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Abstract. Allouche and Mendès-France (in Hadamard grade of power series, J. Num-
ber Theory 131 (2011)) have defined the grade of a formal power series with algebraic
coefficients as the smallest integer k such that this series is the Hadamard product of k
algebraic power series. In this paper, we obtain lower and upper bounds for the grade of
hypergeometric series by comparing two different asymptotic expansions of their Taylor
coefficients, one obtained from their definition and another one obtained when assuming
that the grade has a certain value. In such expansions, Gamma values at rational points
naturally appear and our results mostly depend on the Rohrlich-Lang Conjecture for poly-
nomial relations in Gamma values. We also obtain unconditional and sharp results when
we can apply Diophantine results such as the Wolfart-Wüstholz Theorem for Beta values.

1. Introduction

The main goal of this paper is to study the notion of grade of a power series introduced
by Allouche and Mendès-France in [2]. We recall that the Hadamard product F (z)∗G(z) ∈
C[[z]] of two formal power series F (z) =

∑
n≥0 fnz

n ∈ C[[z]] and F (z) =
∑

n≥0 gnz
n ∈ C[[z]]

is defined by

F (z) ∗G(z) =
∑
n≥0

fngnz
n.

Definition 1. A formal power series F (z) ∈ Q[[z]] has finite grade over Q if there exist
A1(z), ..., Am(z) ∈ Q[[z]] algebraic over Q(z) such that

F (z) = A1(z) ∗ · · · ∗ Am(z). (1.1)

If F (z) has finite grade over Q then the smallest integer m ≥ 1 such (1.1) holds for
some A1(z), ..., Am(z) ∈ Q[[z]] algebraic over Q(z) is denoted by gradeQ(F (z)) and is

called the grade of F (z) over Q. If F (z) does not have finite grade over Q, then we set
gradeQ(F (z)) =∞.

From now on, by “algebraic function” or “algebraic series”, we will mean a power series
in Q[[z]] which is algebraic over Q(z).

If F (z) =
∑

n≥0 fnz
n ∈ Q[[z]] has finite grade over Q then it is a globally bounded G-

function because algebraic functions are globally bounded G-functions (Abel, Eisenstein)
and this property is preserved by Hadamard product (see [1, §VI.4, Corollary]). We re-
call that F (z) is said to be globally bounded (terminology due to Christol [6]) if all the
coefficients belong to some number field K and

Date: April 29, 2014.
1



2

- for every place ν of K, the ν-adic radius of convergence of F (z) is non zero;
- there exists some non zero integer N such that the coefficients of F belong to
OK [1/N ], where OK is the ring of integers of K.

Moreover, F (z) is a G-function if all the coefficients belong to some number field K and

- the maximum of the moduli of the conjugates of fn grows at most geometrically
with n;

- there exists a sequence of positive numbers (dn)n≥0 which grows at most geometri-
cally with n such that dnan belongs to the ring of integers OK of K;

- F (z) satisfies some non trivial homogeneous linear differential equation with coef-
ficients in K(z).

It follows for instance that log(1 − z) and (1 − z)α with α ∈ Q \ Q do not have finite
grade. It is very likely that there exist globally bounded G-functions with infinite grade;
see Proposition 1.

It is in general very difficult to estimate the grade of a globally bounded G-function
and Allouche-Mendès-France raised a few questions in this respect, from which this paper
grew. To estimate the grade of a given globally bounded G-function F (z), our strategy
(detailed in Section 4) is to compare two distinct asymptotic expansions of the Taylor
coefficients of F (z): one we know a priori from the definition of F (z) and another obtained
by assuming that F (z) is the Hadamard product of a certain number of algebraic functions
(and based on Theorem 3 in Section 2). In the cases considered in this paper, this leads
to a polynomial identity in values of the Euler Gamma function at rational numbers :

P
(
Γ(a1),Γ(a2), . . . ,Γ(ak)

)
= 0 (1.2)

where P (X1, . . . , Xk) ∈ Q[X1, . . . , Xk] and a1, . . . , ak ∈ Q \ Z≤0. Not much is known on
the (im)possibility of such a relation, although the Rohrlich-Lang Conjecture tells us what
to expect. This conjecture is widely open and most of our results are conditional. But
an important case was proved by Wolfart-Wüstholz [21], which will enable us to obtain
unconditional results a well. See Section 3 for details on these questions.

