) denotes the valuation of a(z) at α.
Let π : C× → C×/qZ be the natural projection. For any a(z) ∈ C(z)×, we set

divq a(z) =
∑

α∈C×

vα(a(z)) [π(α)] .

The proof of the following lemma is inspired by the proof of [vdPS97, Lemma 2.1].

Lemma 6.1. Consider a(z) ∈ C(z)×. Then, the following properties are equivalent:

(i) there exist c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such that a(z) = czm b(qz)
b(z) ;

(ii) divq a(z) = 0.

Proof. The proof of the fact that (i) implies (ii) is straightforward and left to the
reader. Let us prove the converse implication.
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We write div a(z) as follows:

div a(z) =
s∑

j=1

rj∑

i=1

mi,j [αi,j ]

where the non zero complex numbers αi,j and αi′,j′ belong to the same qZ-orbit
if and only if j = j′ and where the mi,j are relative integers. The hypothesis
divq a(z) = 0 means that, for all j ∈ {1, . . . , s},

rj∑

i=1

mi,j = 0.

Up to renumbering, we can assume that, for all j ∈ {1, . . . , s},
α2,j = α1,jq

−k2,j , . . . , αrj ,j = α1,jq
−krj,j

for some integers 0 < k2,j < · · · < krj ,j . For any j ∈ {1, . . . , s}, we consider the
rational function given by

bj(z) = (z − α1,j)
−m1,j (z − α1,jq

−1)−m1,j · · · (z − α1,jq
−k2,j+1)−m1,j

(z − α1,jq
−k2,j )−m1,j−m2,j · · · (z − α1,jq

−k3,j+1)−m1,j−m2,j

...

(z−α1,jq
−krj−1,j )−m1,j−m2,j−···−mrj−1,j · · · (z−α1,jq

−krj,j
+1)−m1,j−m2,j−···−mrj−1,j .

A straightforward calculation shows that

div
bj(qz)

bj(z)
=

rj∑

i=1

mi,j [αi,j ] .

Letting

b(z) = b1(z) · · · bs(z),
we get

div
b(qz)

b(z)
=

s∑

j=1

rj∑

i=1

mi,j [αi,j ] = div a(z).

Therefore, there exist c ∈ C× and m ∈ Z such that a(z) = czmb(qz)
b(z) . �

Proposition 6.2. Let a(z), b(z) ∈ C(z)× be such that

a(z)k0a(q′z)k1 · · ·a(q′rz)kr =
b(qz)

b(z)

for some k0, . . . , kr ∈ Z with k0kr 6= 0. Then, divq a(z) = 0, i.e., in virtue
of Lemma 6.1, there exist c ∈ C×, m ∈ Z and b1(z) ∈ C(z)× such that

a(z) = czm b1(qz)
b1(z)

.

Proof. Assume to the contrary that divq a(z) 6= 0. We set

divq a(z) =
m∑

i=1

ni [ζi]

where the ζi are pairwise distinct elements of C×/qZ and the ni are non zero integers.
We have

(6.1) 0 = divq
b(qz)

b(z)
= divq a(z)

k0a(q′z)k1 · · · a(q′rz)kr =
r∑

j=0

kj

m∑

i=1

ni

[
q′−jζi

]
.
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Let

I = {i ∈ {1, . . . ,m} | ζi ∈ q′Zζ1}.
Let i1, . . . , is be pairwise distinct integers such that I = {i1, . . . , is}. Up to renum-
bering, we can assume that

ζi1 ≺ · · · ≺ ζis

where, for any x, y ∈ C×/qZ, x ≺ y means that y = q′kx for some k ∈ N∗. Then,
we have q′−rζi1 ≺ q′−jζik for all j ∈ {0, . . . , r} and k ∈ {1, . . . , s} such that
(j, k) 6= (r, 1). In particular, q′−rζi1 6= q′−jζi for all j ∈ {0, . . . , r} and i ∈ I
such that (j, i) 6= (r, i1) (indeed, if x ≺ y then x 6= y because |q| and |q′| are
multiplicatively independent).

Moreover, for j ∈ {0, . . . , r} and i ∈ {1, . . . ,m} \ I, q′−rζi1 and q′−jζi are not in
the same q′Z-orbit and hence are not equal.

So, we have proved that q′−rζi1 6= q′−jζi for all j ∈ {0, . . . , r} and i ∈ {1, . . . ,m}
such that (j, i) 6= (r, i1). Therefore, the coefficient of [q′−rζi1 ] in equation (6.1) is
equal to 0, i.e., krni1 = 0, whence a contradiction. �

The following proposition gives an example of σq′ -isomonodromic equation of
rank one.

Proposition 6.3. Let a(z) ∈ C(z)×. Let u ∈ Mer(C×) be a non zero solution
of σq(y) = a(z)y. Let QS = CE(z)〈u〉σq′ . Then, the following statements are
equivalent

(1) u and all its transform with respect to σq′ are algebraically dependent over
CE(z),

(2) there exist c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such that a(z) = czm b(qz)
b(z) ,

(3) the group Galσq′ (QS/CE(z)) can be embedded as a subgroup of H ⊂ GL1,CE

with H a σq′-algebraic subgroup defined by

H(S) =

{
g ∈ GL1,CE

(S)

∣∣∣∣σq′

(
σq′(g)

g

)
=
σq′(g)

g

}

for any S ∈ AlgCE ,σq′
.

Moreover, the following statements are equivalent:

(a) there exist c ∈ C×and b(z) ∈ C(z)× such that a(z) = c b(qz)b(z) ,

(b) the group Galσq′ (QS/CE(z)) is σq′-constant.

Proof. Let us prove (1) ⇒ (2). Relying on the classification of the σq′ -algebraic
subgroups of GL1,CE

, [OW15, Theorem 3.1] ensures that the first statement is
equivalent to the existence of b(z) ∈ C(z)×, t ∈ N and n0, . . . , nt ∈ Z not all zero,
such that the following equation holds

(6.2) a(z)n0σq′(a(z)n1) · · ·σt
q′(a(z)nt) =

σq(b(z))

b(z)
.

Proposition 6.2 shows then that the first statement implies the second.
Let us prove (2) ⇒ (3). Assume that the second statement holds. By proposi-

tion 5.11, for any S ∈ AlgCE ,σq′
and g ∈ Galσq′ (QS/CE(z))(S) there exists λg ∈ S×

such that g(u) = λg.u. Since a(z) = czmb(qz)
b(z) , an easy computation gives

σq

(
σq′(

σq′ (u)

u )
σq′ (u)

u

.
h(z)

σq′(h(z))

)
=
σq′(

σq′ (u)

u )
σq′ (u)

u

.
h(z)

σq′(h(z))
,
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where h(z) =
σq′ (b(z))

b(z) . Since Qσq

S = CE , there exists d ∈ CE such that we have

the equality
σq′ (

σ
q′ (u)

u
)

σ
q′ (u)

u

= d
σq′ (h(z))

h(z) , i.e.,
σq′ (

σ
q′ (u)

u
)

σ
q′ (u)

u

∈ CE(z) and is left invari-

ant by the (σq, σq′)-Galois group. This implies that for any S ∈ AlgCE ,σq′
and

g ∈ Galσq′ (QS/CE(z))(S), we find σq′(
σq′ (λg)

λg
) =

σq′ (λg)

λg
and we find that the

(σq, σq′)-Galois group can be represented as a subgroup of H .
Let us prove (3) ⇒ (1). If the third statement holds, then Galσq′ (QS/CE(z)) is

a proper subgroup of GL1,CE
. By proposition 5.10, this implies that u and all its

transform with respect to σq′ are algebraically dependent over CE(z). This proves
(1).

