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Abstract. This paper deals with regular singular generalized q-hypergeometric equations with
either “large” or “small” Galois groups. In particular, we consider the fundamental problem of
finding appropriate Galoisian substitutes for the usual notion of local monodromy.
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In this paper, q denotes a non zero complex number such that |q| < 1.

1 Introduction

The generalized hypergeometric operator L(α;β;λ) with parameters α = (α1, ..., αr) ∈ Cr,
β = (β1, ..., βs) ∈ Cs and λ ∈ C∗ is given by :

L(α;β;λ) =
s∏

j=1

(δ + βj − 1)− zλ
r∏

i=1

(δ + αi), δ = z
d

dz
. (1)

An historical account of the hypergeometric theory can be found in [22]. The hypergeometric
operators are classically quantized as follows. We denote by Dq the non commutative alge-
bra C(z)〈σq,σ

−1
q 〉 of non commutative polynomials with coefficients in C(z) satisfying to the

relation σqz = qzσq. The generalized q-hypergeometric operator Lq(a; b;λ) with parameters
a = (a1, ..., ar) ∈ (C∗)r, b = (b1, ..., bs) ∈ (C∗)s and λ ∈ C∗ is given by :

Lq(a; b;λ) =

s∏

j=1

(
bj
q
σq − 1)− zλ

r∏

i=1

(aiσq − 1) ∈ Dq. (2)

It is regular singular both at 0 and at ∞ if and only if r = s (see section 2).

In the rest of the paper, we will assume that r = s =: n.

Important results concerning the Galoisian aspects of the generalized hypergeometric oper-
ators were obtained by F. Beukers and G. Heckman in [6], F. Beukers, W. D. Brownawell and
G. Heckman in [5] and N. M. Katz and O. Gabber in [21]. For an approach relying on Ramis’
density theorem, we refer to the work of A. Duval and C. Mitschi in [15] and to C. Mitschi’s
paper [27].

The fact that the local monodromy associated to (1) at the singular point z = 1/λ ∈ C∗

is a pseudo-reflection is crucial ([6, 21]). As pointed out by Y. André in [1] (with λ = 1),
“l’outil essentiel dans la détermination du groupe de Galois différentiel hypergéométrique, à
savoir la pseudo-réflexion donnée par la monodromie locale au point 1, ne se transporte pas
au cas q-hypergéométrique” 1. This leads us to the following central problem for the theory of
q-difference operators over P1

C :

Problem : Find relevant Galoisian substitutes for the missing monodromy.

This paper presents a solution of this problem. We use an infinitesimal version of a mero-
morphic family of Galoisian morphisms build up from twisted Birkhoff matrices which were
introduced by J. Sauloy in [36]. We show that, in the q-hypergeometric case, the singularities of

1. “the essential tool for the calculation of the hypergeometric differential Galois group, namely the pseudo-

reflection given by the monodromy around the point 1, is no longer available in the q-hypergeometric case”.
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this family give rise, via Taylor expansion, to infinitesimal Galoisian morphisms providing the
missing geometric information. Then, we are in a position to determine the Galois groups of
all Lie irreducible regular singular generalized q-hypergeometric operators, without restriction
on q. Our calculations of q-hypergeometric Galois groups are generalizations of anterior results
obtained, by a different method, by Y. André. Indeed, Y. André proved in [1] a specialization
theorem for differential/difference Galois groups allowing the calculation of q-difference Galois
groups for generic q.

In this paper, we are also interested in operators having finite Galois groups. We recall that
H. A. Schwarz determined the list of Gauss’ hypergeometric operators (this corresponds to the
case r = s = n = 2) with finite differential Galois groups; see [38, 19, 4]. This list was extended
to irreducible generalized hypergeometric operators by F. Beukers and G. Heckman in [6] and
by N. M. Katz in [21] by using p-curvatures (Grothendieck’s conjecture). In the present paper,
we draw up the list of all generalized q-hypergeometric operators having a finite Galois group.
This extends the case n = 2 tackled by L. Di Vizio in [12]. Our original approach has been
greatly improved thanks to observations of one of the referees.

As suggested by one of the referees, it is interesting to include in this introduction some
illustrations of the role of the q-hypergeometric theory in mathematics. L. Euler, C. F. Gauss
and C. G. J. Jacobi already used q-hypergeometric objects but the general q-hypergeometric
theory started with E. Heine; see [39] and [18] for historical informations. Since these pio-
neer works, the q-hypergeometric theory in one or several variables occurred in many branches
of mathematics. In V. Tarasov and A. Varchenko’s paper [40], the q-hypergeometric the-
ory appears geometrically as a bridge between quantum affine algebras and elliptic quantum
groups. In particular, these authors present a q-analogue of Kohno-Drinfeld theorem on the
monodromy group of the differential KZ equation [14, 23, 24]. More precisely, a connection

between representation theories of the quantum loop algebra U ′
q(g̃l2) and of the elliptic quan-

tum group Eρ,γ(sl2) is provided by transition functions between asymptotic solutions of the
qKZ equation associated with the quantum group Uq(sl2). This work crucially relies on the
geometric interpretation of the qKZ equation as a discrete Gauss-Manin connection in the
spirit of K. Oamoto’s work [2, 3] and on the associated q-hypergeometric integrals (pairing
cohomology/homology). The q-hypergeometric theory is also frequently used in analytic num-
ber theory. For instance, C. Krattenthaler, T. Rivoal and W. Zudilin used q-hypergeometric
series in order to study the arithmetic nature of values of q-analogues of Riemann zeta func-
tion (related to modular forms); see [26] and the references therein. We finish by mentioning
the occurrence of the q-hypergeometric theory in the framework of the discrete Morales-Ramis
theory developed by G. Casale and the author in [8, 7] in order to study the non integrability
of concrete discrete dynamical systems (e.g. q-Painlevé equations). This list, which is far from
being exhaustive, illustrates the prominent role of the q-hypergeometric theory in mathematics.

We shall now give the organization of this paper. In section 2 we recall general definitions
and properties regarding regular singular q-difference modules. In section 3 we introduce the
notions of Birkhoff matrix and of twisted Birkhoff matrix. We also introduce the logarithmic
derivative of the twisted Birkhof matrix. We give their links with q-difference Galois theory.
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In section 4 we show that, in the q-hypergeometric case, the singularities of the logarithmic
derivative of the twisted Birkhoff matrix provide interesting infinitesimal Galoisian morphisms
seen as avatars of the usual local monodromy. In section 5 we study fundamental properties
of the irreducible generalized q-hypergeometric modules, we investigate their Lie irreducibility
and we compute the corresponding Galois groups. In section 6 we draw up the list of all gen-
eralized q-hypergeometric modules with finite Galois groups. We also give an application to
generalized hypergeometric operators using Y. André’ specialization theorem ([1]).

Acknowledgements. I would like to thank the referees whose comments and suggestions led
to several improvements of this paper. I also thank Y. André, D. Bertrand, J.-P. Ramis, T.
Rivoal, J. Sauloy and L. Di Vizio.

2 Regular singular q-difference modules

The main references for what follows are M. van der Put and M. Singer’s book [29] and J.
Sauloy’s paper [36]. In the whole paper, σq denotes the operator acting on any function (or
germ of function) f of the complex variable z by (σqf)(z) = f(qz).

We denote by C{z} the local ring of germs of analytic functions at 0 ∈ C and by C({z})
its field of fractions, namely the field of germs of meromorphic functions at 0 ∈ C. Let
C({z})〈σq,σ

−1
q 〉 be the non commutative algebra of non commutative polynomials with co-

efficients in C({z}) satisfying to the relation σqf = (σqf)σq for any f ∈ C({z}). We denote
by F (0) the neutral Tannakian category over C of q-difference modules over C({z}) : it is the
full subcategory of the category of left C({z})〈σq,σ

−1
q 〉-modules whose objects are the left

C({z})〈σq,σ
−1
q 〉-modules which are finite dimensional as C({z})-vector spaces. The objects

of F (0) can be considered as finite dimensional C({z})-vector spaces endowed with a σq-linear
automorphism. In accordance with the tradition, two isomorphic objects of F (0) will be called
meromorphically equivalent at 0. For details, see section 1.4 of [29] or section 1.1 of [36].

An object of F (0) is regular singular if it has a lattice over C{z} which is invariant under
the action of σq and σ

−1
q . We denote by E(0) the full subcategory of F (0) made of its regular

singular objects; it is a neutral Tannakian subcategory of F (0). For any object M of E(0),
there exist a C-vector space V (0) and a C-linear automorphism Φ(0) of V (0) with eigenvalues in
{c ∈ C∗ | |q| ≤ |c| < 1} such that M is meromorphically equivalent to the q-difference module
C({z}) ⊗C V

(0), the action of σq being given by σq ⊗ Φ(0). For details, see sections 12.1 and
12.2.1 of [29] or section 1.2 of [36].