We now describe the main results of this paper. We first consider the (special type of)
hypergeometric series

Fe,f (z) =
∞∑
n=0

∏µ
i=1(ein)!∏λ
j=1(fjn)!

zn,

where e = (e1, ..., eµ) ∈ Zµ>0 and f = (f1, ..., fλ) ∈ Zλ>0. Without loss of generality, we can
assume that ei 6= fj for all (i, j) ∈ {1, ..., µ} × {1, ..., λ}. Moreover, we assume that

µ∑
i=1

ei =
λ∑
j=1

fj,

which is a necessary and sufficient condition for Fe,f (z) to be a G-function.

Theorem 1. (i) If λ− µ ≤ 0, then gradeQ(Fe,f (z)) =∞.
(ii) If λ− µ ≥ 2, then gradeQ(Fe,f (z)) ≥ 2.
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(iii) If λ− µ = 3 then gradeQ(Fe,f (z)) ≥ 3.
(iv) Assuming the Rohrlich-Lang Conjecture, if λ−µ ≥ 1 then gradeQ(Fe,f (z)) ≥ λ−µ.

This result has the following consequence.

Corollary 1. Let k ≥ 1 and a1, . . . , ak, b1, . . . , bk be integers such that aj > bj ≥ 1 for
all j ∈ {1, ..., k}. Then under the Rohrlich-Lang Conjecture, the grade of

∞∑
n=0

( k∏
j=1

(
ajn

bjn

))
zn

is equal to k. Moreover, this is true unconditionally for k ∈ {1, 2, 3}.

Remarks. Allouche and Mendès-France wondered if the grade of the series

Sk(z) =
∞∑
n=0

(
2n

n

)k
zn

is always k, for any integer k ≥ 1. Note that S1(z) = 1√
1−4z is algebraic over Q(z) and

that, for any integer k ≥ 1, we have

Sk(z) = S1(z) ∗ S1(z) ∗ · · · ∗ S1(z)︸ ︷︷ ︸
k times

.

So the answer is positive for k = 1 and, for all integer k ≥ 1, we have gradeQ(Sk(z)) ≤ k

with equality conditionally. Moreover, S2(z) is known to be transcendental over Q(z) hence
gradeQ(S2(z)) = 2. The first open case is for k = 3, which we solve positively: this is the
particular case k = 3, a1 = a2 = a3 = 2 and b1 = b2 = b3 = 1 of Corollary 1.

More generally, we consider the generalized hypergeometric series with parameters a =
(a1, ..., ap) ∈ Qp and b = (b1, ..., bq) ∈ (Q \ Z≤0)q defined by

pFq(a,b; z) := pFq

[
a1, a2, . . . , ap

b1, . . . , bq
; z

]
=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(1)n(b1)n · · · (bq)n

zn (1.3)

where (x)n denotes the Pochhammer symbol defined by (x)0 = 1 and, for all integer n ≥ 1,
(x)n = x(x + 1) · · · (x + n − 1). We assume that q = p − 1, which is a necessary and
sufficient condition for pFq(z) to be a G-function. Whether or not pFp−1(a,b; z) is globally
bounded can be decided by studying some Landau type functions according to the work
of Christol [6, 9]. Following Christol [6], we define the height of pFp−1(a,b; z) by

h(a,b) := #{1 ≤ j ≤ p | bj ∈ Z} −#{1 ≤ j ≤ p | aj ∈ Z},

with bp := 1.