Let us prove (a) ⇒ (b). If there exist c ∈ C× and b(z) ∈ C(z)× such that

a(z) = c b(qz)b(z) then
σq′ (a)

a =
σq(h)

h where h(z) =
σq′ (b(z))

b(z) . Proposition 5.16 allows to

conclude that the group Galσq′ (QS/CE(z)) is σq′ -constant. Let us prove (b) ⇒ (a).
If the group Galσq′ (QS/CE(z)) is σq′ -constant then u and all its transform with
respect to σq′ are algebraically dependent over CE(z). By the above, there exist

c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such that a(z) = czmb(qz)
b(z) . However Proposi-

tion 5.16 states that there exists h(z) ∈ CE(z) such that σq′(a)/a = σq(h)/h. An
easy computation shows that m = 0. �

7. Discrete projective isomonodromy

The following proposition allows to characterize the (σq , σq′)-Galois group of a
q-difference system with large difference Galois group.

Proposition 7.1. Let A ∈ GLn(C(z)). Let G be the difference Galois group of
σq(Y ) = AY over the σq-field C(z). Assume that G◦,der is an irreducible almost
simple algebraic subgroup of GLn(C) and has toric constant centralizer (see Def-
inition A.16). Let QS ⊂ Mer(C×) be the (σq, σq′)-Picard-vessiot extension of
σq(Y ) = AY over CE(z) defined in Proposition 5.6. Then, we have the following
alternative:

(1) there exist d ∈ N× and a regular σq′-field extension C̃E of CE such that
Galσq′ (QS/CE(z))C̃E

is conjugate to a σq′-group H such that, for all

S ∈ Alg
C̃E,σq′

and g ∈ H(S), there exists λg ∈ S× such that σd
q′(g) = λgg;

(2) Galσq′ (QS/CE(z)) contains G◦,der
CE

, the base change to CE of G◦,der.

Moreover, if the first case holds then there exist Ũ ∈ GLn(Q̃S), with Q̃S the fraction

field of QS ⊗CE
C̃E , a fundamental solution matrix, d ∈ N× and B ∈ GLn(C̃E(z)),

with C̃E(z) the fraction field of CE(z)⊗CE
C̃E , g ∈ Q̃S

×
, such that

(7.1) σd
q′(Ũ) = gBŨ.

Proof of Proposition 7.1. Let Gal(QRCE
/CE(z)) be the difference Galois group as

defined in Proposition 5.11.
Since the Galois group of σq(Y ) = AY over C(z) contains G◦,der, Propo-

sition 5.12 implies that Gal(QRCE
/CE(z)) contains G◦,der

CE
. We refer to

Section A for the definition of the derived group of a σq′ -algebraic group

scheme. Thus, the derived group scheme D(Gal(QRCE
/CE(z))) equals to G◦,der

CE
.

Since Galσq′ (QS/CE(z)) is Zariski-dense in Gal(QRCE
/CE(z)), we find that

D(Galσq′ (QS/CE(z))) is Zariski-dense in D(Gal(QRCE
/CE(z))) = G◦,der

CE
by Propo-

sition A.14. By Lemma 5.3, CE(z) is relatively algebraically closed in QS . By
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straightforward analogues of [DVHW14a, Lemma 6.3 ] and [DVHW14b, Proposi-
tion 4.3], we find that the σq′ -group scheme Galσq′ (QS/CE(z)) is absolutely σq′ -
integral. By Lemma A.15, the σq′-algebraic group scheme D(Galσq′ (QS/CE(z)))

is absolutely σq′ -integral. Let CE be an algebraically closure of CE . We ex-

tend σq′ from CE to CE . Since CE is inversive for σq′ , the same holds for

CE . Then, D(Galσq′ (QS/CE(z)))CE
is a Zariski dense σq′-integral subgroup of

G◦,der

CE
. By Theorem A.10, there exists a σq′ -field extension C̃E of CE , such that

either D(Galσq′ (QS/CE(z)))C̃E
= G◦,der

C̃E

or there exists an integer d ≥ 1 such

that D(Galσq′ (QS/CE(z)))C̃E
is conjugate to a σd

q′ -constant subgroup of G◦,der

C̃E

.

The group Galσq′ (QS/CE(z))C̃E
= G◦,der

C̃E

is irreducible almost simple and has

toric constant centralizer. Since D(Galσq′ (QS/CE(z)))C̃E
is a normal subgroup

of Galσq′ (QS/CE(z))C̃E
, Lemma A.17 ensures that Galσq′ (QS/CE(z))C̃E

is either

equal to a subgroup of GL
1,C̃E

× SL
n,C̃E

containing G◦,der

C̃E

or conjugate to a σq′ -

algebraic group H over C̃E such that for all S ∈ Alg
C̃E ,σq′

and g ∈ H(S) there

exists λg ∈ S× such that σd
q′(g) = λgg.

We shall prove that if the first case holds then there there exist Ũ ∈ GLn(Q̃S) a

fundamental solution matrix, a positive integer d and B ∈ GLn(C̃E(z)), g ∈ Q̃S

×
,

such that

(7.2) σd
q′(Ũ) = gBŨ.

Thus, let us assume that there exists a positive integer d and a σq′ -field exten-

sion C̃E of CE such that Galσq′ (QS/CE(z))C̃E
is conjugate to a σq′-group H such

that, for all S ∈ Alg
C̃E ,σq′

and g ∈ H(S), there exist λg ∈ GL
1,C̃E

(S) such that

σd
q′(g) = λgg. By Lemma 5.17, we construct a (σq, σq′)-Picard-Vessiot extension Q̃S

for σq(Y ) = AY over C̃E(z) such that Galσq′ (QS/CE(z))C̃E
= Galσq′ (Q̃S/C̃E(z)).