Let M be an object of E(0) and let A ∈ GLn(C({z})) be the inverse of the matrix rep-
resenting the action of σq on M with respect to some C({z})-basis. We now recall the con-
struction of local solutions at 0 for the q-difference system σqY = AY . The above reminders,
translated in terms of matrices, ensure that there exist A(0) ∈ GLn(C) with eigenvalues in
{c ∈ C∗ | |q| ≤ |c| < 1} and F (0) ∈ GLn(C({z})) such that :

(σqF
(0))A(0) = AF (0). (3)

Therefore, if e
(0)

A(0) is a fundamental system of solutions of σqY = A(0)Y then Y (0) = F (0)e
(0)

A(0)
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is a fundamental system of solutions of σqY = AY . In [36], e
(0)

A(0) is built as follows. Let

A(0) = D(0)U (0) be the multiplicative Dunford decomposition of A(0) (i.e. D(0) ∈ GLn(C)
is semi-simple, U (0) ∈ GLn(C) is unipotent and D(0)U (0) = U (0)D(0)). Let θq be the Jacobi
theta function defined by θq(z) = (q; q)∞ (z; q)∞ (q/z; q)∞ where, for any a ∈ C∗, (a; q)∞ =∏∞

k=1(1 − aqk−1). We have σqθq = −z−1θq. For all λ ∈ C∗ such that |q| ≤ |λ| < 1,

we introduce the “q-character” e
(0)
λ =

θq
θq,λ

where θq,λ(z) = θq(λz). We extend the defini-

tion of e
(0)
λ to any λ ∈ C∗ by requiring that e

(0)
qλ = ze

(0)
λ . If D(0) = Qdiag(λ1, ..., λn)Q

−1

then we set e
(0)

D(0) = Qdiag(e
(0)
λ1
, ..., e

(0)
λn

)Q−1. It is easily seen that e
(0)

D(0) does not depend

on the chosen diagonalization. We also introduce the “q-logarithm” ℓq = −z
θ′q
θq

and we set

e
(0)

U (0) = Σn
k=0

(ℓq
k

)
(U (0) − In)

k. Then e
(0)

A(0) = e
(0)

D(0)e
(0)

U (0) depends only on A(0) and we have

σqe
(0)

A(0) = A(0)e
(0)

A(0) as expected.

We have similar constructions (F (∞), E(∞), etc) and results at ∞.

We denote by F the neutral Tannakian category over C of q-difference modules over C(z) :
its definition is similar to that of F (0) by replacing the difference field (C({z}), σq) by (C(z), σq).
In accordance with the tradition, two isomorphic objects of F will be called rationally equiva-
lent. For the sake of conciseness, we set Dq = C(z)〈σq,σ

−1
q 〉.

We have natural functors F ; F (0) and F ; F (∞). We say that an object of F is regular
singular both at 0 and at ∞ if it is regular singular when viewed both in F (0) and in F (∞).
We denote by E the full subcategory of F made of its regular singular objects. It is a neutral
Tannakian subcategory of F .

For instance, it is easily seen that the generalized q-hypergeometric module Hq(a; b;λ) with
parameters a = (a1, ..., an) ∈ (C∗)n, b = (b1, ..., bn) ∈ (C∗)n and λ ∈ C∗ given by

Hq(a; b;λ) = Dq/DqLq(a; b;λ) (4)

is regular singular both at 0 and at ∞.
As explained above, choosing a basis, we can attach to any object M of E two fundamental

systems of solutions Y (0) = F (0)e
(0)

A(0) with F
(0) ∈ GLn(M(C)) and A(0) ∈ GLn(C) and Y

(∞) =

F (∞)e
(∞)

A(∞) with F
(∞) ∈ GLn(M(C∗ ∪{∞})) and A(∞) ∈ GLn(C). We have denoted by M(X)

the field of meromorphic functions on the Riemann surface X.

3 Galois theory for q-difference modules

A number of authors have contributed to the development of Galois theories for q-difference
equations over the past years, among whom C. H. Franke [17], P. Etingof [16], M. van der Put
and M. Singer [29], M. van der Put and M. Reversat [28], Z. Chatzidakis and E. Hrushovski
[10], J.-P. Ramis, J. Sauloy [36], Y. André [1], etc. The relations between the existing Galois
theories for q-difference equations are partially understood (see in particular [9] and [13]).
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3.1 The Tannakian formalism

Let ⊗ be the natural tensor product on E and let ω be a complex valued fiber functor on E
(see [29, 36] for details). Following the general formalism of the theory of Tannakian categories
(see [11]), the absolute Galois group of E is the complex proalgebraic group Gal(E , ω) = Aut⊗(ω)
and the Galois group of an object M of E is the complex linear algebraic group Gal(M,ω) =
Aut⊗(ω|〈M〉) where 〈M〉 denotes the Tannakian subcategory of E generated byM . For the sake
of conciseness, we shall omit in what follows the “base point” ω.

The fiber functor ω induces equivalences of Tannakian categories between E and the category
of finite dimensional rational linear C-representations of Gal(E) and between 〈M〉 and the
category of finite dimensional rational linear C-representations of Gal(M).

3.2 Galois groups and Birkhoff matrices

Let M be an object of E and let A ∈ GLn(C(z)) be the inverse of the matrix representing
the action of σq on M with respect to some C(z)-basis. We denote by G ⊂ GLn(C) the corre-
sponding Galois group. We maintain the notations introduced in section 2.

Birkhoff matrix. The Birkhoff matrix, also called connection matrix, is defined by P =
(Y (∞))−1Y (0). Its entries are elliptic functions i.e. meromorphic functions on the elliptic
curve Eq = C∗/qZ.

A link between Birkhoff matrices and difference Galois theory was discovered by P. Etingof
in [16] for regular q-difference modules over C(z) . Recall that a q-difference module over C(z)
is regular if it is trivial when viewed both in F (0) and in F (∞). The extension of P. Etingof’s
work to the regular singular case is not obvious. The reason is that in the regular singular
case the construction of the Birkhoff matrix is in general not compatible with the tensor prod-
uct. The fundamental obstruction to tensor compatibility comes from the fact that, in general,

e
(0)
λ e

(0)
µ 6= e

(0)
λµ . This problem was first overcome “algebraically” by M. van der Put and M.

Singer in [29] by introducing symbolic solutions. Later, J. Sauloy solved “analytically” this
problem in [36] by introducing twisted Birkhoff matrices.

Twisted Birkhoff matrix. Let τ ∈ C be such that q = e−2πiτ . For all y ∈ C, we set qy = e−2πiτy.
Let C̃∗ be the Riemann surface of log (universal covering of C∗); z̃ will denote a variable on

C̃∗.
For any λ ∈ C∗, we introduce the analytic map on C̃∗ defined by z̃ 7→ gz̃(λ) = z̃ω where ω

is the unique element of R such that λ/qω belongs to the unit circle U ⊂ C∗.

For any λ ∈ C∗, we introduce the meromorphic map on C̃∗ defined by z̃ 7→ ψ
(0)
z̃ (λ) =

e
(0)
λ (z̃∗)

gz̃(λ)
,

where z̃∗ denotes the projection of z̃ ∈ C̃∗ on C∗. We define the twisting factor at 0 as the

meromorphic map on C̃∗ defined by z̃ 7→ ψ
(0)
z̃

(
D(0)

)
= Qdiag(ψ

(0)
z̃ (λ1), ..., ψ

(0)
z̃ (λn))Q

−1 where

Q ∈ GLn(C) and (λ1, ..., λn) ∈ (C∗)n are such that D(0) = Qdiag(λ1, ..., λn)Q
−1.

We have a similar twisting factor ψ
(∞)
z̃ (D(∞)) at ∞.

The twisted connection matrix is the meromorphic function P̆ on C̃∗ defined by z̃ 7→ P̆ (z̃) =
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ψ
(∞)
z̃

(
D(∞)

)
P (z̃∗)ψ

(0)
z̃

(
D(0)

)−1
.

Notation. For the sake of conciseness, we will write z for both z̃ and z̃∗. Note that, in section
4, which is at the heart of the paper, we will not need P̆ globally : we will choose an arbitrary
branch of P̆ and we will consider P̆ locally near some point of C∗.

A density theorem. Fix a point y0 ∈ Ω = C̃∗ \ {zeros of det(P̆ ) or poles of P̆}. J. Sauloy
exhibited in [36] the following elements of the Galois group G of M :

1.a. D
(0)
1 = γ1(D

(0)) and D
(0)
2 = γ2(D

(0)) where, using the q-polar decomposition of C∗

(that is identifying C∗ with U× qR via the map U× qR → C∗, (u, qω) 7→ uqω), γ1 : C
∗ =

U× qR → U is the projection on the first factor and γ2 : C
∗ = U× qR → C∗ is defined by

γ2(uq
ω) = e2πiω;

1.b. U (0);

2.a. P̆ (y0)
−1D

(∞)
1 P̆ (y0) = P̆ (y0)

−1γ1(D
(∞))P̆ (y0) and P̆ (y0)

−1D
(∞)
2 P̆ (y0) = P̆ (y0)

−1γ2(D
(∞))P̆ (y0);

2.b. P̆ (y0)
−1U (∞)P̆ (y0);

3. P̆ (y0)
−1P̆ (z), z ∈ Ω.

The following result, due to J. Sauloy in [36], is a generalization of a density theorem due
to P. Etingof in [16]. We refer to Theorem 12.14 in section 12.3.3 of [29] for a more “algebraic”
density theorem due to M. van der Put and M. Singer.

Theorem 1. The Galois group G is generated, as an algebraic group, by the matrices 1. to 3.

We denote by C and call connection component of G the complex linear algebraic subgroup

of G generated by the matrices involved in 3. : C = 〈P̆ (y)−1P̆ (z) | y, z ∈ Ω〉 ⊂ G. The following
result is obvious but useful.

Proposition 1. The connection component C is an algebraic subgroup of the neutral component
G0 of G.