Theorem 2. Consider a = (a1, ..., ap) ∈ (Q \ Z≤0)p and b = (b1, ..., bp−1) ∈ (Q \ Z≤0)p−1.
Then, under the Rohrlich-Lang Conjecture, we have gradeQ(pFp−1(a,b; z)) ≥ |h(a,b)|.
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Remarks. This is a generalization of Theorem 1(iv). Indeed, using the equality

(an)! = aan(1)n(1/a)n(2/a)n · · · ((a− 1)/a)n,

we see that Fe,f (z) = pFp−1(a,b;Cz) for some C ∈ Q× and some a = (a1, ..., ap) ∈
(Q \ Z≤0)p and b = (b1, ..., bp−1) ∈ (Q \ Z≤0)p−1 with h(a,b) = λ− µ.

This result has the following consequence.

Corollary 2. Assume that a = (a1, ..., ap) ∈ (Q \ Z≤0)p and b1 = · · · = bp−1 = 1. Then,
under the Rohrlich-Lang Conjecture, we have gradeQ(pFp−1(a,b; z)) = p.

In certain cases, our method may lead to stronger results than the lower bound given
by the height in Theorem 2. For instance, we have the following result about an hyperge-
ometric series considered by Christol in [7] in relation with its conjecture about globally
bounded G-functions and diagonals of multivariate rational functions.

Proposition 1. Under the Rohrlich-Lang conjecture, the globally bounded G-function (of
height 2)

3F2

[
1/7, 2/7, 4/7

1/2, 1,
; z

]
has infinite grade.

Remarks. Another interesting example mentioned by Christol in [6, 7] is the globally
bounded

3F2

[
1/9, 4/9, 5/9

1/3, 1,
; z

]
.

Unfortunately, it seems that our method cannot prove anything beyond the fact that its
grade is ≥ 2. Proving that it is ≥ 3 would answer a long standing question of Christol [6]
concerning the impossibility of writing this function as the Hadamard product of two
algebraic hypergeometric series. This example shows that the ad hoc arithmetic proof of
Proposition 1 cannot be repeated on a general basis.

Theorem 2 leads to the following question. Consider a = (a1, ..., ap) ∈ Qp and b =
(b1, ..., bp−1) ∈ (Q \ Z≤0)p−1 such that, for all (i, j) ∈ {1, ..., p} × {1, ..., p− 1}, ai − bj 6∈ Z.
Is the grade of pFp−1(a,b; z) finite if and only if it is the Hadamard product of |h(a,b)|
algebraic hypergeometric series? Note that Christol proved [6] that a globally bounded
hypergeometric series has grade 1 (i.e. is algebraic) if and only if it has height 1.

Of course, hypergeometric functions are not the only class of globally bounded G-
functions whose grade can be estimated by our method. We illustrate this with our last
result, which concerns the G-functions

Mr(z) =
∞∑
n=0

( n∑
k=0

(
n

k

)r0(n+ k

k

)r1(n+ 2k

k

)r2
· · ·
(
n+mk

k

)rm)
zn ∈ Z[[z]],

where r = (r0, r1, . . . , rm) ∈ Nm+1. Such binomial sums have been considered by McIn-
tosh [14] who obtained a result that proves to be useful to estimate the grade of Mr(z).
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When m = 1, the cases r0 = 2, r1 = 1 and r0 = r1 = 2 correspond to the famous generating
functions of Apéry’s numbers for ζ(2) and ζ(3) respectively. We set R =

∑m
j=0 rj.

Proposition 2. For any m ≥ 0 and any r ∈ Nm+1 such that r0 ≥ 1, the following
properties hold :

(i) If R ≥ 3, then gradeQ(Mr(z)) ≥ 2.
(ii) If R = 4, then gradeQ(Mr(z)) ≥ 3.
(iii) Assuming the Rohrlich-Lang Conjecture, if R ≥ 2, then gradeQ(Mr(z)) ≥ R− 1.

Remarks. Under the conditions of the proposition, if R = 1, then Mr(z) = 1
1−2z , which

has grade 1. For R ≥ 2, the lower bound in (iii) is best possible in general because Mr(z)
is algebraic for m = 1 and r0 = r1 = 1: it is the algebraic function that generates the
Legendre polynomials on [0, 1] evaluated at −1.

