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Abstract. — We investigate the variation of the dimension of the Galois
groups of families of reqular singular difference systems using analytic tools.
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1. Introduction-Organization
1.1. Introduction-Main results. — In the whole paper, x will denote a

complex variable and 7 (resp. J) will denote the difference operator acting
on a function Y of the complex variable = by 7Y (x) = Y(x — 1) (resp.
8 () = (z— )(Y (z) — Y (w — 1))).

Let us consider :
(Sh) 7Y =AY, Ay € GLn(C(m,h))

a family of regular singular difference systems parameterized by h € C\ %,
Y. being a finite subset of C, and let us denote by G} the corresponding
difference Galois groups over C(x) (see [17]).
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In this paper we study the variation of dim G, (dimension of the complex
linear algebraic group G},) with respect to h via an analytic approach.

Let us recall that (Sp) is Fuchsian if Ap(co) = I,,, in which case we set
Ap.oo = limg oo (z — 1)(I, — Ap(2z)) € My (C). It is moreover nonresonant if,
for any pair (A, ) of distinct eigenvalues of Ao, we have A — o & Z. The
system (Sp) is regular singular if there exists Fj, € GL,(C(z)) such that the
system defined by Fy[Ay] := (Fj,(z—1)) "1 Ay, (2) Fy,(x) is Fuchsian. For details
about these classical notions, we refer for instance to sections 1 to 4 of [14]
and to chapter 9 of [17] and to the references therein.

The regular singular difference systems are classified by their Birkhoff con-
nection matrices; this is in some sense similar to the classification of the reg-
ular singular differential systems by means of their monodromy representa-
tions. For any h € C\ X, we associate to (Sp,) its Birkhoff connection ma-
trix P, € GL,(C(x)) with x = €2™® (see section 2). These give rise, for any
h € C\ X, to a family of Galoisian morphisms Ay, (a, b) := (Py(a)) "' Py (b) € G},
parameterized by all (a,b) € C? such that Py, (a) and P;,(b) are defined and in-
vertible (this was pointed out for the first time by P. Etingof in [8] in the case
of regular g-difference systems and extended to regular singular (g-)difference
systems by M. Van der Put and M. Singer in [17]; for a different, more “ana-
lytic”, point of view in the ¢-difference case we refer to the work of J. Sauloy in
[16]). These morphisms allow us to give a group-theoretic description of the
Galois groups Gy, -see Theorem 3.2 in section 3.1- (the fact that they generate
Zariski-dense subgroups of the Galois groups is proved in [17]) and of their
Lie algebras g, -see Theorem 3.3 in section 3.2-.

Using the above above-mentioned description of g, we prove, in section 5,
under the hypotheses 1. to 3. stated in section 4.1, that :

Theorem. — Let k = maxpec\y, dim(Gp,). Then © = {h € C\X | dim(Gp,) =
K} is an open subset of C\ ¥ with discrete complement.

The following result is an immediate consequence of the above Theorem.

Corollary. — Suppose that there exists h € C\ ¥ such that G, = GL,(C).
Then for any h € C\ X but, maybe, a discrete subset, we have G}, = GL,(C).

Note that, replacing = by 7, we can make the parameter h be also the step
of the equation. We leave the corresponding statements to the reader.

In a different context, the idea of an analytic approach for the study of the
variation of Galois groups appears in the work of J. Sauloy in [15, 16] and is
an essential motivation for A. Duval and the author’s papers [3, 5, 14, 6];
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see also L. Di Vizio and C. Zhang’s paper [7]. The reader will find more infor-
mations about the algebraic meaning of the analytic theory of (¢-)difference
equations in the works of P. Etingof [8], of J.-P. Ramis and J. Sauloy [12, 13],
of J. Sauloy [16] and of M. Singer and M. Van der Put [17]. Moreover, for
problems and results related to the main subject of the present paper, we refer
the reader to Y. André’s paper [1]. Concerning parameterized g¢-difference
equations, we also refer to section 5 of C. Hardouin and M. Singer’s paper [9].

Acknowledgements. 1 am grateful to P. Etingof for communicating to me the
proof of Theorem 3.3 and for valuable comments. I also thank A. Duval who
generously gave me a copy of [3]. To complete.