Note that P̆ is no longer elliptic; nevertheless, it has the following properties (proofs are
immediate) :

(γP̆ )(z) = (D
(∞)
2 )−1P̆ (z)D

(0)
2 (5)

P̆ (qz) = (D
(∞)
1 )−1P̆ (z)D

(0)
1 (6)

where γP̆ is obtained from P̆ by analytic continuation when z ∈ C̃∗ turns counterclockwise one
time around the origin.

Corollary 1. If M is non logarithmic both at 0 and at ∞ then G is generated, as an algebraic

group, by D
(0)
1 ,D

(0)
2 and C.

Proof. Let H be the algebraic subgroup of G generated by D
(0)
1 ,D

(0)
2 and C. Let us consider

y, z ∈ Ω. Formula (5) entails that P̆ (y)−1(γP̆ )(z) = P̆ (y)−1(D
(∞)
2 )−1P̆ (y)P̆ (y)−1P̆ (z)D

(0)
2

but P̆ (y)−1(γP̆ )(z), P̆ (y)−1P̆ (z) and D
(0)
2 belong to H so P̆ (y)−1(D

(∞)
2 )−1P̆ (y) belongs to H.

Using formula (6) and a similar argument, we see that P̆ (y)−1(D
(∞)
1 )−1P̆ (y) belongs to H.

Theorem 1 ensures that H = G.
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Corollary 2. The Galois group G is generated, as an algebraic group, by D
(0)
1 ,D

(0)
2 and G0.

Proof. Similar to the proof of Corollary 1.

We end this section with the following fundamental remark.

Proposition 2. For any z ∈ Ω, P̆−1(z)P̆ ′(z) belongs to the Lie algebra g of G.

Proof. Indeed, let us consider z ∈ Ω. The map P̆−1(z)P̆ (·) is analytic near z, takes its values
in G0 and its evaluation at z is equal to In. Therefore, its derivative at z belongs to g that is
P̆−1(z)P̆ ′(z) belongs to g.

We will see in the next section that, under additional hypotheses, P̆−1P̆ ′ is sufficient for
describing the whole Lie algebra g.

3.3 The case of q-rational exponents

We maintain the notations of the previous subsection. We assume that the exponents of
M both at 0 and at ∞ belong to qQ. Let d ∈ N∗ be such that they belong to qd

−1Z. For
clarity of exposition, we also assume that M is non logarithmic both at 0 and at ∞. We
denote by Eq;d the quotient of the Riemann surface of z1/d by the natural action of qZ. The

twisted Birkhoff matrix P̆ can be interpreted as a morphism of quasiprojective varieties from
Ωd = Eq;d \ {zeros of det(P̆ ) or poles of P̆} to GLn(C).

Proposition 3. The connection component C is generated as an abstract group by {P̆ (y)−1P̆ (z) | y, z ∈
Ωd}.

Proof. Similar the proof of Proposition 3.2 of [16].

The following result is due to P. Etingof (private communication).

Proposition 4 (P. Etingof). The Lie algebra g of G is generated by {P̆ (z)−1P̆ ′(z) | z ∈ Ωd}.

Proof. Let us first prove that G = ∪i∈J0,d−1KC(D
(0)
2 )i and that G0 = C.

Since, for all y, z ∈ Ωd, D
(0)
2 (γP̆ )(y)−1(γP̆ )(z) = P̆ (y)−1P̆ (z)D

(0)
2 (consequence of formula

(5) in section 3.2), the abstract group K generated by the connection component C and by D
(0)
2

coincides with ∪i∈ZC(D
(0)
2 )i = ∪i∈J0,d−1KC(D

(0)
2 )i. So K is Zariski closed and hence coincides

with G in virtue of Corollary 1. Consequently, C has finite index in G = K = ∪i∈J0,d−1KC(D
(0)
2 )i

and hence G0 ⊂ C. The converse inclusion also holds in virtue of Proposition 1.
We now prove the proposition. Let h be the Lie subalgebra of g (in virtue of Proposition 2)

generated by {P̆−1(z)P̆ ′(z) | z ∈ Ωd} and let H be the embedded connected Lie subgroup of
G0 corresponding to h. Let z be an element of Ωd. Note that P̆−1(·)P̆ (z) is the fundamental
system of solutions with values in G0 and with initial condition Y (z) = In of the differential

system Y ′ =
[
−P̆−1P̆ ′

]
Y . But −P̆−1P̆ ′ takes its values in h. So P̆−1(·)P̆ (z) takes its values

in H. Hence H contains {P̆ (y)−1P̆ (z) | y, z ∈ Ωd} which is, in virtue of Proposition 3, a set of
generators of C = G0 (as an abstract group) so H = G0 and h = g.
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4 Substitutes for the missing monodromy

In this section, we solve the “monodromy problem” described in section 1. The polar parts
of the logarithmic derivative of the twisted Birkhoff matrix will play a crucial role. Remark
that, in the local analytic theory of q-difference equations at 0 or ∞, the notion of pole plays
a special role; see for instance [32, 33, 30, 31, 35].

We consider α = (α1, ..., αn) ∈ Qn, β = (β1, ..., βn) ∈ Qn and λ ∈ Q∗. We set a =

(a1, ..., an) = (qα1 , ..., qαn ) ∈ (C∗)n and b = (b1, ..., bn) = (qβ1 , ..., qβn) ∈ (C∗)n.
Let f0, ..., fn be the coefficients of Lq(a; b;λ) :

Lq(a; b;λ) = f0σ
n
q + f1σ

n−1
q + · · ·+ fn.

Note that f0, f1, ..., fn are degree one polynomials with complex coefficients and that f0 =∏n
j=1

bj
q − zλ

∏n
i=1 ai and fn = (−1)n(1 − λz). The inverse A of the matrix representing the

action of σq on Hq(a; b;λ) with respect to the basis 1,σq, ...,σ
n−1
q is given by :

A =




0 0 0 · · · 0 − fn
f0

1 0 0 · · · 0 − fn−1

f0

0 1 0 · · · 0 − fn−2

f0
...

...
...

...
...

...

0 0 0 · · · 1 − f1
f0




−1

∈ GLn(C(z)). (7)

For the sake of conciseness, we denote by z0 = (
∏n

j=1
bj
q )(λ

∏n
i=1 ai)

−1 and by zn = λ−1 the
respective roots of f0 and of fn.

We maintain the notations (F (0), F (∞), P̆ , etc) introduced in sections 2 and 3.

Convention. In what follows, we choose an arbitrary branch of P̆ and we consider P̆ locally
near zn ∈ C∗.

Lemma 1. If qZz0 ∩ q
Zzn = ∅ then the residue of P̆−1P̆ ′ at zn is conjugate to diag(c, 0, ..., 0)

for some c ∈ C∗.

Proof. We recall (see section 2) that F (0) ∈ GLn(M(C)) is such that (σqF
(0))A(0) = AF (0)

and that F (∞) ∈ GLn(M(C∗ ∪ {∞})) is such that (σqF
(∞))A(∞) = AF (∞). This entails that,

for all m ∈ N∗, we have, over C∗ :

(F (0))−1F (∞) = (A(0))−m(σmq F
(0))−1(σm−1

q A) · · ·A(σ−1
q A) · · · (σ−m

q A)(σ−m
q F (∞))(A(∞))−m.

(8)

But, for m ∈ N∗ large enough, σmq F
(0) ∈ GLn(C{z − zn}) and σ−m

q F (∞) ∈ GLn(C{z − zn}).

Moreover, the hypotheses on z0 and zn show that, for any k ∈ Z∗, σkqA ∈ GLn(C{z − zn}) and

that A = R
z−zn

mod. Mn(C{z − zn}) for some R ∈ Mn(C) with rank at most one. Therefore,
there exists R1 ∈Mn(C) with rank at most one such that :

(F (0))−1F (∞) =
R1

z − zn
mod. Mn(C{z − zn}). (9)

9



But, by construction (see section 3.2), there exist N and M in GLn(C{z − zn}) such that :

P̆−1 = N(F (0))−1F (∞)M. (10)

So, there exists R2 ∈Mn(C) with rank at most one such that :

P̆−1 =
R2

z − zn
mod. Mn(C{z − zn}). (11)

On the other hand, note that the hypothesis on z0 and zn implies that, for any k ∈ Z, σkqA
−1 ∈

Mn(C{z − zn}). Arguing as above, we get that :

P̆ ∈Mn(C{z − zn}). (12)

Formulas (11) and (12) imply that there exists R3 ∈Mn(C) with rank at most one such that :

P̆−1P̆ ′ =
R3

z − zn
mod. Mn(C{z − zn}).

It remains to prove that R3 has a non zero trace. Note that det(P̆ ) ∈ C{z − zn} has a simple
zero at zn -the proof of this assertion is similar to that of formula (11)- so its derivative is non
zero in a neighborhood of zn. But det(P̆ )′ = − det(P̆ )tr(P̆−1P̆ ′) so tr(P̆−1P̆ ′) has a non zero
residue at zn. Therefore tr(R3) is non zero.

Lemma 2. We assume that qZz0 ∩ q
Zzn 6= ∅ and that Hq(a; b;λ) is not rationally equivalent

to some q-difference module of the form C(z) ⊗C V , the action of σq being given by σq ⊗ Φ,
where Φ is a C-linear automorphism of a C-vector space V . Then either the residue at zn
of (z − zn)

−1P̆−1P̆ ′ is traceless with rank one or the residue at zn of P̆−1P̆ ′ is conjugate to
diag(c,−c, 0, ..., 0) for some c ∈ C∗.