The paper is organised as follows. In Section 2, we obtain the asymptotic expansion of
the sequence of Taylor coefficients of any algebraic function. In Section 3, we recall various
conjectures and theorems on algebraic relations about Gamma values at rational points. In
Section 4, we explain our strategy for proving Theorems 1 and 2. The former is proved in
Section 5 and the latter in Section 7. Corollaries 1 and 2 are proved in Sections 6 and 8. In
Sections 9 and 11, we prove Propositions 1 and 2, while in Section 10 we discuss Christol’s
hypergeometric function.

2. Taylor coefficients of algebraic functions

Our study of the grade of globally bounded G-functions relies on the asymptotic behavior
of the Taylor coefficients of algebraic functions.

Consider a power series

A(z) =
∞∑
n=0

Anz
n ∈ C[[z]],

algebraic over Q(z), which is not a polynomial. We denote its singularities at finite distance
by ξ1, . . . , ξp ∈ Q. We consider the slit plane C \ ∪pj=1[ξj,∞), where the cuts [ξj,∞)
are pairwise without intersection. In this slit plane, A(z) is univalued and, around each
singularity ξj, we have the convergent Puiseux expansion

A(z) = (z − ξj)sj
∞∑
k=0

φk,j(z − ξj)k/dj (2.1)

where φk,j ∈ Q, φ0,j 6= 0, sj = cj/dj ∈ Q and dj ≥ 1.

Theorem 3. Let A(z) be an algebraic function given as above. There exist p sequences
(B1,n)n≥0, . . . , (Bp,n)n≥0 such that, for any integer n large enough,

An =

p∑
j=1

Bj,n

and such that :



6

(i) for any large enough real algebraic number ω, any j ∈ {1, . . . , p} and any integer n
large enough, Bj,n can be represented as a sum of convergent séries de facultés:

Bj,n = ξ−nj

dj−1∑
`=0

Γ
(
n
ω

)
Γ
(
n
ω

+ `
dj

+ sj
) ∞∑
k=0

βj,k,`(ω)(
n
ω

+ `
dj

+ sj
)
k+1

Γ(−k − `
dj
− sj

) (2.2)

where βj,k,`(ω) ∈ Q;
(ii) for any j ∈ {1, . . . , p}, Bj,n has an asymptotic expansion of the form

Bj,n ∼ ξ−nj

dj−1∑
`=0

1

Γ
(
− `

dj
− sj

)
n`/dj+sj

∞∑
q=1

β̃j,`,q
nq

, (2.3)

where β̃j,`,q ∈ Q and β̃j,0,1 6= 0.

We emphasize that the arithmetic nature of the coefficients will be of first importance
in the rest of the paper.

We don’t claim any real originality for Theorem 3. For instance, in [17], Orlov pro-
vides the leading term of the asymptotic expansion of Bj,n. In [11, p. 501], Flajolet and
Sedgewick provide the asymptotic expansion of An where only the singularities of small-
est modulus of A(z) are taken into account, and without any explicit description of the
coefficients. Actually, Theorem 3 is essentially due to Norlünd in its classical book [15],
the main difference being that he does not pay attention to the arithmetic nature of the
coefficients. We now sketch Norlünd’s proof of the above theorem.

Sketch of the proof of Theorem 3. In order to simplify the notations, we assume that any
two distinct singularities ξi and ξj of A(z) do not belong to the same half-line issued from
0. In this case, we can assume that [ξj,∞) = ξj[1,+∞). For the general case, and for
further details, we refer to [15, Section II of Chapitre III].