By proposition 5.9, we can choose Ũ ∈ GLn(Q̃S), a fundamental solution ma-

trix, such that for any φ ∈ Galσq′ (Q̃S/C̃E(z))(S), we have σd
q′([φ]Ũ ) = λφ[φ]Ũ

and λφ ∈ GL1(S). Then, for any φ ∈ Galσq′ (Q̃S/C̃E(z))(S), we have

φ(σd
q′(Ũ).Ũ−1) = λφσ

d
q′(Ũ).Ũ−1. Let g be a non-zero entry of σd

q′(Ũ).Ũ−1. It

is easy to see that the matrix B = 1
gσ

d
q′(Ũ).Ũ−1 ∈ GLn(Q̃S) is fixed by

Galσq′ (Q̃S/C̃E(z)). By Proposition 5.10, B ∈ GLn(C̃E(z)). �

8. q-difference equations with convergent power series solutions

Let A ∈ GLn(C(z)). We remind that q,q′ ∈ C×, with |q| and |q′| multiplicatively
independant. Consider the q-difference system

(8.1) σq(Y ) = AY.

Let QS ⊂ Mer(C×) be the (σq , σq′)-Picard-vessiot extension of σq(Y ) = AY
over CE(z) defined in Proposition 5.6. The aim of the present section is to study
the (σq, σq′)-Galois group of (8.1) under the following assumption.

Assumptions 8.1. Assume that n ≥ 2. Let G be the Galois group of (8.1) over
C(z). We assume that G◦,der is either SLn(C), SOn(C) (when n ≥ 3) or Spn(C)
(when n is even).
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8.1. σq′-algebraic determinant group. Let C({z}) be the field of germs of mero-
morphic functions at z = 0. The goal of the subsection is to prove:

Theorem 8.2. Assume that the hypothesis 8.1 holds and that there exist b ∈ C(z)×

and c ∈ C× and m ∈ Z such that det(A) = czmb(qz)
b(z) . Assume that the system

σq(Y ) = AY admits a non zero solution vector Y0 ∈ C({z})n. Let QS ⊂ Mer(C×)
be the (σq, σq′)-Picard-vessiot extension of σq(Y ) = AY over CE(z) defined in
Proposition 5.6. Then, the (σq, σq′)-Galois group Galσq′ (QS/CE(z)) contains

G◦,der
CE

.

Lemma 8.3. Let us consider a vector u = (u1, . . . , un)
t with coefficients in C((z))n

such that σq(u) = Au for some A ∈ GLn(C(z)). Assume moreover that each ui
satisfies some nonzero linear q′-difference equation with coefficients in C(z). Then,
the ui actually belong to C(z).

Proof of Lemma 8.3. Since u = (u1, . . . , un)
t has coefficients in C((z))n, and any

entry of u satisfies some nonzero linear q′-difference equation with coefficients in
C(z), according to the cyclic vector lemma, there exists P ∈ GLn(C(z)) such that
Pu = (f, σq(f), . . . , σ

n−1
q (f))t for some f ∈ C((z)) which is a solution of a nonzero

linear q-difference equation, i.e., a σq-difference equation, of order n with coefficients
in C(z). Moreover, f satisfies a nonzero linear σq′ -equation with coefficients in C(z),
because it is a C(z)-linear combination of the ui and the ui themselves satisfy such
equations. It follows from [BB92, Remark 7.5] that f belongs to C(z). Hence, the
entries of u = P−1(Pu) = P−1(f, σq(f), . . . , σ

n−1
q (f))t actually belong to C(z), as

expected. �

Remark 8.4. Let us remind that |q| 6= 1. Therefore, any vector solution of (8.1) in
C({z})n, belongs in fact to (C((z)) ∩Mer(C×))n.

Proof of Theorem 8.2. In virtue of Remark 8.4, Y0 ∈ (C((z)) ∩ Mer(C×))n. Let
QS be the (σq, σq′)-Picard-vessiot extension of σq(Y ) = AY over CE(z). Since

Y0 = (u1, . . . , un)
t ∈ Q×

S , there exists a fundamental solution matrix U ∈ GLn(QS)
whose first column is precisely Y0.

We let G denotes the difference Galois group of σq(Y ) = AY over the field C(z),
and we let Galσq′ (QS/CE(z)) denotes the (σq, σq′)-Galois group over the (σq, σq′)-
field CE(z). By assumption, G◦,der is either SLn(C) (when n ≥ 2), SOn(C) (when
n ≥ 3) or Spn(C) (when n is even). By Proposition 7.1, we have the following
alternative:

(1) there exists a positive integer d and a regular (σq, σq′)-field extension C̃E

of CE such that Galσq′ (QS/CE(z)) is conjugate to a σd
q′-constant subgroup

of G◦,der

C̃E

;

(2) Galσq′ (QS/CE(z)) contains G◦,der
CE

.

Moreover, if the first case holds, then there exists Ũ ∈ GLn(Q̃S), with Q̃S the

fraction field of QS ⊗CE
C̃E , a fundamental solution matrix, a positive integer d

and B ∈ GLn(C̃E(z)), with C̃E(z), g ∈ Q̃S

×
, such that

(8.2) σd
q′(Ũ) = gBŨ.

We claim that the first case can not hold. Suppose to the contrary that there

exists a regular σq′ -field extension C̃E of CE such that there exists Ũ ∈ GLn(Q̃S) a

fundamental solution matrix, a positive integer d, B ∈ GLn(C̃E(z)) and g ∈ Q̃S

×
,

such that (8.2) holds. This means that there exists D ∈ GLn(Q̃S

σq

) = GLn(C̃E)
such that σd

q′(U) = gBUD. This formula implies that the (finite dimensional)
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C̃E(z)〈g〉σq′ -vector space generated by the entries of U is stable by σd
q′ . In partic-

ular, any ui (recall that the ui are the entries of the first column Y0 of U) satisfies

a nonzero linear q′-equation Li(y) with coefficients in C̃E(z)〈g〉σq′ . We claim that

C̃E(z)〈g〉σq′ = C̃E(z)(g). Indeed, we have σd
q′(Ũ) = gBŨ and σq(Ũ) = AŨ . Thus,

σq

(
σd
q′(det(Ũ))

det(Ũ)

)
= q′mdσq(h)

h

σd
q′(det(Ũ))

det(Ũ)
,

where h(z) =
σd
q′ (b(z))

b(z) . Thus, we have σq(g
nl) = q′md

gnl with

l(z) = det(B)/h ∈ C̃E(z). Thus σq(σq′(gnl)) = q′md
σq′(gnl). Therefore, there

exists c ∈ C̃E

×
such that σq′(gnl) = cgnl. Then

(
σq′ (g)

g

)n
∈ C̃E(z). Since

Galσq′ (Q̃S/C̃E(z)) = Galσq′ (QS/CE(z))C̃E
is σq′-integral, C̃E(z) is relatively alge-

braically closed in Q̃S . Thus,
σq′ (g)

g ∈ C̃E(z) and C̃E(z)〈g〉σq′ = C̃E(z)(g).