1.2. Organization. — In section 2 we recall useful properties of the regular
singular difference systems. In section 3 we give a group-theoretic description
of the Galois group of a given regular singular difference system and of its Lie
algebra in terms of a corresponding Birkhoff matrix. In section 4 we consider
a family of regular singular difference systems parameterized by h € C\ ¥ and
we study the dependence of corresponding Birkhoff matrices on the parameter
h. In section 5 we prove our main theorem concerning the variation of the
dimension of the Galois groups.

2. Regular singular systems : a reminder
2.1. Factorial series. — For the material presented in this section, we

refer to section 2.1. of [4] and to [11].

A function a defined and holomorphic on some open subset of C containing
some half-plane II}, := {z € C | R(z) > M} is expandable into a factorial
series on HL if @ admits an expansion, convergent on IIf,, of the form :

where, for all s € N,

s 1

€T = .
z(x+1)---(x+s-1)

When it exists, the factorial series expansion is unique. For later use, for all

s € N, we also introduce the following notation :

=z +1)- (x+s—1).

The set of germs of holomorphic functions expandable into factorial series,
denoted by Opqt, is by definition the direct limit of the sets of holomorphic
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functions expandable into factorial series on the half plane HL as M tends
to 400 (in what follows, we will identify an element of the direct limit
with one of its representatives). It is a subring of the ring of germs of
holomorphic functions at +oc which is, by definition, the direct limit of the
rings of functions holomorphic on the half plane H}\t[ as M tends to 4oo0.
In particular Oy, is an integral domain; its field of fractions is denoted by
Maer- The intersection of Ofqer and Mo with M(C), the field of mero-
morphic functions over C, are respectively denoted by Ofqct(C) and M f4(C).

Replacing x by —z, we get the notion of function expandable into retrofac-
torial series. More explicitly, a function a holomorphic on some open subset of
C containing some half-plane I, := {z € C | R(z) < M} is expandable into
a retrofactorial series on 1I;, if a admits an expansion, convergent on II},, of

the form :
+oo
St
s=0

where, for all s € N,
1
- zx—1) - (z—s+1)
When it exists, the retrofactorial series expansion is unique. For later use,
for all s € N, we introduce the notation :

T =gz — 1) (x—s+1).

=[]

x

Moreover, we introduce the rings and fields of retrofactorial series O,etrofact
Mretrofact7 Oretrofact (C) and Mretrofact (C) defined Simﬂaﬂy to Ofact7 Mfacta
Otact(C) and M f4.4(C) respectively.

For instance, any function defined and analytic in a neighborhood of
o0 € ]P’(lc is expandable into factorial series and retrofactorial series.

We will denote by O fact the integral domain of formal factorial series and
we denote by My, its field of fractions. The ring laws on (5fact are given,
for all a(z) = 352 asa™ € Ofper and b(z) = 315 bsa 8l € Ot by :

—+00

(1) (a+b)(z) = Y (as +b)a

s=0

+oo
(2) (ab)(z) = chx_[s}
s=0
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where :

co = apbg and, Vs € N*, ¢4 = agbs + asbg + Z cﬁﬁ)ajbl

(4,k,1)EJs
with :
(3) Vs eN*, Jy={(,k,0) [401>1, k>0, j+k+1=s}
and :
i +kE—-DI{+k—-1)!

(4) V(j,1) e N* x N*, V k € N, M Utk D +E—1)

PR - DI - 1)!

As above, replacing x by —z, we get the integral domain of formal retro-
factorial series Oretrofact; its field of fractions is denoted by M ctrofact-

We can interpret any element A of My, (Ogqer) or Mn,m((b\fact) as a se-

ries S°1°0 Aszl*) with coefficients in M, ,,(C). The above sum and prod-
uct formulas (1) and (2) remain valid for factorial series with matricial co-

efficients, that is, for all A(z) = Y720 Aa~l € Mn,m((b\fact) and B(x) =
:208 B8l € My (Otaet), we have :

+o0
(A+ B)(z) = > (As + By)a ™V
s=0
and, for all A(z) = >7°5 Azl € an(ofact) and B(z) = > 12 Byald €
m(@\fact) :

+o0o
(5) (AB)(x) = Cial
s=0

where :

Co = AgByg and, Vs € N*, Oy = AgBs + AsBy + Z >A ;)

We denote by Tfq¢ the natural injective map from My, (Ofger) to
Mmm(@fact) (it is well defined because, as noted above, the expansion into
factorial series is unique).

If m = n, it is a monomorphism of rings.