(i) For any integer n, we have

An =
1

2iπ

∫
G

A(z)

zn+1
dz

where G is the contour that surrounds 0 and avoids the p cuts [ξj,∞), as in Figure 1. Since
|A(z)| � |z|δ as z → ∞, for some δ > 0, we can “send” the contour at infinity provided
that n� 0 and we obtain, for n� 0,

An =

p∑
j=1

Bj,n with Bj,n =
ξ−nj
2iπ

∫
γ̃j

A(ξjz)

zn+1
dz (2.4)

where γ̃j is a contour composed of two half-lines parallel to [1,+∞), and joined by a
half-circle of center 1. Locally around z = 1, we have the convergent expansion

A(ξjz) = ξsj(z − 1)sj
∞∑
k=0

φk,jξ
k/dj
j (z − 1)k/dj
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Figure 1. The cuts [ξj,∞) and the contour G.

but in general we cannot exchange series and integral in (2.4). This difficulty can be
overcome by using the following trick, described in [15, Section II of Chapitre III] (see
also [16, Chapitre VI]). We set x = 1 − z−ω, where ω a positive algebraic number to be
specified later, so that, for n� 0,

Bj,n =
ξ−nj ω−1

2iπ

∫
γ̂j

(1− x)n/ω−1A

(
ξj

(1− x)1/ω

)
dx. (2.5)

Here γ̂j is a closed path surrounding [0, 1], that contains 1. We also have

ω−1A

(
ξj

(1− x)1/ω

)
= ω−1ξ

sj
j

(
(1− x)−1/ω − 1

)sj ∞∑
k=0

φk,jξ
k
j

(
(1− x)−1/ω − 1

)k/dj
= xsj

∞∑
k=0

φ̂k,j(ω)xk/dj

where φ̂k,j(ω) ∈ Q and φ̂0,j(ω) 6= 0. If we choose ω large enough, the above expansion
holds in the disk |x| ≤ 1. We can assume that γ̂j is contained in this disk. Using this
expansion in (2.5), we can now invert the sum and integral signs:

Bj,n =
ξ−nj
2iπ

∞∑
k=0

φ̂k,j(ω)

∫
γ̂j

xk/dj+sj(1− x)n/ω−1dx.

This integral is easily evaluated (using the Beta function):

1

2iπ

∫
γ̂j

xk/dj+ss(1− x)n/ω−1dx =
eiπ(k/dj+sj)Γ

(
n
ω

)
Γ
(
k
dj

+ sj + n
ω

+ 1
)
Γ
(
− k

dj
− sj

) .
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Finally, after some simple rearrangements, we obtain the following convergent expansion
for Bj,n:

Bj,n =
eiπsj

ξnj

∞∑
k=0

eiπk/dj φ̂k,j(ω)
Γ
(
n
ω

)
Γ
(
k
dj

+ sj + n
ω

+ 1
)
Γ
(
− k

dj
− sj

) (2.6)

=
eiπsj

ξnj

dj−1∑
`=0

Γ
(
n
ω

)
Γ
(
n
ω

+ `
dj

+ sj
) ∞∑
k=0

eiπk/dj φ̂kdj+`,j(ω)

(`/dj + sj + n/ω)k+1Γ
(
− k − `

dj
− sj

) . (2.7)

(ii) From the convergent expression (2.6), we can deduce the asymptotic expansion of
Bj,n. We start from the general asymptotic expansion (as z → +∞):

Γ(z)

Γ(z + x)
∼ z−x

∞∑
k=0

(−x
k

)
Pk(x)

zk
,

where Pk(x) is a polynomial in Q[x] of degree k defined by the expansion(
t

et − 1

)x
=
∞∑
k=0

Pk(x)
tk

k!
.

(They are not the Bernoulli polynomials.)
It follows that

Γ
(
n
ω

)
Γ
(
k
dj

+ sj + n
ω

+ 1
) ∼ n−k/dj−sj−1

∞∑
r=0

ωr

(−k/dj−sj−1
r

)
Pr
(
k
dj

+ sj + 1
)

nr
.