We claim that any ui satisfies a nonzero linear q′-equation with coefficients in

C̃E(z). If g ∈ Q̃S is algebraic over C̃E(z) then g ∈ C̃E(z), because C̃E(z) is

relatively algebraically closed in Q̃S . In that case, the claim is obvious. Thus, let

us assume that g is transcendental over C̃E(z). By Proposition 6.3, we must have
m 6= 0. Then, we can write the equation Li(y) = 0 as

∑ν
j=0 Li,j(y)g

j = 0 where the

Li,j(y) are linear δ-operators with coefficients in C̃E(z), not all zero. To prove our

claim, it is sufficient to show that g is transcendental over C̃E(z){u1, . . . , un}σq′ .

It is also sufficient to prove that gn is transcendental over C̃E(z){u1, . . . , un}σq′ .
Assume that there exists a non zero relation

(8.3)

κ∑

k=0

akg
nk = 0,

where κ > 1 and a0, . . . , aκ−1, aκ = 1 ∈ C̃E(z)〈u1, . . . , un〉σq′ and κ is minimal.

We remind that σq(g
n) = gnq′md

l/σq(l). Applying σq to (8.3) and subtracting

q′mdκ lκ

σq(lκ)
∗ (8.3), we find a smaller liaison of the form

κ−1∑

k=0

(σq(ak/l
κ−k)− q′md(κ−k)

ak/l
κ−k)gnk = 0.

Thus, for all k = 0, . . . , κ− 1, we have σq(ak/l
κ−k)−q′md(κ−k)

ak/l
κ−k = 0. Let us

state and prove a technical lemma.

Lemma 8.5. Let us fix r ∈ N×. Then, the equation σq(y) = q′mdr
y has no non

zero solution in C̃E(z)〈u1, . . . , un〉σq′ .

Proof of Lemma 8.5. We have C̃E(z)〈u1, . . . , un〉σq′ ⊂ C̃E((z)), the fraction field

of C̃E ⊗CE
CE((z)). Suppose to the contrary that the equation has a non zero

solution in C̃E((z)). By Lemma 5.2, we can find a non zero solution f in CE((z))

Let f =
∑∞

ℓ=ν yℓz
ℓ with yν 6= 0 a non zero solution of σq(y) = q′mdr

y. Taking

the zν coefficients of the two sides of σq(y) = q′mdry, we find σq(yν)q
ν = q′mdryν .

Since yν ∈ CE , there exists s ∈ N× such that σs
q(yν) = yν . Then,

σs
q(yν)q

sν = yνq
sν = q′smdr

yν .
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Since |q| and |q′| are multiplicatively independent, one should have
sν = mdsr = 0. We remind that m 6= 0, so mdr 6= 0. Consequently, we find a

contradiction and this proves that the equation σq(y) = q′mdr
y has no non zero

solution in C̃E(z)〈u1, . . . , un〉σq′ . �

Let us finish the proof of Theorem 8.2. In virtue of Lemma 8.5, for all

k ∈ {0, . . . , κ − 1}, the equation σq(y) = q′md(κ−k)
y has no non zero solution

in C̃E(z){u1, . . . , un}σq′ . Hence, gnκ = 0. This is a contradiction with the fact that

g is transcendental over C̃E(z) and proves our claim.

Therefore, the ui satisfy a non zero linear σq′ -equation over C̃E(z). Since C is
algebraically closed and ui ∈ C((z)), a descent argument shows that the ui satisfy
a non zero linear σq′-equation over C(z).

It follows from Lemma 8.3 that the ui belong to C(z). Hence, the first column of
U is fixed by the Galois group G and this contradicts the hypothesis 8.1. Therefore,

Galσq′ (QS/CE(z)) contains G◦,der
CE

.
�

Next Corollary improves Theorem 8.2 by removing the assumption that there
exists a vector solution in C({z})n.

Corollary 8.6. Assume that the hypothesis 8.1 hold and that there exist

b(z) ∈ C(z)× and c ∈ C×, m ∈ Z such that det(A) = czm b(qz)
b(z) . Then, the (σq, σq′)-

Galois group Galσq′ (QS/CE(z)) contains G◦,der
CE

.

Proof. By Lemma B.2, there exist l ∈ N×, d ∈ C× and s ∈ Z such that the
ql-difference system σql(Y ) = dzsσl−1

q (A) · · ·AY has a non zero vector solution

Y0 ∈ C({z})n. Set A1 = dzsσl−1
q (A) · · ·A and A[l] = σl−1

q (A) · · ·A. Let QS be
a (σq , σq′)-PV field for σq(Y ) = AY over CE(z) and let U ∈ GLn(QS) be a fun-
damental solution matrix. By Lemma B.3, the ring QS = CE(z)〈σl

q(U)〉σq′ is

a (σql , σq′)-Picard-Vessiot extension for σql(Y ) = A[l]Y and the base extension to
CEl

of the (σq, σq′)-Galois group (resp. the difference Galois group) of σq(Y ) = AY
coincides with the (σql , σq′)-Galois group (resp. the difference Galois group) of

σl
q(Y ) = A[l]Y over CE(z).
This shows that the derived group of the difference Galois group of

σql(Y ) = A[l]Y equals G◦,der
CEl

. Moreover, the latter group equals the derived group

of the difference Galois group of σql(Y ) = A1Y and det(A1) = dnzsn+mlcl b(q
lz)

b(z) .

Theorem 8.2 with q replaced by ql, allows to conclude that the (σql , σq′)-Galois

group of σl
q(Y ) = A1Y contains G◦,der

CEl
. Finally, the derived group of the

latter group coincides with the derived group of the (σql , σq′)-Galois group of

σl
q(Y ) = A[l]Y . Since the formation of derived groups commute with base ex-

tension (see Lemma A.13), we get that the derived group of the (σq, σq′)-Galois

group of σq(Y ) = AY contains G◦,der
CE

. This allows to conclude the proof. �

8.2. σq′-transcendent determinant. Let us remind that the (σq, σq′)-Galois
group of σq(y) = det(A)y over CE(z) is a proper subroup of the multiplicative
group GL1,CE

if and only if there exist b ∈ C(z)×, m ∈ Z, and c ∈ C×, such that

det(A) = czmb(qz)
b(z) .

The goal of the subsection is to prove:

Theorem 8.7. Assume that the hypothesis 8.1 holds and the (σq, σq′)-
Galois group of σq(y) = det(A)y over CE(z) equals to GL1,CE

. Let us
assume that the system σq(Y ) = AY admits a non zero solution vector
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Y0 = (f, σq(f), . . . , σ
n−1
q (f))t ∈ C({z})n. Then, f is σq′-algebraically independent

over CE(z).

Lemma 8.8. Let L be a σq′-field and let L〈a〉σq′ and L〈b1, . . . , bn〉σq′ be two σq′-
field extensions of L, both contained in a same σq′-field extension of L. Assume
that a is σq′-algebraically independent over L and that any bi is σq′-algebraic over
L. Then, the field extensions L〈a〉σq′ and L〈b1, . . . , bn〉σq′ are linearly disjoint over
L.