Proof. Arguing as for the proof of Lemma 1, we see that there exist R4 ∈Mn(C) with rank at
most one and S4, T4 ∈Mn(C) such that :

P̆−1 =
R4

z − zn
+ S4 + (z − zn)T4 mod. (z − zn)

2Mn(C{z − zn}). (13)

Similarly, there exist R5 ∈Mn(C) with rank at most one and S5, T5 ∈Mn(C) such that :

P̆ =
R5

z − zn
+ S5 + (z − zn)T5 mod. (z − zn)

2Mn(C{z − zn}). (14)

Note that the equality P̆−1P̆ = In implies that R4R5 = 0. Therefore :

P̆−1P̆ ′ =
Q6

(z − zn)2
+

R6

z − zn
mod. Mn(C{z − zn}) (15)

where Q6 = −S4R5 and R6 = R4T5 − T4R5.
We claim that R4 6= 0 and R5 6= 0 i.e. that zn is a pole of P̆−1 and P̆ . Indeed, assume at the

contrary that zn is a regular point for P̆−1 (the other case is similar). Then equation (10) shows
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that Q := (F (0))−1F (∞) is regular at zn and hence on qZzn because σqQ = A(0)Q(A(∞))−1.
But equation (8) shows that the poles of Q belong to qZzn. Therefore Q is analytic on C∗.
Converting the equation σqQ = A0)Q(A(∞))−1 on the Taylor coefficients of Q at 0, we easily
see that the entries of Q are Laurent polynomials so Q ∈ GLn(C(z)). Then the equality
F (0) = F (∞)Q−1 shows that F (0) is meromorphic at ∞ and hence on P1

C : F (0) belongs to
GLn(C(z)). This implies that Hq(a; b;λ) is rationally equivalent to C(z) ⊗C Cn, the action of
σq being given by σq ⊗ (A(0))−1 : this contradicts our hypotheses and proves our claim.

We claim that Q6 6= 0 or R6 6= 0 i.e. that zn is a pole of P̆−1P̆ ′. Indeed, since zn is a pole
of P̆−1, we get from the equality (P̆−1)′ = −(P̆−1P̆ ′)P̆−1 that zn is a pole of P̆−1P̆ ′ (because
the order of zn as a pole of (P̆−1)′ is greater than the order of zn as a pole of P̆−1).

Moreover, since the ranks of R4 and R5 are not more than one, we get :

rkQ6 ≤ 1 and rkR6 ≤ 2.

So, if Q6 6= 0 then Q6 has rank one.
Assume that Q6 = 0. Then, we have seen that R6 6= 0. We claim that R6 is not nilpotent.

Indeed, since Q6 = 0, the equality (P̆−1)′ = −(P̆−1P̆ ′)P̆−1 implies that :

−R4

(z − zn)2
mod. Mn(C{z − zn})

= −

(
R6

z − zn
mod. Mn(C{z − zn})

)(
R4

z − zn
mod. Mn(C{z − zn})

)
.

So R4 = R6R4 that is (R6−In)R4 = 0. This implies that R6 is not nilpotent because, otherwise,
R6 − In would belong to GLn(C) and hence R4 would be 0 : contradiction.

In order to finish the proof it is clearly sufficient to prove that R6 and Q6 belong to sln(C)
and hence it is sufficient to prove that tr(P̆−1P̆ ′) = 0. This is indeed the case because det(P̆ )
is a non zero constant so 0 = det(P̆ )′ = det(P̆ )tr(P̆−1P̆ ′).

Corollary 3. Assume that the hypotheses of Lemma 1 or of Lemma 2 are satisfied. Then the
Lie algebra g of the Galois group G of Hq(a; b;λ) contains either a rank one matrix or, in a
suitable basis, diag(1,−1, 0, · · · , 0).

Proof. Proposition 2 shows that P̆−1P̆ ′ takes its values in g. Therefore, g contains the coef-
ficients of the Taylor expansion of P̆−1P̆ ′ at zn. The result is now a direct consequence of
Lemma 1 and Lemma 2.

Let us recall useful results. In what follows E denotes a finite dimensional C-vector space
and EndC(E) stands for the Lie algebra of C-linear endomorphisms of E.

Theorem 2 (see [6] or chapter 1 of [21]). Let g be a semisimple Lie subalgebra of EndC(E)
which acts irreducibly on E. Assume that g is normalized by some pseudo-reflection in GL(E).
Then g is either sl(E) or so(E) or sp(E).

Theorem 3 (see [25], [41] or chapter 1 of [21]). Let g be a semisimple Lie subalgebra of
EndC(E) which acts irreducibly on E. Assume that, with respect to some basis, g contains
diag(1,−1, 0, · · · , 0). Then g is either sl(E) or so(E) or sp(E).
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Recall that an object M of E is Lie irreducible if the restriction to Gal(M)0 of the repre-
sentation of Gal(M) corresponding to M by Tannakian duality (see section 3.1) is irreducible.

Theorem 4. Assume that Hq(a; b;λ) is Lie irreducible. Let G be the Galois group of Hq(a; b;λ).
Then, the derived subgroup [G0,G0] of the neutral component G0 of G is either SLn(C) or
SOn(C) or Spn(C).

Proof. Let us denote by g ⊂ EndC(C
n) the Lie algebra of G. By hypothesis g acts irreducibly on

Cn so g = Z(g)+[g, g] where Z(g) denotes the center of g and where [g, g] denotes the derived Lie
subalgebra of g. Moreover Z(g) acts as scalars on Cn and [g, g] is a semisimple Lie subalgebra
of EndC(C

n) acting irreducibly on Cn. The Lie irreducibility condition clearly implies that
either the hypotheses of Lemma 1 or of Lemma 2 are satisfied. So Corollary 3 ensures that g
contains either a rank one element or an element whose representative matrix is, in a suitable
basis, diag(1,−1, 0, ..., 0). In the first case, we get that g, and hence [g, g] is normalized by a
pseudo-reflection. In the second case, [g, g] contains an element whose representative matrix is,
in a suitable basis, diag(1,−1, 0, ..., 0). The result follows from Theorem 2 and Theorem 3.

5 Lie irreducible generalized q-hypergeometric modules

In this section, we consider α = (α1, ..., αn) ∈ Qn, β = (β1, ..., βn) ∈ Qn and λ ∈ Q∗. We

set a = (a1, ..., an) = (qα1 , ..., qαn ) ∈ (C∗)n and b = (b1, ..., bn) = (qβ1 , ..., qβn) ∈ (C∗)n.

5.1 Basic results

We recall that, for any L ∈ Dq \{0}, the dual (Dq/DqL)
∗ of the q-difference module Dq/DqL

is rationally equivalent to Dq/DqL
∗ where .∗ : Dq → Dop

q denotes the involutive morphism of

Dq-modules defined by (ziσj
q)∗ = σ

−j
q zi. A slightly modified version of this result is Proposition

2.1.10 of [37]; the link with our assertion is easy and left to the reader.

Proposition 5. The dual Hq(a; b;λ)
∗ of Hq(a; b;λ) is rationally equivalent to Hq(q/a; q

2/b;λ
∏n

i=1 ai∏n
j=1 bj

).

Proof. The result is a consequence of the following computation :



n∏

j=1

(
bj
q
σq − 1)− λz

n∏

i=1

(aiσq − 1)




∗

=

n∏

j=1

(σ−1
q

bj
q
− 1)−

n∏

i=1

(σ−1
q ai − 1)λz

= (−1)nσ−n
q

∏n
j=1 bj

qn




n∏

j=1

(
q

bj
σq − 1)− λ

∏n
i=1 ai∏n
j=1 bj

z
n∏

i=1

(
q

ai
σq − 1)


 .

Proposition 6. Assume that Hq(a; b;λ) is irreducible. If a′ = (a′1, ..., a
′
n) ∈ (C∗)n, b′ =

(b′1, ..., b
′
n) ∈ (C∗)n and λ′ ∈ C∗ are such that :
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– there exist two permutations µ, ν of J1, nK such that, for all i ∈ J1, nK, a′i = aµ(i) mod. qZ

and b′i = bν(i) mod. qZ;

– λ′ = λ mod. qZ;
then Hq(a; b;λ) and Hq(a

′; b′;λ′) are rationally equivalent.

Proof. Let us consider j ∈ J1, nK and set bj = (b1, ..., bj−1, qbj , bj+1, ..., bn). Since Lq(a, b, λ)(bjσq−

1) = (
bj
q σq − 1)Lq(a, b

j , λ), the map ϕ : Dq → Dq, L 7→ L(bjσq − 1) induces a morphism of

q-difference modules ϕ : Hq(a; b;λ) → Hq(a; b
j;λ). This morphism is non zero and hence

injective because Hq(a; b;λ) is irreducible. Since Hq(a; b;λ) and Hq(a; b
j ;λ) have the same

dimension on C(z), ϕ is an isomorphism : Hq(a; b;λ) and Hq(a; b
j;λ) are rationally equivalent.

Similarly, for any j ∈ J1, nK, Hq(a; b;λ) and Hq(a; b
−j ;λ) are rationally equivalent where b−j =

(b1, ..., bj−1, q
−1bj, bj+1, ..., bn). It is now clear that Hq(a; b;λ) and Hq(a

′; b′;λ) are rationally
equivalent. Moreover, it is easily seen that, for all k ∈ Z, the map ψk : Dq → Dq, L 7→ Lσ−k

q

induces an isomorphism of q-difference modules ψk : Hq(a
′; b′;λ) → Hq(a

′; b′; qkλ) and hence
Hq(a

′; b′;λ) and Hq(a
′; b′; qkλ) are rationally equivalent. So Hq(a

′; b′;λ) and Hq(a
′; b′;λ′) are

rationally equivalent.