Hence

Bj,n ∼ ξ−nj

dj−1∑
`=0

eiπ(`/dj+sj)

Γ
(
− `

dj
− sj

)
n`/dj+sj+1

∞∑
q=0

cq(`, j, ω)

nq
, (2.8)

where cq(`, j, ω) is a finite sum of algebraic numbers:

cq(`, j, ω) =
∑
k,r≥0

k+r=q

(−1)kωrφ̂kdj+`,j(ω)Γ
(
− `

dj
− sj

)
Γ
(
− k − `

dj
− sj

) (
−k − `

dj
− sj − 1

r

)
Pr

(
k +

`

dj
+ sj + 1

)

=
( `
dj

+ sj + 1
)
q

∑
k,r≥0

k+r=q

(−ω)rφ̂kdj+`,j(ω)

r!
Pr

(
k +

`

dj
+ sj + 1

)
.

Moreover,

c0(0, j, ω) = φ̂0,j(ω) 6= 0,

so that the main term of the asymptotic expansion of Bj,n is (as expected)

νj
Γ(−sj)

·
ξ−nj
nsj+1

where νj ∈ Q. �
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Remarks. Since A(z) is algebraic over Q(z), it satisfies a linear differential equation with
coefficients in Q(z). Therefore, the sequence of its Taylor coefficients satisfies a linear
difference equation with coefficients in Q(n). For any j ∈ {1, ..., p}, the sequence (Bj,n)n≥N
constructed in the proof of Theorem 3 satisfies the same difference equation, for N large
enough (see the beginning of [15, Chapitre III]).

3. Algebraic relations amongst Gamma values

Let us consider the following normalized Gamma function :

G(x) = Γ(x)/
√
π.

We introduce the equivalence relation on C× defined by

a ∼ b⇔ a/b ∈ Q×.

Conjecture 1 (Rohrlich [8, 13, 20, 21]). Consider some rational numbers a1, . . . , an ∈
Q \ Z≤0 with common denominator N . Then, we have

n∏
j=1

G(aj) ∼ 1

if and only if, for all integer m ∈ {1, . . . , N − 1} coprime to N , we have

n∑
j=1

{maj} =
n

2

where {x} ∈ [0, 1) denotes the fractional part of x.

Moreover, the idea behind this conjecture is that any relation

n∏
j=1

G(aj) ∼ 1

“comes from” the following standard relations:

G(x) ∼ G(x+ 1) for x 6∈ Z≤0 (Functional equation)

G(x)G(1− x) ∼ 1 for x 6∈ Z (Complements formula)

G(x) ∼
n−1∏
j=0

G
(x+ j

n

)
for n ∈ N and x ∈ Q \ Z≤0, (Distribution relations).

We refer to [8, 13, 20] for details. The “if part” of the conjecture was proved by Koblitz
and Ogus; see the appendix of [10] or [21].

In fact, much more is expected.
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Conjecture 2 (Rohrlich-Lang [20]). Consider a non zero polynomial P (X1, . . . , Xn) ∈
Q[X1, . . . , Xn] and a1, . . . , an ∈ Q \ Z≤0 such that

P
(
Γ(a1),Γ(a2), . . . ,Γ(an)

)
= 0.

Then we can find two distinct monomials of P , say Xs1
1 · · ·Xsn

n and X t1
1 · · ·X tn

n , such that

Γ(a1)
s1 · · ·Γ(an)sn ∼ Γ(a1)

t1 · · ·Γ(an)tn . (3.1)

Moreover, the relation (3.1) can be rewritten as a relation
∏n

j=1G(bj) ∼ 1 that satisfies
Rohrlich conjecture above.

In direction of the conjecture, we will use results obtained by Schneider and Wolfart-
Wüstholz concerning linear forms in Beta values. The Beta function is defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Theorem 4 (Schneider [19]). For any a, b ∈ Q \ Z such that a+ b ∈ Q \ Z≤0, the number
B(a, b) is transcendental.

Theorem 5 (Wolfart-Wüstholz [21]). For any positive integer n, consider a1, . . . , an, b1, . . . , bn ∈
Q+×, and c1, . . . , cn ∈ Q, not all zero, such that

n∑
j=1

cjB(aj, bj) = 0.