Moreover, we define § : Mn,m(@\fact) — Mn,m(@fact) by SA = Y os>1 —sAgz sl
We denote by § : M, m(Ofact) — Mpm(Ofact) the map defined by
0A = (x —1)(A(z) — A(z — 1)). The following diagram is commutative :
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(6) Mn,m(@fact) - Mn,m(@\fact)

Tfact T T Tfact

1)
Mn,m(ofact) I Mn,m(ofact)

For this reason we will simply denote 5 by 6.

The following examples of expansions into factorial series will be used later
in this article :

Y o
L — —1 YV [s—1] ,—[s]
(7) VY € My(C),VAEC, - — =1, Z Als— 8],

r—1

—1 o0
() VY € My (C), (In— Y ) =Yyl
s=0

where Y[ =1, and, for s e N*, Yl = Y (Y +1,,) - - - (Y + (s — 1)L,,).

We conclude this section with a remark on inverses of factorial series; we
refer to Proposition 2.1 in [4] for a proof. Let us consider (C,\) € RT x R
and a(z) = 1+ 35 asz 78l € Ofgy such that, for all s € N*, |a,| < CA1L
Then a is invertible in Oqer and if we set a=!(z) = 14+ 37 bz ~1¥], we have,
for all s € N*, |bs| < C(C + )=,

2.2. Fundamental systems of solutions and Birkhoff matrix. — We
refer for instance to section 3 and section 4 of [14] and to the references
therein for the material presented in this paragraph; see also chapter 9 of [17].

Denoting by I' the classical Euler Gamma function, we set, for any ¢ € C :

I'(z) 1 o*
+ _ -\ (k) _ +
ec () Iz —c¢)’ " () k! o'k \c/:cec/ (@).

Fix As € M,,(C) and consider a Jordan decomposition of A, of the form :

= Qdiag(ci1y, + Nyyy ooy eIy, + N Q!
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with @ € GL,(C), m € {1,....,n}, ¢1,...,em € C, p1, .oy iy, € {1,...,n} such
that u1 + -+ + pm = n and, for all ¢ € {1,...,m},

010 0
01 v - 0
Ny, = Y0 e ol € M, (©)
R 1
000 - - 0
We set :
+ o Odiaa(et + -1
ey, = Qdmg(ecﬂm_m,”1 ) e ecmlum+Num)Q
with :
10Dl
n _ 0 lgo) lgH_Q)
€l +N, =

0 0' lgb)
It is easily seen that ejoo does not depend on the particular choice of the
Jordan decomposition and that :

1
Tejoo = (In — ono)ejoo
or, equivalently, that :
562}0 = Aooejoo.
Consider a difference system :
9) TY = AY
with A € GL,(C(z)).

Definition 2.1. — The system (9) is Fuchsian if A(co) = I,,, in which case
we set Aoo = limy 00 (x — 1) (I, — A(z)) € M, (C). It is moreover nonresonant
if, for any pair (A, p) of distinct eigenvalues of Ay, we have A — u & Z. The
system (9) is regular singular if there exists F' € GL,(C(z)) such that the
system defined by F[A] := (F(x — 1)) ' A(x)F(x) is Fuchsian.

In case that (9) is Fuchsian and nonresonant, it admits a unique fundamental
system of meromorphic solutions of the form Y+ = F +ej4foo with FT €1, +
%Mn((’)fact((C)) and where Ay, = lim, oo (2 — 1)(I,, — A(x)) € M,,(C); in other
words, there exists a unique F'* € I, + 1M, (Of4(C)) such that :

1

€T —

(10) TFT (1, — 11400) = AFT.
In case that (9) is regular singular then one can prove that it admits a
(nonunique) fundamental system of meromorphic solutions of the form Y+ =

Fref  with F* € GLp(Mj4ct(C)) and Ao € M, (C).
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The fundamental system of solutions YT is attached to +oo in the sense
that it is build up from convergent factorial series which can be regarded as
regular functions at +oo.

Replacing x by —x, we obtain similar constructions at —oo involving con-
vergent retrofactorial series which can be regarded as regular functions at —oo.

So, in case that (9) is regular singular, we get two fundamental systems
of solutions Y~ and Y*. The corresponding Birkhoff matrix (also called
connection matrix) is P = (Y )7'Y~ which belongs to GL,(C(x)) with
x = €2™ and satisfies P(+ioc) € GL,(C). The Birkhoff matrix depends on
some arbitrary choices but is “almost unique” and it classifies the regular
singular difference systems up to rational equivalence. For details about the
Birkhoff matrices we refer to section 4 of [14] and also to the references therein.