Proof of Lemma 8.8. To the contrary, suppose that L〈a〉σq′ and L〈b1, . . . , bn〉σq′

are not linearly disjoint over L. Then a is σq′ -algebraic over L〈b1, . . . , bn〉σq′ .

This implies that the σq′-transcendence degree of the field L〈a, b1, . . . , bn〉σq′ over

L〈b1, . . . , bn〉σq′ is zero. Since the σq′ -transcendence degree of L〈b1, . . . , bn〉σq′

over L is also zero, by hypothesis, we find that the σq′ -transcendence degree of
L〈a, b1, . . . , bn〉σq′ over L is zero by classical properties of the transcendence de-
gree. This implies that a is σq′-algebraic over L and yields a contradiction. �

Proof of Theorem 8.7. In virtue of Remark 8.4, Y0 ∈ (C((z)) ∩Mer(C×))n. Since
Y0 ∈ Q×

S , there exists a fundamental solution matrix U ∈ GLn(QS) whose first
column is precisely Y0. Set ui = σi

q(f).
We let G denotes the Galois group of σq(Y ) = AY over the field C(z), and we let

Galσq′ (QS/CE(z)) denote its (σq, σq′)-Galois group over the (σq, σq′)-field CE(z).
By assumption, the (σq, σq′)-Galois group of σq(y) = det(A)y over CE(z) equals to
GL1,CE

.
We claim that at least one of the ui is σq′ -algebraically independent over CE(z).

Suppose to the contrary that all of them are σq′-algebraic. In virtue of the results
of Section 5.4, the second case of Proposition 7.1 can not hold. Then, there exist

a regular σq′-field extension C̃E of CE and Ũ ∈ GLn(Q̃S) a fundamental solution

matrix, a positive integer d and B ∈ GLn(C̃E(z)) and such that

(8.4) σd
q′(Ũ) = gBŨ

with g ∈ Q̃S

×
.

But Ũ = UC, for some C ∈ GLn(C̃E). Therefore,

σd
q′(U) = gBUCσ−d

q′ (C).

This shows that the C̃E(z)〈g〉σq′ -vector subspace of Q̃S generated by the entries of
U and all their successive σq′ -transforms is of finite dimension. In particular, any

ui satisfies a nonzero linear σq′ -equation Li(y) = 0 with coefficients in C̃E(z)〈g〉σq′ .

We can assume that the coefficients of Li(y) belong to C̃E(z){g}σq′ . We write

Li(y) =
∑

α Li,α(y)gα where Li,α(y) is a linear σq′-operator with coefficients in

C̃E(z), and gα is a monomial in the σi
q′(g)’s.

We remind that the (σq , σq′)-Galois group of σq(y) = det(A)y over CE(z) equals
to GL1,CE

. In virtue of Proposition 6.3, det(U) is σq′ -algebraically independent

over CE(z). Since gn = λ
σd
q′ (det(U))

det(U) for some non zero λ ∈ C̃E(z). Thus, g is

σq′ -algebraically independent over C̃E(z).

By Lemma 8.8, the σq′ -fields C̃E(z)〈g〉σq′ and C̃E(z)〈u1, ..., un〉σq′ are linearly

disjoint over C̃E(z). It follows easily that there exists some non zero Li,α(y)
such that Li,α(ui) = 0. Therefore, the ui satisfy a non zero linear σq′ -equation

over C̃E(z). Since C is algebraically closed and ui ∈ C((z)), a descent argument
shows that the ui satisfy a non zero linear σq′ -equation over C(z). It follows from
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Lemma 8.3 that the ui belong to C(z). Hence, the first column of U is fixed by the
difference Galois group G and this contradicts the hypothesis 8.1. �

9. Applications

9.1. User friendly criterias for σq′-transcendence. The goal of this subsection
is to use the results of Section 8 in order to give transcendence criterias. We refer
to Section 8 for the notations used in this section.

Corollary 9.1. Let G be the difference Galois group of the q-difference system (8.1)
over the σq-field C(z). Assume that n ≥ 2 and G◦,der is either SLn(C), SOn(C)
(when n ≥ 3) or Spn(C) (when n is even). The following holds.

• Assume that there exist b(z) ∈ C(z)× and c ∈ C×, m ∈ Z such that

det(A) = czmb(qz)
b(z) and let (u1, . . . , un)

t ∈ Mer(C×)n be a non zero so-

lution vector of (8.1). If G◦,der = SLn(C) or Spn(C) (when n is even)
(resp. G◦,der = SOn(C) when n ≥ 3) any n (resp. n − 1) of the ui’s are
σq′-algebraically independent over CE(z);

• If there exists f ∈ Mer(C×) such that (f, σq(f), . . . , σ
n−1
q (f))t is a vector

solution of (8.1), then f is σq′-algebraically independent over CE(z).

Proof. The first point is Corollary 8.6 and Section 5.4. The second point is Theo-
rems 8.2 and 8.7. �

9.2. Hypergeometric series. In this section, we follow the notations of Sec-
tion 4.2. We assume that 0 < |q| < 1. Let us fix n ≥ 2, let a = (a1, . . . , an) ∈ (qQ)n,
b = (b1, . . . , bn) ∈ (qQ \ q−N)n, b1 = q, λ ∈ C×.

Corollary 9.2. Let us assume that (4.3) is irreducible and not q-Kummer induced.
Then nΦn(a, b, λ, q; z) is σq′-algebraically independent over CE(z).

Proof. Since 0 < |q| < 1, the series nΦn(a, b, λ, q; z) is convergent. We use Re-
mark 8.4, to deduce that nΦn(a, b, λ, q; z) ∈ Mer(C×). The conclusion is a direct
application of Theorem 4.3 and Corollary 9.1. �

We follow the notations of Section 4.3. We assume that 0 < |q| < 1, n > s,
n ≥ 2. Let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s, b1 = q, λ ∈ C×,
0 < |q| < 1 and consider (4.3).

Corollary 9.3. For (i, j) ∈ {1, . . . , n}×{1, . . . , s}, let αi, βj ∈ R such that ai = qαi

and bi = qβj . Assume that for all (i, j) ∈ {1, . . . , n} × {1, . . . , s}, αi − βj /∈ Z, and
that the algebraic group generated by Diag(e2iπα1 , . . . , e2iπαn) is connected. Then,

nΦs(a, b, λ, q; z) is σq′-algebraically independent over CE(z).

Proof. Since 0 < |q| < 1, the series nΦs(a, b, λ, q; z) is convergent. We use Re-
mark 8.4, to deduce that nΦs(a, b, λ, q; z) ∈ Mer(C×). The conclusion is a direct
application of Theorem 4.5 and Corollary 9.1. �

Appendix A. Difference algebraic groups

Let (k, σq′ ) be a difference field. We denote by Algk,σq′
the category of k-σq′ -

algebras and by Groups the category of groups.