Proposition 7. If Hq(a; b;λ) is irreducible then, for all (i, j) ∈ J1, nK2, ai 6= bj mod. qZ.

Proof. Assume at the contrary thatHq(a; b;λ) is irreducible and that there exists (i, j) ∈ J1, nK2

such that ai = bj mod. qZ. Then Proposition 6 implies that Hq(a; b;λ) and Hq(a
′; b;λ) are

rationally equivalent where a′i = bj and, for all k ∈ J1, nK \ {i}, a′k = ak. But (
bj
q σq − 1) is a

left factor of Lq(a
′, b, λ) so Hq(a

′; b;λ) is reducible : contradiction.

The converse also holds.

Proposition 8. If, for all (i, j) ∈ J1, nK2, ai 6= bj mod. qZ then Hq(a; b;λ) is irreducible.

Proof. Let us consider N = C[z, z−1]〈σq,σ
−1
q 〉/C[z, z−1]〈σq,σ

−1
q 〉Lq(a; b;λ) and let π : N →

Hq(a; b;λ) be the natural morphism of C[z, z−1]〈σq,σ
−1
q 〉-modules. Let M be a subobject

of Hq(a; b;λ). It is proved in [34] that N is an irreducible left C[z, z−1]〈σq,σ
−1
q 〉-module.

So the sub-C[z, z−1]〈σq,σ
−1
q 〉-module π−1(M) of N is either {0} or N . Therefore M =

C(z)π(π−1(M)) is either {0} or Hq(a; b;λ).

The following result will be used twice in this paper.

Lemma 3. Let M and M ′ be rationally equivalent objects of E. Let A be the inverse of the
matrix representing the action of σq on M with respect to some basis and let A(0) ∈ GLn(C)
and F (0) ∈ GLn(C({z})) be such that (σqF

(0))A(0) = AF (0). We consider similar objects
A′, A′(0) and F ′(0) for M ′. Then there exists (R,C) ∈ GLn(C(z)) × GLn(C(z)) such that
F ′(0) = R(F (0))C.

Proof. This lemma follows from Théorème 1.2 in [35].

The following result is the converse of Proposition 6.

Proposition 9. Assume that Hq(a; b;λ) is irreducible. If Hq(a; b;λ) is rationally equivalent to
Hq(a

′; b′;λ′) for some a′ = (a′1, ..., a
′
n) ∈ (C∗)n, b′ = (b′1, ..., b

′
n) ∈ (C∗)n and λ′ ∈ C∗ then :
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– there exist two permutations µ, ν of J1, nK such that, for all i ∈ J1, nK, a′i = aµ(i) mod. qZ

and b′i = bν(i) mod. qZ;

– λ′ = λ mod. qZ.

Proof. The first assertion of the proposition is immediate by considering the exponents of
Hq(a; b;λ) and Hq(a

′; b′;λ′).
It remains to prove that λ = λ′ mod. qZ. Let A be the inverse of the matrix representing

the action of σq on Hq(a; b;λ) with respect to the basis 1,σq, ...,σ
n−1
q ; see formula (7). We

also introduce the similar matrix A′ for Hq(a
′; b′;λ′). Section 2 ensures that there exist A(0) ∈

GLn(C) and F
(0) ∈ GLn(M(C)) such that :

(σqF
(0))A(0) = AF (0). (16)

We first note that this functional equation ensures that the set of poles of F (0) on C∗ is
included in qZ≤N z0 for some N ∈ Z where z0 = (

∏n
j=1

bj
q )(λ

∏n
i=1 ai)

−1. We claim that F (0)

has infinitely many poles. Indeed, otherwise F (0) would be an element of GLn(M(C)) with at
most polynomial growth at ∞ (this is a direct consequence of (16)) and hence would belong to
GLn(C(z)). In terms of modules, this entails that Hq(a; b;λ) would be rationally equivalent to
the reducible q-difference module C(z) ⊗C Cn, the action of σq being given by σq ⊗ (A(0))−1 :
contradiction.

Similarly, there exist A′(0) ∈ GLn(C) and F
′(0) ∈ GLn(M(C)) such that :

(σqF
′(0))A′(0) = A′F ′(0). (17)

Arguing as above, we see that the set of poles in C∗ of F ′(0) is infinite and included in qZ≤N′ z′0

for some N ′ ∈ Z where z′0 = (
∏n

j=1

b′j
q )(λ

′
∏n

i=1 a
′
i)
−1.

Since Hq(a; b;λ) and Hq(a
′; b′;λ′) are rationally equivalent, Lemma 3 ensures that there

exists (R,C) ∈ GLn(C(z))×GLn(C(z)) such that F ′(0) = RF (0)C. Considering the poles in C∗

of the left hand term and of the right hand term of this equation, we get that qZ≤N z0∩ q
Z≤N′ z′0

is infinite and hence λ = λ′ mod. qZ.

Recall that a q-difference module is selfdual if it is isomorphic to its dual.

Corollary 4. Suppose that Hq(a; b;λ) is irreducible. Then Hq(a; b;λ) is selfdual if and only if
the following conditions hold :

(i)
∏n

i=1 ai∏n
j=1 bj

∈ qZ;

(ii) there exist two permutations µ, ν of J1, nK such that, for all i ∈ J1, nK :
- aiaµ(i) ∈ qZ;

- bibν(i) ∈ q
Z.

Moreover, in case that Hq(a; b;λ) is selfdual, the corresponding selfduality is symmetric (resp.
alternating) if and only if n is an even (resp. odd) number.

Proof. The first part of the corollary is a consequence of Proposition 5, Proposition 6 and
Proposition 9. Suppose that Hq(a; b;λ) is selfdual. Since Hq(a; b;λ) is irreducible, it has ex-
actly one selfduality 〈·, ·〉q up to a non zero scalar which is either symmetric or alternating.
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Considering q as a parameter, we see that the fact that the selfduality is symmetric or alternat-
ing does not depend on q ∈ C∗ and that the result is a consequence of the Duality Recognition
Theorem 3.4 of [21].

5.2 Lie irreducibility

Recall that an object M of E is Lie irreducible if the restriction to Gal(M)0 of the repre-
sentation of Gal(M) corresponding to M by Tannakian duality (see section 3.1) is irreducible.
Of course, Lie irreducibility implies irreducibility.

Definition 1. The generalized q-hypergeometric module Hq(a; b;λ) is q-Kummer induced if the
following conditions hold :

– Hq(a; b;λ) is irreducible;
– there exists a divisor d ∈ N \ {0, 1} of n and there exist two permutations µ, ν of J1, nK

such that, for all i ∈ J1, nK, ai = q1/daµ(i) mod. qZ and bi = q1/dbν(i) mod. qZ.

The second condition in the previous definition can be paraphrased as follows : there
exists a divisor d ∈ N \ {0, 1} of n and there exist A = (A1, ..., An/d) ∈ (C∗)n/d and B =

(B1, ..., Bn/d) ∈ (C∗)n/d such that, up to order and mod. qZ, the list a1, ..., an coincides with

the list A1, A1q
−1/d, ..., A1q

−(d−1)/d, ..., An/d, An/dq
−1/d, ..., An/dq

−(d−1)/d and the list b1, ..., bn
coincides with the list B1, B1q

1/d, ..., B1q
(d−1)/d, ..., Bn/d, Bn/dq

1/d, ..., Bn/dq
(d−1)/d.

As suggested by one of the referees, the q-Kummer induced generalized q-hypergeometric
modules are induced by q1/d-difference modules of smaller dimensions. More precisely, denoting
by [d] : C∗ → C∗ the étale morphism z 7→ zd and denoting by µ some dth complex root of λ, the
q-difference module [d]∗Hq1/d(A;B;µ) is isomorphic to Hq(a; b;λ). The proof of this statement
is similar to the proof of Lemma 3.5.6 in [21] and is left to the reader. This result will not be
used in what follows.

Theorem 5. If Hq(a; b;λ) is irreducible and Lie reducible then it is q-Kummer induced.

Proof. Using our preceding results, the proof is similar to that of Theorem 5.3. of [6]. We
denote by G the Galois group of Hq(a; b;λ) and we use the notations of section 3.2. Let V
be a minimal non trivial invariant subspace of Cn for the action of G0. For all k ∈ Z, G0

is normalized by (D
(0)
2 )k (because G0 is normalized by any element of G) so (D

(0)
2 )kV is an

invariant subspace of Cn for the action of G0. But, since the abstract group H generated

by G0 and D
(0)
2 is Zariski-dense in G (see Corollary 2), H acts irreducibly on Cn. Therefore

Cn = Σk∈Z(D
(0)
2 )kV . Since V is minimal, for all (k, l) ∈ Z2, we have either (D

(0)
2 )kV = (D

(0)
2 )lV

or (D
(0)
2 )kV ∩ (D

(0)
2 )lV = {0}. So Cn =

⊕d−1
k=0(D

(0)
2 )kV for some d ∈ J2,∞K. This implies that

D
(0)
2 and e

2πi
d D

(0)
2 are conjugate. Considering the eigenvalues of D

(0)
2 , we see that there exists

a permutation ν of J1, nK such that, for all j ∈ J1, nK, e2πiβj = e
2πi
d e2πiβν(j) i.e. bj = q

1
d bν(j)

mod. qZ. Note that n = ddimC V so d divides n and depends only on n and dimC V . A similar
argument proves an analogous statement for a.
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5.3 Galois groups

Theorem 6. Assume that Hq(a; b;λ) is irreducible and non q-Kummer induced and denote by
G its Galois group. Then, the derived subgroup [G0,G0] of the neutral component G0 of G is
either SLn(C) or SOn(C) or Spn(C). Moreover, [G0,G0] = SOn(C) (resp. Spn(C)) if and only
if the following three conditions hold :

(i)
∏n

i=1 ai∏n
j=1 bj

∈ qZ;

(ii) there exists c ∈ C∗, there exist two permutations µ, ν of J1, nK such that :
- for all i ∈ J1, nK, caiaµ(i) ∈ qZ;

- for all j ∈ J1, nK, cbjbν(j) ∈ qZ;
(iii) n is odd (resp. even).