3. Galois groups and Birkhoff matrices

Let 7Y = AY be aregular singular difference system and let P € GL,,(C(x))
be a corresponding Birkhoff matrix (see section 2). It was recalled in section
1.1 that, for any a,b € C not being a pole of P or a zero of det P, P(a) "' P(b)
belongs to the Galois group G of 7Y = AY. In this section, we give a group-
theoretic description of G and of its Lie algebra g in terms of the Birkhoff
matrix.

3.1. Description of the Galois groups. —

Lemma 3.1. — Let G be an algebraic group, let X be an irreducible algebraic
variety and let f : X — G be a morphism of algebraic varieties such that the
neutral element of G belongs to f(X). Then the abstract group generated by
f(X) is Zariski-closed.

Proof. — This is a particular case of Proposition 7.5 in [10]. U

Theorem 3.2. — Let us consider a regular singular difference system 7Y =
AY and let P be a corresponding connection matrix. The Galois group G of
7Y = AY is generated, as an abstract group, by {P(a)"1P(b) | a,b € C\ S}
where S = {x € C | x is a pole of P or det P(x) = 0}.

Proof. — Let us introduce the map A : (C\ S) x (C\ S5) — G, (a,b) —
P(a)~'P(b). Tt is proved in chapter 9 of [17] that the algebraic group generated
by Y = {A(a,b) | (a,b) € (C\ S) x (C\ S)} is the whole Galois group G. So,
it remains to prove that the abstract group generated by Y is Zariski-closed.
The proof of this fact is analogous to that of Proposition 3.2 of [8]. Indeed,
since P belongs to GL,(C(x)), there exists an invertible n x n matrix P with
coefficients in the field of rational functions on Pl such that P(z) = P(x).
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Let us denote by X the affine open subvariety of the projective variety IP’(%:
defined by X = P{ \ (SU{0,00}) where S = {e2™s | s € S} = {u € PL\
{0,00} | w is a pole of P or det P(u) = 0} and let us consider the morphism
of algebraic varieties A : X x X — GL,(C), (u,v) — P(u)"'P(v). Since
the image of A coincides with Y, we have to prove that the abstract group

generated by the image of A is Zariski-closed. This is indeed the case in virtue
of Lemma 3.1. U

Note that any regular singular difference system has a connected Galois
group. The above theorem was also proved by A. Duval in [3] in the regular
case by using a different method.

3.2. Description of the Lie algebras of the Galois groups. —

Theorem 3.3 (P. Etingof). — Let us consider a reqular singular difference
system 7Y = AY and let P be a corresponding connection matriz. The Lie
algebra g of the Galois group G of TY = AY is generated by {P(a)"'P'(a) | a €
C\ S} where S ={x € C | x is a pole of P or det P(x) = 0}.

Proof. — Maintaining the notations introduced in the proof of theorem 3.2,
we consider the analytic map A : (C\ S) x (C\ S) — G, (a,b) = P(a)"1P(b).
Moreover, we introduce the analytic map A : C\ S — g, a — OpA(a,a) =
P(a)~'P'(a) (the fact that ) takes its values in g is a consequence of the facts
that, for all a € C\ S, A(a,-) is an analytic map taking its values in G which
evaluation at a is equal to I,).

Let b be the Lie subalgebra of g generated by {A(a) | a € C\ S} and let H
be the connected embedded Lie subgroup of G corresponding to b.

Let us consider b € C\ S. We have, for all a € C\ S, 9,A(a,b) =
—P(a)"'P'(a)P(a)~tP(b) = —A(a)A(a,b), hence A(-,b) is solution of the
Cauchy problem Y’ = —\Y, Y (b) = I,,. Since, by definition, —\ takes its
values in b, the above Cauchy problem can be integrated by functions with
values in H. By uniqueness of the solution with values in G of the above
Cauchy problem, we get in particular that A(-,b) takes its values in H. Hence
H contains {A(a,b) | (a,b) € (C\S) x (C\ S)}. Theorem 3.2 implies that
H=G,s0bh=g. O

4. Parameterized equations

4.1. Hypotheses. — Let X be a finite subset of C. In this section we
consider h € C\ ¥ as a parameter.
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Let us consider a family of difference systems :
(11) 7Y = ALY, A, € GL,(C(x,h)).