Definition A.1. A k-σq′ -Hopf algebra R is a k-Hopf-algebra, endowed with a
structure of k-σq′ -algebra, whose structural maps are σq′ -morphism. A σq′ -Hopf
ideal of R is a Hopf ideal, which is stable under the action of σq′ .

We define a σq′ -algebraic group scheme over k as follows.
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Definition A.2. A functor H from the category Algk,σq′
to the category of Groups

representable by a σq′ -finitely generated k-σq′ -Hopf algebra k{H} is called a σq′ -
algebraic group scheme. A σq′ -subgroup scheme G of H is a subgroup functor of
H . It corresponds to a σq′-Hopf ideal IH of k{G} such that k{H} = k{G}/IH .

Remark A.3. If σq′ is the identity, we find the usual definition of algebraic group
scheme over k. We adopt the following conventions. If G is an algebraic group over
k, we denote by k[G] its associated Hopf algebra.

The theory of σq′-algebraic schemes was initiated by M.Wibmer (see for instance
[Wib15]). Many of the terminology for σq′ -algebraic schemes is borrowed from the
usual terminology of schemes, by adding a straightforward compatibility with the
difference operator σq′ . In order to avoid too many definitions, we choose to refer
often to [DVHW14b]. However, one has to take care that the σq′ -geometry is more
subtle, even in the affine case, than the algebraic geometry.

Example A.4. Localizing k{X}σq′ , the k-σq′ -algebra of polynomials in the n× n-

matrix X of σq′ -indeterminates, with respect to det(X), we find the k-σq′ -Hopf al-
gebra k{X, 1

det(X)}σq′ ,that corresponds to the σq′ -algebraic group scheme attached

to the general linear group scheme GLn,k.

The following proposition shows the connection between algebraic schemes over
k and σq′ -schemes.

Proposition A.5 ( §A.4 and §A.5 in [DVHW14b]). Let G be an algebraic group
scheme over k represented by the finitely generated k-Hopf algebra k[G]. Let H be
a σq′-algebraic group scheme represented by the σq′-finitely generated k-σq′-Hopf
algebra k{H}. The following holds.

• The group functor
G : Algk,σq′

→ Sets

B 7→ G(B#)
, with B# the underlying

k-algebra of B, is representable by a σq′-finitely generated k-σq′-Hopf alge-
bra. We call G the σq′-algebraic group scheme attached to G.

• We denote by H# the functor
Algk → Sets
B 7→ HomAlgk

(k{H}#, B)
. Then,

Hom(H#, G) ≃ Hom(H,G).

• Assume that H is a σq′-subgroup scheme of G, i.e., H is a σq′-subgroup

scheme of G. The smallest k-group scheme H such that H# → G factorizes
through H → G is called the Zariski closure of H in G.

Example A.6. Any σq′ -subgroup scheme H of GLn,k is entirely determined by a
σq′ -Hopf ideal IH ⊂ k{X, 1

det(X)}σq′ . The Zariski closure of H in GLn,k is defined

by the Hopf ideal IH ∩ k[X, 1
det(X) ].

Definition A.7. Let G be a σq′ -algebraic group scheme over k and let k̃

be a σq′-field extension of k. The base extension of G to k̃ is the functor
Alg

k̃,σq′
→ Sets

B 7→ G(B)
, where B is viewed as k-σq′-algebra. It is represented by

the k̃-σq′ -Hopf algebra k{G} ⊗k k̃.

This allows us to define the σq′ -analogue of the notion of irreducibility.

Definition A.8 (Definition 4.2 and Lemma A.13 in [DVHW14b]). Let G be a σq′ -

algebraic scheme over k. Let k̃ be an algebraically closed, inversive field extension

of k. We say that G is absolutely σq′-integral if k̃{G}, the σq′ -Hopf algebra k̃{G}
of G

k̃
is a σq′ -domain, i.e., k̃{G} is an integral domain and σq′ is injective on k̃{G}.
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Lemma A.9. Let G and H be absolutely σq′-integral σq′-group schemes over k.
Then, the product G×H is absolutely σq′-integral.

Proof. Since the product commutes with base extension, we can directly assume
that k is inversive and algebraically closed. Thus k{G} and k{H} are σq′ -domains.
This means for instance that k{H} can be embedded in a σq′ -field L. Then,
k{G} ⊗k k{H} embeds as σq′ -ring in k{G} ⊗k L. Since k is inversive and alge-
braically closed, [DVHW14b, Lemma A.13] shows that k{G} is σq′-regular, i.e.,
k{G} ⊗k k′ is a σq′ -domain for all σq′-field extension k′ of k. Thus k{G} ⊗ L is
a σq′ -domain and the same holds for k{G} ⊗ k{H} = k{G × H}. This ends the
proof. �

We would like to classify some σq′ -subgroup schemes of GLn,k. First, we state a
fundamental classification theorem, which is a σq′ -analogue of a result of P. Cassidy.

Theorem A.10 (Theorem A.25 in [DVHW14a]). Let k be an algebraically closed,
inversive σq′-field of characteristic zero and let G be a σq′-integral, σq′-algebraic
subgroup of GLn,k. Assume that the Zariski closure of G in GLn,k is an absolutely
almost simple algebraic group, properly containing G. Then there exist a σq′-field

extension k̃ of k and an integer d ≥ 1 such that G
k̃

is conjugate to a σd
q′-constant

subgroup of GLn,k̃, i.e., there exists P ∈ GLn(k̃) such that

PGP−1(S) ⊂ {g ∈ GLn,k̃(S)|σ
d
q′(g) = g}

for all S ∈ Algk̃,σq′
.

We also shall have to consider derived group. In analogy with [Wat79, §10.1],
we define the derived group of a σq′-algebraic group scheme as follows.

Definition A.11. Let G be a σq′ -algebraic group scheme defined over k and let
k{G} be its σq′ -Hopf algebra. For any n ∈ N, we define a natural transformation φn
from G2n to G as follows. For all S ∈ Algk,σq′

and x1, . . . , xn, y1, . . . , yn ∈ G(S)2n,
we set

φn(x1, . . . , xn, y1, . . . , yn) = x1y1x
−1
1 y−1

1 . . . xnynx
−1
n y−1

n .

Let ψn : k{G} → ⊗2nk{G} be the corresponding dual map by Yoneda. We denote
by In its kernel. Let ID(G) = ∩n∈NIn. Then ID(G) is a σq′-Hopf ideal of k{G} and
we defined the derived group D(G) as the σq′-algebraic subgroup of G represented
by k{G}/ID(G).

Proof. Let ∆ denote the co-multiplication map of k{G}. Then, it is clear that
∆(I2n) ⊂ In⊗In since multiplying two products of n commutators yields a product
of 2n commutators. This shows that ID(G) is an Hopf ideal. For all n ∈ N, the
map ψn is a σq′ -morphism so that In. This proves that ID(G) is a σq′ -ideal. �

Remark A.12. If σq′ is the identity, we retrieve the definition of the derived group
scheme D(H) of an algebraic group scheme H over k as in [Wat79, §10.1].