Furthermore :
• G = G0 = C∗[G0,G0] if

∏n
i=1 ai∏n
j=1 bj

6∈ qZ;

• G0 = [G0,G0] if
∏n

i=1 ai∏n
j=1 bj

∈ qZ.

Proof. It is instructive to compare the following proof with that of a similar statement in the
differential case in [21]; note in particular the role of poles in the q-difference case.

Theorem 5 implies that M = Hq(a; b;λ) is Lie irreducible. Theorem 4 ensures that [G0,G0]
is either SLn(C) or SOn(C) or Spn(C).

We first assume that [G0,G0] is SOn(C). We have to prove that n is odd and that conditions
(i) to (iii) hold. It is equivalent, in virtue of Corollary 4, to prove that there exists c ∈ C∗

(not the same c than in condition (ii)) such that Hq(ca; cb;λ), which is rationally equivalent to
M ⊗Dq/Dq(cσq − 1), is symmetrically selfdual.

Since G is a subgroup of the normalizer C∗SOn(C) of [G
0,G0] in GLn(C), there exists N a

rank one object of E such that M∗ is rationally equivalent to M ⊗N (use Tannakian duality
together with the fact that if ρ is a linear representation with values in C∗SOn(C) then its
dual ρ∗ is isomorphic to ρ ⊗ (χ−1 ◦ ρ) where χ is the character of C∗SOn(C) defined, for all
(t,X) ∈ C∗ × SOn(C), by χ(tX) = t2).

Let A ∈ GLn(C(z)) be the inverse of the matrix representing the action of σq on Hq(a; b;λ)

with respect to the basis 1,σq, ...,σ
n−1
q . Section 2 ensures that there exist F (0) ∈ GLn(M(C))

and A(0) ∈ GLn(C) such that (σqF
(0))A(0) = AF (0) so (σq(F

(0))−t)(A(0))−t = A−t(F (0))−t.
Moreover, let B ∈ GL1(C(z)) be the inverse of the matrix representing the action of σq

on N with respect to some basis. Section 2 ensures that there exist G(0) ∈ GL1(M(C)) and
B(0) ∈ GL1(C) such that (σqG

(0))B(0) = BG(0) so (σq(F
(0)G(0)))(A(0)B(0)) = (AB)(F (0)G(0)).

Note that AB and A−t are the inverses of the matrices representing, with respect to suitable
basis, the action of σq on M ⊗N and on M∗ respectively. But M ⊗N and M∗ are rationally
equivalent. So, in virtue of Lemma 3, there exists (R,C) ∈ GLn(C(z)) ×GLn(C(z)) such that
F (0)G(0) = R(F (0))−tC. Therefore, (G(0))n det(F (0))2 ∈ C(z)×.

We claim that det(F (0)) has finitely many poles on C. Indeed, otherwise, since (G(0))n det(F (0))2 ∈
C(z)×, G(0) would have infinitely many zeros on C and hence (G(0))n would have infinitely many
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zeros of order at least n on C. But the functional equation

(σq det(F
(0))) det(A(0)) = det(A) det(F (0))

=

∏n
j=1

bj
q − zλ

∏n
i=1 ai

(−1)n(1− λz)
det(F (0)). (18)

shows that det(F (0)) has at most simple poles on C∗. So (G(0))n det(F (0))2 would have infinitely
many zeros on C and hence would not belong to C(z)× : contradiction. Now we see by using the
functional equation (18) that det(F (0)) has at most polynomial growth at ∞ so det(F (0)) and
hence G(0) belong to C(z)×. Consequently, N is rationally equivalent to Dq/Dq(B

(0)
σq − 1).

Choosing a square root c of B(0), we see thatM⊗Dq/Dq(cσq−1) is selfdual. Since the derived
subgroups of the neutral components of the Galois groups of M and of M ⊗ Dq/Dq(cσq − 1)
coincide, we get that the selfduality pairing is symmetric.

Conversely, suppose that n is odd and that conditions (i) to (iii) hold or, equivalently, in
virtue of Corollary 4, that there exists c ∈ C∗ such that M ⊗Dq/Dq(cσq − 1) is symmetrically
selfdual. Then the Galois group G ofM is a subgroup of the normalizer C∗SOn(C) of SOn(C) in
GLn(C). Since [G0,G0] is either SLn(C) or Spn(C) or SOn(C), we get that [G0,G0] is SOn(C)
as expected.

The case that [G0,G0] is Spn(C) is similar.

Note that, in any case, [G0,G0] ⊂ G ⊂ C∗[G0,G0] so the last part of the theorem is a direct

consequence of the fact that detM has finite order if and only if
∏n

i=1 ai∏n
j=1 bj

∈ qZ.

Let us finish this section with a remark on the case n = 3.

Corollary 5. With the hypotheses and notations of Theorem 6, if n = 3 then [G0,G0] =
SL3(C).

Proof. Assume at the contrary that [G0,G0] is not SL3(C). Theorem 6 ensures that a1a2a3
b1b2b3

∈ qZ

and that there exist c ∈ C∗ and two permutations µ, ν of {1, 2, 3} such that, for all i ∈ {1, 2, 3},
caiaµ(i) ∈ qZ and cbibν(i) ∈ qZ. The strategy of the proof is to prove that there exists (i, j) ∈

{1, 2, 3}2 such that ai = bj mod. qZ : this would provide a contradiction because in this case
Hq(a; b;λ) is reducible (Proposition 7).

Since a1, a2 and a3 belong to qQ, c also belongs to qQ. Let δ ∈ Q be such that c = qδ. We
set, for all i ∈ {1, 2, 3}, α′

i = αi +
δ
2 and β′i = βi +

δ
2 . We have :

(a) α′
1 + α′

2 + α′
3 − (β′1 + β′2 + β′3) ∈ Z;

(b) ∀i ∈ {1, 2, 3}, α′
i + α′

µ(i) ∈ Z;

(c) ∀i ∈ {1, 2, 3}, β′i + β′ν(i) ∈ Z.

We claim that there exists (i, j) ∈ {1, 2, 3}2 such that α′
i − β′j belongs to Z (so ai = bj

mod. qZ). Up to renumbering, it is sufficient to consider the cases that µ and ν are one of the
following permutations of {1, 2, 3} : Id, (1, 2), (1, 2, 3). Since the roles of µ and ν are symmetric,
our claim follows from the following discussion.

17



If µ = Id and ν = Id then we deduce from (b) and (c) that, for all i ∈ {1, 2, 3}, α′
i ∈ Z/2

and β′i ∈ Z/2. Condition (a) ensures that there exists (i, j) ∈ {1, 2, 3}2 such that α′
i − β′j ∈ Z.

If µ = (1, 2) and ν = Id then condition (b) implies that α′
1 + α′

2 ∈ Z and α′
3 ∈ Z/2, and

condition (c) implies that, for all i ∈ {1, 2, 3}, β′i ∈ Z/2. Condition (a) ensures that there exists
j ∈ {1, 2, 3} such that α′

3 − β′j ∈ Z.
If µ = (1, 2, 3) and ν = Id then condition (b) implies that α′

1 + α′
2 ∈ Z, α′

2 + α′
3 ∈ Z and

α′
1 + α′

3 ∈ Z, and condition (c) implies that, for all i ∈ {1, 2, 3}, β′i ∈ Z/2. Remark that,
for all (i, j) ∈ {1, 2, 3}2 , α′

i − α′
j ∈ Z (because if i 6= j and if {k} = {1, 2, 3} \ {i, j} then

α′
i − α′

j = α′
i + α′

k − (α′
j + α′

k)). So, for all i ∈ {1, 2, 3}, α′
i ∈ Z/2. We conclude as in the case

µ = Id, ν = Id treated above.
If µ = (1, 2) and ν = (1, 2) then condition (b) implies that α′

1 + α′
2 ∈ Z, and condition (c)

implies that β′1 + β′2 ∈ Z. Condition (a) ensures that α′
3 − β′3 ∈ Z.

The case µ = (1, 2, 3) and ν = (1, 2) and the case µ = (1, 2, 3) and ν = (1, 2, 3) are similar
to the case µ = (1, 2) and ν = (1, 2).

The natural analogue of this Corollary for differential equations is false.
Note that calculations of q-difference Galois groups are interesting for hypertranscendancy;

see C. Hardouin and M. Singer’s paper [20].

6 Generalized q-hypergeometric modules with finite Galois gr-

oups

We fist state a general result regarding q-difference modules over C(z) with finite Galois
groups.

Lemma 4. Let M be an object of E. Let P̆ be a corresponding twisted Birkhoff matrix (see
section 3.2). If M is non logarithmic both at 0 and at ∞ and if P̆ is constant then there exists
a semisimple C-linear automorphism Φ of some C-vector space V such that M is rationally
equivalent to C(z)⊗C V , the action of σq being given by σq ⊗ Φ.