We denote by Dy (res
Ayl and by S; =

a denominator in C[z,h] for A (resp.
Cx (C\%) | Di(eh) = 0} (resp.
(x,h) = 0}) the corresponding singular

(5C h)
%) h)
h) € Cx (C\'Z) | D(z,h) = 0} with

D)
{ €
S_ = {(z,h) € Cx (C | D_
locus. We set S = S_U Sy = {(z
D=D,D_eClz,h.

Assumption 1. — We assume that :
1. For any compact subset K of C\ X, (C x K)N S is compact (or, equiv-
alently, bounded);
2. a. forallh € C\ X, Ap(c0) = 1,, that is, the system 7Y = ARY is
Fuchsian;

b. the matrices Apoo = limy o0 (x—1)(I, — Ap(x)) € M, (C) have Jor-
dan reductions (ie. Jordan normal forms and base change matrices)
depending analytically on h € C\ X and they are nonresonant in the
sense that for any pair of eigenvalues A\, i we have A — u & Z*;

3. S does not contain any line C x {h} C C x (C\ X).

Let us make some remarks about these hypotheses.

- Condition 1. ensures that (z,h) — Ap(z) and (z,h) — Ap(z)~! are
analytic in a neighborhood of any point of {oc} x (C\X) C PL x (C\ X).

- Conditions 1. to 3. imply that, for any h € C\ X, 7Y = 4,Y is a
nonresonant Fuchsian difference system.

- Definition 4.1 (Properties P™ and P~). — We will say that a fam-
ily (Un = > 450 Uh;sxi[s])hec\ﬁ of elements of Mmm(@fact) satisfies the
property P if the following conditions hold :

- for all s € N, Uy, depends analytically on h € C\ X;
- for any compact subset K of C\ X, there exists (Cx, \g) € RT*xRT*

such that, for all s € N, for all h € K, [|Up|| < Cre A,
We also introduce the similar property P~ for families of retrofactorial
series.

In what precedes, || - || denotes a norm on M, ,,(C). Since two norms
over a finite dimensional C-vector space are equivalent, the properties P™
and P~ do not depend on the norm || - ||. In what follows, if n = m, we
will assume that || - || is submultiplicative.

Note that 7Y = A,Y is equivalent to :

5Y = B,Y



GALOIS GROUPS OF FAMILIES OF DIFFERENCE SYSTEMS 11

with :
By = (z —1)(I, — Ap).

As noted at the end of section 2.1, for all h € C\ X, the analycity of
By, in the neighborhood of x = oo ensures that B is expandable into
factorial series in some right half-plane :

+o00
Bp(z) = ZBh;Sx_[S}.
s=0

Remark that :
Bh;O = Ah;oo-

Condition 1. also entails the following.

Lemma 4.2. — The family (Bp)pec\s satisfies the properties P* and
P

Proof. — For all h € C\ X, we consider the Taylor series expansion of
By, in the neighborhood of z = oo :

too
Bh(l') = ZBh;kﬂU—k-
k=0

In order to prove the lemma, we first relate the Taylor expansion of By
with its factorial series expansion.

Let (k) (k,s)enxn+ be the sequence of real numbers such that, for all
s € N*":

+o0
> s XF =X = X(X 4+ 1) (X +5-2).
k=0

We emphasize that, for all k € N, for all s € N*, 1), ; > 0 and, for all
s € N*, for all k > s, 9, s = 0. We have :

+o00 1
Z yrp— D) —
k=0 Ty
+o0
— Z y[S—l}x—[S]
s=1
400 400

= Z(Z ¢k,syk)x7[8} .

s=1 k=0
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So, by identification, we get, for all £ € N* :

+o0
—k _
x = Zwk—l,sx s
s=1

hence, for all s € N :

+oo
By, = Zibkq,th;k
k=1

s+1

= Z Yi—1,sBhk
k=1

with 990 = 1 and, for all k¥ € N*, ¢4, o = 0. This formula implies that, for
all s € N*, By, depends analytically on h. Moreover, let K be a compact
subset of C\ ¥. Since (z,h) — Bp(z) is analytic on a neighborhood of
{oo} x K, there exists (Cl, i) € RT™* x RT* such that, for all h € K,
for all kK € N: B
1Bugll < CoeNk".