Lemma A.13. For any σq′-algebraic group scheme G over k and any σq′-field

extension k̃ of k, we have D(G
k̃
) = D(G)

k̃

Proof. The definition of ID(G) commutes with base extension. �

Proposition A.14. Let H be an algebraic group scheme over k and let G ⊂ H
be a Zariski dense σq′-algebraic subgroup of H. Then, D(G) is a Zariski dense
subgroup of D(H).
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Proof. Let k{H} be the σq′-Hopf algebra of the σq′ -algebraic group scheme H

attached to H as in Proposition A.5. Then, k[H ] is a sub-Hopf algebra of k{H}.
This means, in the notation above, that ψn : k[H ] → ⊗2nk[H ] is the restriction
of ψn : k{H} → ⊗2nk{H}. Thus, if IH ⊂ k[H ] denotes the Hopf ideal of D(H)
in H , then ID(H) ∩ k[H ] = ID(H). Since G is a σq′ -algebraic subgroup of H, we
find a surjective morphism π : k{H} → k{G} of σq′-Hopf algebras. Since the
applications ψn are constructed using comultiplication and co-inverse and π is a
surjective morphism of σq′ -Hopf algebras, we get that π(ID(H)) = ID(G). Let

JD(G) be the defining ideal of D(G) in H , i.e., π−1(ID(G)). Let JG ⊂ k{H} be the
defining ideal of G in H, i.e., the kernel of π. Then, JD(G) = JG + ID(H). Since
the group G is Zariski dense in H , we have JG ∩ k[H ] = {0}. Then,

JD(G) ∩ k[H ] = (JG + ID(H)) ∩ k[H ] = ID(H) ∩ k[H ] = ID(H).

This equality means precisely that D(G) is Zariski dense in D(H). �

Lemma A.15. The derived group of an absolutely σq′-integral σq′-algebraic group
scheme G over k is absolutely σq′-integral.

Proof. Since by Lemma A.13, the formation of the derived group commutes with
base extension. We can assume that k is algebraically closed and inversive. Since
the k-σq′-Hof algebra of D(G) is k{G}/ID(G), the group D(G) is absolutely σq′ -
integral if and only if ID(G) is σq′ -prime, i.e., prime and such that σq′(a) ∈ ID(G)

implies a ∈ ID(G). By Lemma A.9, we find that for all n ∈ N, the group G2n is

absolutely σq′ -integral. This means that k{G2n} is a σq′ -domain for all n ∈ N.
Since In is the kernel of the σq′ -morphism ψn : k{G} → k{G2n}, the ideal In is
σq′ -prime for all n ∈ N. This implies that ID(G) is σq′-prime. �

Definition A.16. Let (k, σq′) be a σq′-field and let G ⊂ GLn,k be an algebraic

group scheme defined over k. Let d ∈ N×. We consider the σq′ -subgroup Gσd
q′

of G defined by Gσd
q′ (S) = {g ∈ G(S)|σd

q′ (g) = g}. We say that G has a toric

constant centralizer if, for any d ∈ N×, for any S ∈ Algk,σq′
, the following holds: if

h ∈ GLn,k(S) centralizes Gσd
q′ (S) then h = λIn for some λ ∈ S×.

Lemma A.17. Let (k, σq′ ) be a σq′-field and let G ⊂ GLn,k be an algebraic group
scheme defined over k. Assume that G has toric constant centralizer. Then, the

normalizer H of Gσd
q′ in GLn,k is a σq′-algebraic group define over k. Moreover,

for all S ∈ Algk,σq′
and g ∈ H(S) there exists λg ∈ S× such that σd

q′(g) = λgg.

Proof of Lemma A.17. The fact that the normalizer is a σq′-algebraic group comes
essentially from the representability of the normalizer by [DG70, II.13.6].

If g normalizes Gσd
q′ (S), for some d ∈ N×, then σd

q′(g)g−1 centralizes Gσd
q′ (S).

By assumption, we conclude that σd
q′(g)g−1 is a scalar matrix. �

Lemma A.18. Let (k, σq′) be a σq′-field. The algebraic groups SLn,k (when n ≥ 2),
SOn,k (when n ≥ 3) and Spn,k (when n is even) have toric constant centralizer.

Proof. The algebraic groups SLn,k (when n ≥ 2), SOn,k (when n ≥ 3) and Spn,k
(when n is even) are absolutely almost simple algebraic group. Let d ∈ N× and let
S ∈ Algk,σq′

.

Let us consider SLn,k with n ≥ 2. Let M ∈ GLn,k(S) that centralizes SL
σd
q′

n (S).
For i 6= j, the matrices Xi,j = In + Ei,j , where Ei,j are matrices with zeroes at

every entry except 1 at line i and column j, belong to SL
σd
q′

n,k(S) for all S ∈ Algk,σq′
.
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Consequently, for all i 6= j, S ∈ Algk,σq′
, MXi,j = Xi,jM . This shows that

M = λIn for some λ ∈ S×.

Let us consider SOn,k with n ≥ 3. Let M ∈ GLn,k(S) that centralizes SO
σd
q′

n (S).
For all 1 ≤ i < j ≤ n, S ∈ Algk,σq′

, MNi,j = Ni,jM , where Ni,j is the diagonal

matrix with 1 entry, except the diagonal entries i and j that are equal to −1. It
follows that M is diagonal. To conclude that M = λIn for some λ ∈ S×, we

consider the commutation with Pi = Diag(Ii,

(
0 1
−1 0

)
, In−i−2), i ≤ n− 2.

Let us consider Spn,k with n even. Let M ∈ GLn,k(S) that centralizes Sp
σd
q′

n (S).

For allN ∈ SL
σd
q′

n/2,k(S), Diag(N, (N−1)t) ∈ Sp
σd
q′

n,k(S). Then, for allN ∈ SL
σd
q′

n/2,k(S),

we have MDiag(N, (N−1)t) = Diag(N, (N−1)t)M . Let M =

(
M1,1 M1,2

M2,1 M2,2

)
,

Mi,j are n/2 times n/2 matrices. From the commutation relation we obtain
M1,1N = NM1,1. Using the fact that SLn/2,k has toric constant centralizer, we
conclude that M1,1 = λIn/2 for some λ ∈ S×. Similarly, we find that M2,2 = µIn/2

for some µ ∈ S×. Then, MN = NM with N =

(
In/2 In/2
0 In/2

)
∈ Sp

σd
q′

n,k(S). We ob-

tain M2,1 = 0. Similarly with N =

(
In/2 0
In/2 In/2

)
∈ Sp

σd
q′

n,k(S), we obtain M1,2 = 0.