Proof. We maintain the notations introduced in sections 2 and 3.2. SinceM is non logarithmic

both at 0 and at ∞, we have P̆ = P̆ (z) =
(
F (∞)(z)gz

(
D(∞)

))−1
F (0)(z)gz

(
D(0)

)
. Hence

F (0)(z) = F (∞)(z)gz
(
D(∞)

)
P̆ gz

(
D(0)

)−1
. This equality shows that F (0) is meromorphic at ∞

an hence on P1
C. So F

(0) ∈ GLn(C(z)). This entails thatM is rationally equivalent to the the q-
difference module C(z)⊗CC

n, the action of σq being given by σq⊗(A(0))−1 = σq⊗(D(0))−1.

In what follows, for all m ∈ N∗, Um denotes the group of mth roots of the unity in C and
U∞ = ∪m∈N∗Um denotes the group of all roots of the unity in C.

Proposition 10. Let M be an object of F . The following properties are equivalent :
(i) M has a finite Galois group over C(z);
(ii) there exists a semisimple C-linear automorphism Φ of some C-vector space V with

eigenvalues in U∞q
Q such that M is rationally equivalent to C(z)⊗C V , the action of σq

being given by σq ⊗ Φ.
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Proof. The implication (ii) ⇒ (i) is an obvious consequence of Theorem 1 stated in section
3.2. Alternatively, (ii) ⇒ (i) is immediate by Tannakian duality because if (ii) is satisfied
then M is the direct sum of n order 1 q-difference modules over C(z) whose mth ⊗-power are
trivial for some m ∈ N∗. Let us prove (i) ⇒ (ii). So, we assume that M has a finite Galois
group. We first remark that M is necessary regular singular both at 0 and at ∞ because,
as it has been proved by M. van der Put and M. Reversat in [28], the Galois group of any
irregular q-difference module contains an infinite “theta torus”. We now use the notations and
the terminologies introduced in section 3.2. Since the Galois group of M is finite, its neutral
component and hence its connection component are trivial. So P̆ is constant. Moreover, M is
non logarithmic both at 0 and at ∞ because any non trivial unipotent element of the Galois
group of M has infinite order. The result follows from Lemma 4 and Theorem 1 (or of a simple
⊗-argument).

The following corollary is immediate.

Corollary 6. Let M be an object of F . The following properties are equivalent :
(i) M has a trivial Galois group over C(z);
(ii) M has a finite Galois group over C(z) and its exponents both at 0 and at ∞ belong to
qZ.

In terms of operators, the above results have the following consequence :

Proposition 11. Let L ∈ Dq \{0} be a non zero regular singular q-difference operator of order
n. The exponents of L at 0 (counted with multiplicity) are denoted by c1,1, ..., c1,n1 , ..., cr,1, ..., cr,nr

in such a way that cµ,ν = cµ′,ν′ mod. qZ if and only if µ = µ′. Then L has a finite Galois group
over C(z) if and only if the following conditions hold :

1) ∀µ ∈ J1, rK, ∀ν ∈ J1, nµK, cµ,ν ∈ U∞q
Q;

2) the exponents of L at ∞ (counted with multiplicity) can be ordered as d1,1, ..., d1,n1 , ..., dr,1, ..., dr,nr

in such a way that, ∀µ ∈ J1, rK, ∀ν ∈ J1, nµK, dµ,ν = cµ,ν mod. qZ;

3) ∀µ ∈ J1, rK, dimCKer(L : C(z)e
(0)
cµ,1 → C(z)e

(0)
cµ,1) = nµ.

Moreover, L has a trivial Galois group over C(z) if and only if L has a finite Galois group over
C(z) and if its exponents both at 0 and at ∞ belong to qZ.

Of course, condition 2) is redundant but is included for later reference.

6.1 Finite Galois groups

The following lemma, due to one of the referees, simplifies greatly our original approach.

Lemma 5. If (
∏n

j=1 bj)(
∏n

i=1 ai)
−1 6∈ q−N then Ker(Lq(a; b;λ) : C(z) → C(z)) = Ker(Lq(a; b;λ) :

C|z, z−1] → C(z)).

Proof. We maintain the notation f0, f1, ..., fn for the coefficients of Lq(a; b;λ) introduced at the
beginning of section 4. In order to prove the lemma it is equivalent to prove that if there exists
y ∈ Ker(Lq(a; b;λ) : C(z) → C(z)) such that y 6∈ C[z, z−1] then (

∏n
j=1 bj)(

∏n
i=1 ai)

−1 ∈ q−N.
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Assume that such a y exists and let w ∈ C∗ be a pole of y. We introduce M = max{k ∈
Z | qkw is a pole of y} and wM = qMw. Since y ∈ Ker(Lq(a; b;λ) : C(z) → C(z)), we have :

f0(σ
n
q y) + f1(σ

n−1
q y) + · · ·+ fn−1(σqy) = −fny. (19)

The definition of wM shows that wM is not a pole of the left hand term of (19). Hence, wM

is not a pole of the right hand term −fny of (19) but wM is a pole of y so fn(wM ) = 0 i.e.
wM = λ−1. Using a similar argument, we see that if m = min{k ∈ Z | qkw is a pole of y} and
wm = qmw then f0(q

−nwm) = 0 i.e. wm = λ−1(
∏n

j=1 bj)(
∏n

i=1 ai)
−1. Therefore, wmw

−1
M =

(
∏n

j=1 bj)(
∏n

i=1 ai)
−1. But the definitions of wM and of wm ensure that wmw

−1
M belongs to q−N

i.e. that (
∏n

j=1 bj)(
∏n

i=1 ai)
−1 belongs to q−N as expected.

We denote by CZ the C-vector space of complex valued sequences indexed by Z and by C(Z)

its sub-C-vector space made of the sequences with finite support. For any (pk)k∈Z ∈ CZ, we
set Z((pk)k∈Z) = {k ∈ Z | pk = 0}.

Lemma 6. Let us consider (pk)k∈Z and (qk)k∈Z in CZ such that both Z((pk)k∈Z) = {k ∈
Z | pk = 0} and Z((qk)k∈Z) = {k ∈ Z | qk = 0} have at most n elements. Let us denote by S
the C-vector space of solutions in C(Z) of the following recurrent equation :

∀k ∈ Z, pkyk = qkyk+1. (20)

Then dimC S = n if and only if the following conditions hold :
1) Z((pk)k∈Z) has exactly n elements j1 + 1 < · · · < jn + 1;
2) Z((qk)k∈Z) has exactly n elements i1 < · · · < in;
3) i1 ≤ j1 < i2 ≤ j2 < · · · < in ≤ jn.

Proof. The following notation will be convenient for the proof. We consider k1, ..., ks ∈ Z and
g1, ..., gs ∈ N such that :

Z((qk)k∈Z) = {k1, k1 + 1, ..., k1 + g1} ∪ · · · ∪ {ks, ks + 1, ..., ks + gs}

and such that, for all r ∈ J1, s− 1K, kr + gr + 2 ≤ kr+1. Moreover, we set ks+1 = +∞.
We first construct a C-vector space E of dimension ≤ ♯Z((qk)k∈Z) ≤ n containing S.
For all r ∈ J1, sK, for all l ∈ J1, grK, we introduce the sequence ekr+l with support in {kr+ l}

defined by (ekr+l)kr+l = 1. For all r ∈ J1, sK, we denote by ekr+gr+1 the sequence with support
in Jkr + gr + 1, kr+1K defined by (ekr+gr+1)kr+gr+1 = 1 and, for all k ∈ Jkr + gr + 2, kr+1K, by
(ekr+gr+1)k =

pk−1···pkr+gr+1

qk−1···qkr+gr+1
. We defineE as the C-vector space of dimension≤ ♯Z((qk)k∈Z) ≤ n

generated by {ekr+l | r ∈ J1, sK, l ∈ J1, gr + 1K}.
Let us consider (yk)k∈Z ∈ S. We have, for all k ∈K − ∞, k1K, yk =

pk−1

qk−1
yk−1 but, for

j ≪ 0, yj = 0 so, for all k ∈K −∞, k1K, yk = 0. Moreover, note that, for all r ∈ J1, sK, for all
k ∈ Jkr + gr + 2, kr+1K, we have yk =

pk−1

qk−1
yk−1 = · · · =

pk−1···pkr+gr+1

qk−1···qkr+gr+1
ykr+gr+1. This clearly

implies that (yk)k∈Z =
∑

r∈J1,sK,l∈J1,gr+1K ykr+lekr+l ∈ E. So S ⊂ E as expected.
Assume that dimC S = n. This implies that E = S. A first consequence is that E has

dimension n and hence that ♯Z((qk)k∈Z) = n. Another consequence is that any sequence ekr+l

(r ∈ J1, sK, l ∈ J1, gr + 1K) is a solution of (20). In particular, we have, for all r ∈ J1, sK,
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for all l ∈ J1, grK, pkr+l(ekr+l)kr+l = qkr+l(ekr+l)kr+l+1 i.e. pkr+l = 0. Moreover, for all
r ∈ J1, s − 1K, we have pkr+1(ekr+gr+1)kr+1 = qkr+1(ekr+gr+1)kr+1+1 = 0 so either pkr+1 = 0 or
(ekr+gr+1)kr+1 = 0 i.e. pl = 0 for some l ∈ Jkr + gr + 1, kr+1 − 1K. Since eks+gs+1 belongs to S,

it belongs to C(Z) so pl = 0 for some l ∈ Jks+ gs +1,∞K. These remarks show that Z((pk)k∈Z)
has cardinal n and that, for all r ∈ J1, sK, there exists lr ∈ Jkr + gr + 1, kr+1K such that :

Z((pk)k∈Z) = {k1 + 1, ..., k1 + g1, l1, k2 + 1, ..., k2 + g2, l2, ..., ks + 1, ..., ks + gs, ls}.