Since, for all k € N, for all s € N, 9, s > 0, we get, for all h € K, for all
s e N*:

400 +00
[ Bhssll = || Zwk—l,th;kH < C}(Zz/}k,m)\’[{k = (Che N )N o1
k=1 k=1

Hence, we have proved that (Bp)jec\x satisfies the property Pt. The
proof of the fact that (Bp,)nec\x satisfies the property P~ is similar. [

- We can always assume that condition 3. holds up to enlarging ..

4.2. Birkhoff matrices of parameterized equations. — We maintain
the notations and the hypotheses formulated in the previous subsection.

For any h € C\ X, we denote by :
Yh‘L = F,;Lejgh;oo and Y,” = F,;e;lh;oo
the solutions and by :
P, = (Y, € GL,(C(x))
the Birkhoff matrix built in section 2.2 for the Fuchsian and nonresonant

difference system (11). We recall (see section 2.2) that F; is the unique
element of I, + 2M,,(O4c+(C)) such that :

1
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Similarly for F;". The aim of this subsection is to study the dependence of
Py (z) on z and h; the difficulty is to study the dependence of F' (z) and F), (z)
on x and h. This is the purpose of the following proposition (see [4, 5, 14, 6]
for variants).

Proposition 4.3. — The family of gauge transformations (F;r = Z:ﬁg F,jsx*[s])hec\z

satisfies the property PT (given in definition 4.1).

Before proceeding to the proof of Proposition 4.3, we state and prove a
lemma.

Lemma 4.4. — Let (Vi = 3 .50 Vh;sxi[s})he((j\z be a family of elements of

Mn(@\fact) satisfying to the property P (given in definition 4.1). We assume
that, for any h € C\X, none of the eigenvalues of Vi, is a nonpositive integer.
Then, for any =g € ker(Viy), for any h € C\ X, the equation U = V3 U has a

~

unique solution Uy, in Mn,l((’)fact) with constant term Zq. Moreover the family
(Un)nec\s satisfies the property P .

Proof. — We first prove that, for any h € C\ X, there exists a unique Up, =
::08 Uh;sx_[s} € My, 1(Ofqet) such that :

oUy, = Vi Uy,
©) {U U
h;0 — —0-

Note that formula (5) stated in section 2.1 ensures that :

400
Vi(@)Un(x) =) Chyea !
s=0

where :

Chyo = VayoUnyo and Vs € N, C.s = ViyoUpss + VaysUngo + Z Cgﬁ)vh;jUh;l
A

(for the definitions of J; and ) see formulas (3) and (4) in section 2.1).

g
Moreover, we have :
+o0

Up(x) = Z — Uz 1.
5=0
So, the system (€) is equivalent to :
Unyo = Eo
Vh;OUh;O =0
Vs € N*, = (sI + Viuo)Unis = VissUhio + e, i ViusUnit:
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Since =g belongs to ker(V}.0) and since, for all s € N*, sI + Vj, is invertible,
the above system has a unique solution U = Z::OS Uh;sx_[s} € My1(Ofact)
given by the following induction formula :

Uno = Zo
(13) . _ 1 ®)y,
Vs € N*, Up;s = —(sI + Vh;O) VissUno + Z(j,k,l)e]s €1 ViiiUnit| -

It remains to check that (Uh)heC\E satisfies the property PT. The above
induction formula clearly shows that, for all s € N, Uj.; depends analytically
on h € C\ X (recall that, for all s € N, V},.; depends analytically on h €
C\ X because (Vi)pec\x satisfies the property P+ by hypothesis). In order
to prove that (Uh)heC\E satisfies the property PT, it remains to study the

growth properties of the coefficients of Uy = Z::og Uh;sx_[s}. We set, for all
(h,s) € (C\ X) x N, vps = ||[Vhs|| and up,s = ||Upysl|. Let K be a compact
subset of C\ X. Using the fact that Vj,, depends analytically on h € C\ X
and using the hypothesis relative to the eigenvalues of Vj.y, we see that ¢ =
SUP(,s)ck xn- | (8] + Vo)~ Y| is finite. From formula (13), we get :

(14)  V(h,s) € K xN, ups <c |vpeuno+ Y ]lvh,]uhl
(4, k,1)eds

We introduce the family of sequences (uj. s)(hs)e(C\x)xn+ inductively defined
by :
(15)

>
uhl—cvhluhoand Vs € N>o, uh = C | Up;sUp;0 + Z ]lvhjuhl
(4,k,1)eds

and we consider the corresponding factorial series :

Zuh T s ¢ (’)fact

Using the fact that up, < cvpqupo = uj,, and using the inequality (14), we
see by induction that :

V(h,s) € K x N*, wps < u,is.