Finally, with the commutation of M with N =

(
0 In/2

−In/2 0

)
∈ Sp

σd
q′

n,k, we find

M = λIn for some λ ∈ S×. �

Appendix B. Convergent power series solution of q-difference

equations

Let K = C({z}) be the field of fraction of the ring of convergent power series
C {z}. Let us denote by CE the field of elliptic functions in Mer(C×) and let
CE = {f ∈ Mer(C×)|σr

q(f) = f for some r ∈ N}. Let q′ ∈ C× be multiplicatively

independent from q and let σq′ : Mer(C×) → Mer(C×), f(z) 7→ f(q′z).
Let A ∈ GLn(C(z)). In [Sau04], the author attaches to a q-difference system

σq(Y ) = AY , a Newton polygon N(A). The slopes of the non-vertical half-lines
defining the border of N(A) are called the slopes of the Newton polygon and ranked
in decreasing order as follows S(A) = {µ1 > µ2 · · · > µr} ⊂ Q. The Newton poly-
gon and the slopes of the q-difference system are invariant under gage transforms,
i.e., S(A) = S(σq(P )AP

−1) and N(A) = N(σq(P )AP
−1) for any P ∈ GLn(K).

The slopes induces a filtration of the q-difference module associated to the q-
difference system σq(Y ) = AY . One has the following proposition:

Proposition B.1 (§3.3.2, [RSZ13]). Let us consider A ∈ GLn(C(z)) and let
S(A) = {µ1 > µ2 > · · · > µr} be its set of slopes. Assume that the slopes of
A are in Z. Then, there exists P ∈ GLn(K), A1, . . . Ar some invertible matrices
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with complex entries and Ui,j some matrices with entries in K such that

σq(P )AP
−1 =




z−µ1A1 . . . . . . . . . . . . . . . U1,r

0
. . . . . . . . . . . . . . .

...
...

. . . z−µiAi . . . Ui,j . . .
...

... . . . 0
. . .

... . . .
...

... . . . . . .
. . . z−µjAj . . .

...
... . . . . . . . . . 0

. . .
...

0 . . . . . . . . . . . . 0 z−µrAr




.

Lemma B.2. Let A ∈ GLn(C(z)). Let l be a minimal positive integer, such that
S(A) ⊂ Z/l = {a/l, a ∈ Z}. Then, the following hold

(1) there exist a non zero integer r and a complex number c ∈ C× such that the
system σq(Y ) = czrσl−1

q (A) . . . AY has a non zero vector solution Y ∈ Kn;

(2) there exist a non zero rational integer r and a complex number c ∈ C× such
that the system σq(Y ) = czrAY has a non zero vector solution in C((z1/l)).

Proof. Let us begin by proving the first part of the lemma in the particular case
l = 1. We know, by Proposition B.1, one can find P ∈ GLn(K) and A1, . . . Ar some
invertible constant matrices such that

(B.1) σq(P )AP
−1 =




z−µ1A1 . . . . . . . . . . . . . . . U1,r

0
. . . . . . . . . . . . . . .

...
...

. . . z−µiAi . . . Ui,j . . .
...

... . . . 0
. . .

... . . .
...

... . . . . . .
. . . z−µjAj . . .

...
... . . . . . . . . . 0

. . .
...

0 . . . . . . . . . . . . 0 z−µrAr




.

One can also assume, up to multiply P by a constant matrix, that A1 is upper
triangular. We let d ∈ C× be the entry on the first row and line of A1. An

easy computation shows that the vector Z0 =




1
0
...
0


 is a solution of the system

σq(Z) = zµ1

d σq(P )AP
−1Z. Then, the vector Y0 = P−1Z0 ∈ Kn is a non zero

solution of the system σq(Y ) = zµ1

d AY . Moreover, one can show, using the fact

that σq(Y0) =
zµ1

d AY0 that the vector Y0 defines a meromorphic function on C×.
This proves the result when l = 1. Let us prove the first part of the lemma in
the general case. An easy computation shows that the slopes of σl−1

q (A) . . . A are
{lµ1 > lµ2 · · · > lµr} and thus are in Z. The case l = 1 allows to conclude.

The second part of the lemma can be deduced from the first as follows. Le t
t = z1/l and let ql be a l-th root of q. We endow C(t) with a structure of σql field by
sending t on qlt. We can consider the ql-difference system σql(Z) = AZ over C(t).
Its set of slopes is precisely {lµ1 > lµ2 · · · > lµr}. By the above, there exist a non
zero integer r and a complex number c ∈ C× such that the system σql(Z) = ctrAZ

has a solution vector Z0 ∈ C((t))n. Then, Z0 ∈ C((z1/l))n is a vector solution of
σq(Y ) = czr/lAY . �
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Lemma B.3. Let A ∈ GLn(CE(z)) and let l be a non negative integer. Set
A[l] = σl−1

q (A)σl−2
q (A) · · ·A. Let R ⊂ Mer(C×) be the σq′-PV extension for

σq(Y ) = AY over CE(z) and let G be the σq′-Galois group of R over CE(z).
The following hold

• R is a σq′-PV extension for σl
q(Y ) = A[l]Y over the (σql , σq′)-field CE(z);

• the σq′-Galois group of R over CE(z) for the ql-difference system
σl
q(Y ) = A[l]Y coincides with the base extension from CE to CEl

of the
σq′-Galois group of R over CE(z) for the q-difference system σq(Y ) = AY .

Proof. For the first assertion, let U ∈ GLn(R) be a fundamental solution matrix for
σq(Y ) = AY . Then, U is also a fundamental solution matrix for the ql-difference
system σql(Y ) = A[l]Y . Moreover, since

CEl
= CE(z)

σ
ql ⊂ Rσ

ql ⊂ CEl
= Mer(C×))σql .

This proves that R is also a σq′ -PV extension for σl
q(Y ) = A[l]Y over the (σql , σq′)-

field CE(z).
For the second assertion, let Gl be the CEl

-σq′-group scheme defined by

AlgCEl
,σq′

→ Groups,

B 7→ Autσql
,σq′ (R⊗CEl

B/CE(z)⊗CEl
B).

By [OW15, Lemma 2.49 and 2.51], this functor is represented by the CEl
-σq′ -Hopf

algebra CEl
{Gl} = (R ⊗CE(z) R)

σ
ql . Moreover, CEl

{Gl} = CEl
{Z, 1

det(Z)}σq′ with

Z = (U ⊗ 1)−1(1 ⊗ U) ∈ GLn(R ⊗CE(z) R). The same arguments show that G
is represented by the CE -σq′-Hopf algebra CE{G} = (R ⊗CE(z) R)

σq . Moreover,

CE{G} = CE{Z, 1
det(Z)}σq′ with Z = (U ⊗ 1)−1(1 ⊗ U) ∈ GLn(R ⊗CE(z) R). This

proves that CE{G} ⊂ CEl
{Gl} and that CE{G} ⊗CE

CEl
= CEl

{Gl}. This last
equality means that Gl is obtained from G by base change from CE to CEl

. �
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