Translated in terms of i1, ..., in and j1, ..., jn, the above discussion leads to conditions 1) to 3).
Conversely, it remains to verify that if conditions 1) to 3) are satisfied then dimC S = n.

This easy verification is left to the reader.

Definition 2. For c, d ∈ C∗, the notation c �q d (resp. c ≺q d) means that dc−1 ∈ qN (resp.
dc−1 ∈ qN

∗
). For c = (c1, ..., cn) ∈ (C∗)n and d = (d1, ..., dn) ∈ (C∗)n, the notation c �q d

means that :
- the list c1, ..., cn can be rearranged as c1,1, ..., c1,n1 , ..., cr,1, ..., cr,nr ;
- the list d1, ..., dn can be rearranged as d1,1, ..., d1,n1 , ..., dr,1, ..., dr,nr ;

in such a way that :
- cµ,ν = cµ′,ν′ mod. qZ if and only if µ = µ′;
- ∀µ ∈ J1, rK, ∀ν ∈ J1, nµK, dµ,ν = cµ,ν mod. qZ;
- ∀µ ∈ J1, rK, cµ,1 �q dµ,1 ≺q cµ,2 �q dµ,2 ≺q · · · ≺q cµ,nµ �q dµ,nµ .

Note that n1 + · · · + nr = n. Moreover, if c �q d then, for all (i, j) ∈ J1, nK2 with i 6= j,
ci 6= cj and di 6= dj .

Theorem 7. The generalized q-hypergeometric operator Lq(a; b;λ) has a finite Galois group
over C(z) if and only if a ∈ (U∞q

Q)n, b ∈ (U∞q
Q)n and either a�q q

−1b or b�q a.

Proof. Let us first assume that (
∏n

j=1 bj)(
∏n

i=1 ai)
−1 6∈ q−N. We relabel the parameters

a1, ..., an as a1,1, ..., a1,n1 , ..., ar,1, ..., ar,nr in such a way that aµ,ν = aµ′,ν′ mod. qZ if and
only if µ = µ′.

Proposition 11 ensures that Lq(a; b;λ) has a finite Galois group if and only the following
conditions hold :

1) ∀µ ∈ J1, rK, ∀ν ∈ J1, nrK, aµ,ν ∈ U∞q
Q;

2) the parameters b1, ..., bn can be relabeled as b1,1, ..., b1,n1 , ..., br,1, ..., br,nr in such a way
that, ∀µ ∈ J1, rK, ∀ν ∈ J1, nµK, bµ,ν = aµ,ν mod. qZ;

3) ∀µ ∈ J1, rK, dimC Ker(Lq(a; b;λ) : C(z)e
(0)

a−1
µ,1

→ C(z)e
(0)

a−1
µ,1

) = nµ.

So we now assume that conditions 1) and 2) hold and we study condition 3).
Note that :

Ker(Lq(a; b;λ) : C(z)e
(0)

a−1
µ,1

→ C(z)e
(0)

a−1
µ,1

)

= Ker(Lq(a
−1
µ,1a; a

−1
µ,1b;λ) : C(z) → C(z))e

(0)

a−1
µ,1

= Ker(Lq(a
−1
µ,1a; a

−1
µ,1b;λ) : C[z, z

−1] → C(z))e
(0)

a−1
µ,1
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(the first equality is immediate, the second one is Lemma 5). Moreover, an easy computa-
tion shows that, for any µ ∈ J1, rK, a Laurent polynomial y =

∑
k ykz

k ∈ C[z, z−1] satisfies
Lq(a

−1
µ,1a; a

−1
µ,1b;λ)y = 0 if and only if its sequence of coefficients (yk)k∈Z ∈ C(Z) satisfies to the

following recurrent equation :

ζµ,k

nµ∏

ν=1

(a−1
µ,1bµ,νq

k−1 − 1)yk = λξµ,k

nµ∏

ν=1

(a−1
µ,1aµ,νq

k−1 − 1)yk−1 (21)

where

(ζµ,k)k∈Z =


 ∏

µ′∈J1,rK\{µ}

nµ′∏

ν=1

(a−1
µ,1bµ′,νq

k−1 − 1)




k∈Z

and

(ξµ,k)k∈Z =


 ∏

µ′∈J1,rK\{µ}

nµ′∏

ν=1

(a−1
µ,1aµ′,νq

k−1 − 1)




k∈Z

are non vanishing sequences. So dimCKer(Lq(a
−1
µ,1a; a

−1
µ,1b;λ) : C[z, z

−1] → C(z)) = nµ if and

only if the C-vector space of solutions in C(Z) of the recurrent equation (21) has dimension
nµ. Lemma 6 ensures that this happens if and only if (aµ,1, ..., aµ,nµ ) �q q

−1(bµ,1, ..., bµ,nµ).
Therefore, condition 3) holds if and only if a�q q

−1b.
Assume that (

∏n
j=1 bj)(

∏n
i=1 ai)

−1 ∈ q−N. The operator Lq(a; b;λ) has a finite Galois group
if and only if its dual Lq(a; b;λ)

∗ has a finite Galois group. But Lq(a; b;λ)
∗ is equal, up to a

invertible left factor, to Lq(a
′; b′;λ′) where a′ = q/a, b′ = q2/b and λ′ = λ(

∏n
i=1 ai)(

∏n
j=1 bj)

−1

(see the proof of Proposition 5) and we have (
∏n

j=1 b
′
j)(

∏n
i=1 a

′
i)
−1 = (

∏n
j=1

q2

bj
)(
∏n

i=1
q
ai
)−1 =

((
∏n

j=1 bj)(
∏n

i=1 ai)
−1)−1qn 6∈ q−N. Hence, the above discussion ensures that Lq(a

′; b′;λ′) has

a finite Galois group over C(z) if and only if a′ ∈ (U∞q
Q)n i.e. a ∈ (U∞q

Q)n, b′ ∈ (U∞q
Q)n i.e.

b ∈ (U∞q
Q)n and a′ �q q

−1b′ i.e. b�q a.

6.2 Trivial Galois groups

Theorem 8. The generalized q-hypergeometric operator Lq(a; b;λ) has a trivial Galois group
over C(z) if and only if a ∈ (qZ)n, b ∈ (qZ)n and either a�q q

−1b or b�q a.

Proof. It is an immediate consequence of Theorem 7 and of the last assertion of Proposition
11.

6.3 Generalized hypergeometric equations with finite differential Galois gr-

oups

The generalized hypergeometric operator L(α;β;λ) was defined in section 1 by formula (1).
Let us consider α = (α1, ..., αn) ∈ Qn, β = (β1, ..., βn) ∈ Qn and λ ∈ Q∗ such that

Lq(q
α; qβ ;λ) has a finite Galois group for all q ∈ C∗ such that |q| < 1. Note that Lq(q

α; qβ;λ)
has a finite Galois group for at least one q ∈ C∗ such that |q| < 1 if and only if it has a finite
Galois group for all q ∈ C∗ such that |q| < 1 : this fact, which is not obvious a priori, is a
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direct consequence of Theorem 7. Moreover, since the exponents of Lq(q
α; qβ;λ) belong to qQ,

the Galois group of Lq(q
α; qβ ;λ) is finite cyclic : this is a direct consequence of Theorem 1.

The specialization theorem for q-difference Galois groups due to Y. André in [1] entails that
L(α;β;λ) has a finite cyclic differential Galois group.

Similarly, if α = (α1, ..., αn) ∈ Qn, β = (β1, ..., βn) ∈ Qn and λ ∈ Q are such that

Lq(q
α; qβ ;λ) has a trivial Galois group for all q ∈ C∗ such that |q| < 1 then L(α;β;λ) has

a trivial differential Galois group.
Hence, using Theorem 7 and Theorem 8, we get the following result.

Definition 3. For γ = (γ1, ..., γn) ∈ Cn and δ = (δ1, ..., δn) ∈ Cn, the notation γ � δ means
that :

- the list γ1, ..., γn can be rearranged as γ1,1, ..., γ1,n1 , ..., γr,1, ..., γr,nr ;
- the list δ1, ..., δn can be rearranged as δ1,1, ..., δ1,n1 , ..., δr,1, ..., δr,nr ;

in such a way that :
- γµ,ν = γµ′,ν′ mod. Z if and only if µ = µ′;
- ∀µ ∈ J1, rK, ∀ν ∈ J1, nµK, δµ,ν = γµ,ν mod. Z;
- ∀µ ∈ J1, rK, γµ,1 ≤ δµ,1 < γµ,2 ≤ δµ,2 < · · · < γµ,nµ ≤ δµ,nµ .

Theorem 9. If α ∈ Qn and β ∈ Qn are such that either α � β − (1, ..., 1) or β � α then
L(α;β;λ) has a finite cyclic differential Galois group over C(z). If, moreover, α ∈ Zn and
β ∈ Zn then L(α;β;λ) is trivial over C(z).
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cal geometry (Lisbon, 1990), pages 125–147. de Gruyter, Berlin, 1993.
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