Remark that, if we set :

th sT 6 Ofacta
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then the definition of u; together with the product formula formula (5) given
in section 2.1 imply that :

uy, (x) = cop(z)(uno + ug, (2)),

SO

(16) uy (z) = % == ~Unpo <1 - ﬁm(:ﬂ)) .

Since (Vi)nec\s satisfies the property Pt there exists (Cx, A\g) € RT* x RT*
such that, for all s € N*, for all h € K, vps = ||[Vhs] < CK)\[;(_”; using
formula (16) and applying the last property stated in section 2.1, we get that

there exists (C, Niy) € RT™ x R such that, for all s € N*, for all h € K,
Ups < ug, < Ch N 571 O

Proof of Proposition 4.3.. — Note that the functional equation 7'F,jr (I, —
L Aj.0) = AF; (see formula (12) at the beginning of this section) is
equivalent to :

1 —1
SF," = (BiF," — F;f Byy) (In - ;BM]) .

Using formula (8) and the product formula (5) which were both stated in
section 2.1 we get that the above equation is also equivalent to :

—+oco
SFf (x) = Lys(Fyf ()2l
s=0

where, the Lj, s are the linear operators on M, (C) defined by :
Lpo(M) = Bp,oM — M By,

Lp1(M) = BpaM + (Bp,oM — M By,0)Bp.o
and :

Vs > 2, Lps(M) = BrsM+(BroM—MBpo)(Buo)+ > ¢ By M(Bo)l.
(G, k,1)E s

In order to finish the proof, it is clearly sufficient to show that this family
of difference systems parameterized by h € C \ X satisfies the hypotheses
of Lemma 4.4 (with Zp = I,). For all s € N, L depends analytically
on h € C\ X because, for all s € N, By, satisfies the property PT (see
section 4.1) and, hence, depends analytically on h € C\ ¥. Let K be a
compact subset of C\ ¥. Since (Bp)pec\x satisfies the property Pt (see
section 4.1), there exists (Cx, A\g) € RT™ x R such that, for all s € N, for
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all h € K, ||Bps|| < C’K)\[;:H. So, setting bp.o = || Bpl|, we have, for all
(h,S) € K x NZQ :

Hnslll < Crd ™ 2b0(bno) + 30 Al (by0)
4,k )€ s
(here ||| - ||| denotes the operator norm associated to || - ||). Using the product

formula (5) stated in section 2.1 and the formula :

1 - 1_bh;o—>\K+1 1_bh;o—)\K+1
N T — Ak T —bpo—1

= <1 — (bpo — A + 1) Z()\K - 1)[s]$[s]> <1 — (bpo — Ak + 1) Z(bh;o)[s]x*[u@]

s=1 s=1

we get that there exists (C;, V) € RT* xR such that the above expression is
dominated (uniformly in (h, s) € K x N) by C4 X [*71. The set of eigenvalues
of Ly, is equal to {g — v | p,v € Sp(Bp)} and, hence, do not contain
any nonpositive integer because Bj,.q is nonresonant. Moreover the matrix I,
belongs to the kernel of Lj.y. Therefore, the hypotheses of Lemma 4.4 are
satisfied as expected. O

In what follows we will say that a function f is analytic in a neighborhood
of {+o00} x {ho} if, there exists M € R such that f is defined and analytic
on a neighborhood of I}, x {ho} = {z € C | R(z) > M} x {ho}.
Proposition 4.5. — Let us consider (U, = 3.5 Uh;sx_[s])heC\E a family
of elements of Mn(@fact) satisfying the property P (given in definition 4.1).
Then, Up(z) = > >0 Uh;sx_[s} defines an analytic function of (x,h) in the
neighborhood of any points of {+oo} x (C\ X).

Proof. — Let K be a compact subset of C\ ¥ and let (Cx, i) € RT™* x RT*
be such that, for all s € N, for all h € K, ||Vjs]| < CK)\[IS(_”. Let us consider

the half-plane H;\FKJFI ={x € C|R(z) > Ak +1}. For all (z,h) € H;\FKJFI x K,
for all s € N, we have :

[s—1] )\[5—1] )\[s—l} P(}\ 45— 1)

Upor W <O |2E | <0 2K < K S/ e S =

Ozl < Ok | = 5| S Ok 5 S X e 18~ ¥ Tk 75 +1)

) F()\K-f—s—l)
5=0 D(Ag +s+1)
pendent of (z,h) in H;\FK‘Fl x K, is convergent. We conclude that Up(z) =

The Stirling formula ensures that the series > , which is inde-

2520 Uh;sx_[s] defines an analytic function of (x,h) in H;\"_K'i‘l x K. O
We define a subset Q of C x (C\ X) by :
N=(Cx(C\Y)\(S+(Zx{0})) cCx(C\X).