Then n ≥ 2 and there exist two distinct integers p, q ∈ {1, 2, . . . , n} such that

B(ap, bp) ∼ B(aq, bq).

We will also use the following simple result.

Proposition 3. Assume the Rohrlich Conjecture. Let k, n ∈ Z, n ≥ 0 and let a1, . . . , an ∈
Q \ Z be such that

G(1)kG(a1) · · ·G(an) ∼ 1. (3.2)

Then k = 0.

Proof. We can assume that k ≥ 0, otherwise we use the complements formula to get the
similar relation

G(1)−kG(−a1) · · ·G(−an) ∼ 1.

According to Rohrlich Conjecture, the quantity

f(m) := k{m}+ {ma1}+ · · ·+ {man}
is equal to n+k

2
for all integers m coprime to the common denominator N of a1, ..., an. Since

aj 6∈ Z, we have {aj}+ {−aj} = 1 for all j ∈ {1, ..., n}. Hence,

f(1) + f(D − 1) = {a1}+ · · ·+ {an}+ {−a1}+ · · ·+ {−an} = n.

But, we also have f(1) = f(D − 1) = n+k
2

. Hence k = 0. �
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4. Strategy to study the grade of a power series f

The typical situation we will encounter is when we have a priori informations on the
asymptotic behavior of the Taylor coefficients of F (z) ∈ Q[[z]], namely

[zn]F (z) =
Cωn

nκ
(1 + o(1)) (4.1)

for some C, ω ∈ C× and κ ∈ Q, where [zn]F (z) denotes the n-th taylor coefficient of F (z).
Assume that F (z) has grade lower than or equal to k i.e. that

F (z) = A1(z) ∗ · · · ∗ Ak(z)

for some algebraic functions A1(z), ..., Ak(z) ∈ Q[[z]].

Remarks. The fact that F (z) ∈ Q[[z]] has grade ≤ k means that

F (z) = A1(z) ∗ A2(z) ∗ · · · ∗ A`(z)

for some ` ≤ k. We can assume that ` = k because

F (z) = A1(z) ∗ A2(z) ∗ · · · ∗ Ak(z)

with A`+1(z) = · · · = An(z) = 1
1−z .

Theorem 3 implies that [zn]F (z) decomposes as a finite sum of the following form:

[zn]F (z) =
∑
ζ∈Q

Cζζ
n

nκζ
(1 + o(1)) (4.2)

for some κζ ∈ Q and some

Cζ ∈ VectQ

{ 1

Γ(s1) · · ·Γ(sk)

∣∣∣ s1, ..., sk ∈ Q, s1 + · · ·+ sk = −κζ mod Z
}
.

Comparing Eqs. (4.1) and (4.2), we get ω ∈ Q, κω = κ and

C = Cω ∈ VectQ

{ 1

Γ(s1) · · ·Γ(sk)

∣∣∣ s1, ..., sk ∈ Q, s1 + · · ·+ sk = −κ mod Z
}
.

If C is a product of values of the Gamma function at rational numbers then, in some
cases, Rohrlich-Lang Conjecture (or Schneider and Wolfart-Wüstholz theorems) will lead
to a contradiction and hence will prove that F (z) has grade ≥ k + 1.

Remarks. In [2], Allouche and Mendès-France wondered if any algebraic function is the
Hadamard product of a finite number of quadratic functions. The answer is negative
because the n-th Taylor coefficients of such a Hadamard product is of the form (4.2) with
κζ ∈ 1

2
Z, and [zn](1− z)1/3 cannot be represented in this form.
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5. Proof of Theorem 1

We recall that

Fe,f (z) =
∞∑
n=0

∏µ
i=1(ein)!∏λ
j=1(fjn)!

zn,

where e = (e1, ..., eµ) ∈ Zµ>0 and f = (f1, ..., fλ) ∈ Zλ>0 are such that

µ∑
i=1

ei =
λ∑
j=1

fj

and ei 6= fj for all (i, j) ∈ {1, ..., µ} × {1, ..., λ}. We define its associated Landau function
∆e,f : R→ Z by

∆e,f (x) =

µ∑
i=1

beixc −
λ∑
j=1

bfjxc,

where b·c denotes the floor function. We now summarize a few properties of Fe,f (z).