)
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Theorem 4.6. — The map (z,h) — Py(z) = (V,}(2))71Y, (z) is analytic
on Q and meromorphic on C x (C\ X).

Proof. — Proposition 4.3 and Proposition 4.5 entail that the map (z,h) —
F,j(x) = > 0 Ff;x_[s] is analytic in the neighborhood of any point of
{400} x (C\X). The functional equation 7Y = A,Y allows us to conclude that
(z,h) — Y, () can be extended into a meromorphic function over C x (C\X),
analytic on 2. Similar arguments prove an analogous result for Y,~. Whence
the theorem. O

5. Variation theorem

We consider a family of difference systems :
(Sh) 7Y =AY, A€ GLn((C(.%', h))

parameterized by h € C\ ¥ satisfying the hypotheses 1. to 3. given in
Assumption 1 in section 4.1. We maintain the notations of section 4.1 and of
section 4.2. In particular, for any h € C\ X, we denote by :

Yth = F}jezhm and Y,” = F}:ezhm
the solutions and by :
P, = (Y, € GL,(C(x))

the Birkhoff matrix built in section 2.2 for the Fuchsian and nonresonant
difference system (Sp). We recall that € denotes the subset of C x (C\ X)
given by :

Q= (Cx(C\E)\(S+(Zx{0})) cCx(C\X).

where S is the singular locus defined at the begining of section 4.1. Theorem
4.6 ensures that the map (z,h) — Py(z) = (Y, (2)) 1Y, (z) is analytic on Q
and meromorphic on C x (C\ ). Moreover, for any h € C\ X, we denote by
Gy, the Galois group of (Sy) and by g, its Lie algebra. We recall that, in virtue
of Theorem 3.3, for all h € C\ X, gy, is generated by {P,(a) ' P/ (a) | a € O}
where Q) = {x € C | (z,h) € Q}.

Theorem 5.1. — Let K = maxuec\x dim(Gy). Then © = {h € C\
Y | dim(Gp) = k} is an open subset of C\ ¥ with discrete complement.

Proof. — In what follows [-,-] denotes the usual Lie bracket on M, (C). For
any set F and for any functions f,g: E — M, (C), [f, g] denotes the function
E = Mu(C), z = [f(z),g(x)].

We denote by pi,...,px the s projections from M, (C)* to M, (C) and
we introduce R = {px | k € {1,..,&}} U{lpr,p] | (k1) € {1,....,5}*} U
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{[[pr> 21}y P | (B, 1,m) € {1,...,x}>}U--- the set of all functions on M, (C)"
obtained by iterating the Lie bracket [-,].

Recall that, for all h € C\ X, we set Q) = {x € C | (z,h) € Q}. For
all h € C\ ¥, we consider the map A, : Oy — gp, a — Py(a)"'P/(a) and
we use the same notation for its extension to Qf defined by A, : QF — g~,
a = (al, ceny aﬁ) — ()\h(al), ey )\h(aﬁ)).

Let hmax € C\ X be such that dim(Gy,, ) = dim(gp,,.) = k. As re-
called above, Theorem 3.3 ensures that gy, is generated as a Lie algebra
by the image of Ap,,,, so there exist fi,....fx € R and a € Qf  such that
F1 (A (@), -5 T (Ahnac (@) 18 @ basis of g,

Let us introduce the meromorphic function on C \ ¥ defined by ¢(h) =
det(f1 (An(a)), ..y s (Ar(a))). This function is nonzero since @(hpax) # 0.

The description of the Lie algebra of the Galois groups given in Theorem
3.3 entails that the degeneracy locus (C\ X)\ © is included in the set of zeroes
and poles of ¢, which is discrete and closed in C \ ¥; thus, the degeneracy
locus is itself discrete and closed in C\ X. O

This theorem has for instance the following consequence.

Corollary 5.2. — Suppose that there exists h € C\ X such that Gj, =
GL,(C). Then for any h € C\ X but, maybe, a discrete subset, we have
G, = GL,(C).
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