Proposition 4. (i) Fe,f (z) ∈ Z[[z]] if and only if ∆e,f (x) ≥ 0 for all x ∈ [0, 1].

(ii) Fe,f (z) is algebraic over Q(z) if and only if ∆e,f (x) ∈ {0, 1} for all x ∈ [0, 1].
(iii) If ∆e,f (x) ≤ −1 for some x ∈ [0, 1], then Fe,f (z) is not globally bounded.
(iv) If λ ≤ µ, then Fe,f (z) is not globally bounded.

Proof. (i) It is a classical result proved by Landau [12].

(ii) It is a reformulation, due to Rodriguez-Villegas [18], of the Beukers-Heckman crite-
rion for the algebraicity of hypergeometric series [3].

(iii) It is a refinement of Landau’s theorem proved for example in [5].

(iv) It is proved in [4] that ∆e,f ≥ 0 on [0, 1] if and only its maximum on [0, 1] is λ−µ > 0.
Therefore, having µ ≥ λ implies that ∆e,f takes negative values on [0, 1] and then, by (iii),
that Fe,f (z) is not globally bounded. �

We are now in position to prove Theorem 1. We first observe that, by Stirling’s formula,
there exists ω ∈ Q+× such that∏µ

i=1(ein)!∏λ
j=1(fjm)!

=
ωn

(2πn)κ
(
1 + o(1)

)
where κ =

λ− µ
2

. (5.1)

(i) We have to prove that if λ − µ ≤ 0 then Fe,f has infinite grade. As recalled in the
introduction of this paper, any series with finite grade is globally bounded. Therefore, the
result follows from Proposition 4(iv).
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(ii) We have to prove that if λ−µ ≥ 2 then Fe,f has grade ≥ 2. Assume at the contrary
that the grade of Fe,f is ≤ 1. Then, according to Section 4, we have

1

πκ
∈ VectQ

{ 1

Γ(s)

∣∣∣ s ∈ Q, s = −κ mod Z
}

=


Qπ−1/2 if λ− µ is odd,

Q if λ− µ is even.

If λ − µ is even, then the only possibility is κ = 0 i.e. λ − µ = 0, which is excluded. If
λ− µ is odd, then the only possibility is κ = 1

2
i.e. λ− µ = 1, which is again excluded.

(iii) Let us now assume that λ− µ = 3, so κ = 3
2
. We have to prove that Fe,f has grade

at least 3. Assume that Fe,f has grade ≤ 2. According to Section 4, we have

1

π3/2
∈ VectQ

{ 1

Γ(s)Γ(t)

∣∣∣ s, t ∈ Q, s+ t =
1

2
mod Z

}
= Q

1

Γ(1
2
)

+ VectQ

{ 1

Γ(s)Γ(1
2
− s)

∣∣∣ s ∈ Q \ 1

2
Z
}
.

This decomposition is obtained by distinguishing the case s ∈ Z or t ∈ Z from the case
s, t 6∈ Z. The functional equation Γ(x+ 1) = xΓ(x) ensures that

VectQ

{ 1

Γ(s)Γ(1
2
− s)

∣∣∣ s ∈ Q \ 1

2
Z
}

= VectQ

{ 1

Γ(s)Γ(1
2
− s)

∣∣∣ s ∈ Q ∩ (0, 1) \ {1/2}
}
.

Using the complements formula, we see that, for all s ∈ Q ∩ (0, 1) \ {1
2
},

1

Γ(s)Γ(1
2
− s)

∼
Γ(1− s)Γ(s+ 1

2
)

π2
∼
B(1− s, s+ 1

2
)

Γ(1
2
)3

where 1− s, s+ 1
2
∈ Q+×. Hence,

1

π3/2
∈ Q

1

Γ(1
2
)

+ VectQ

{B(s, t)

Γ(1
2
)3

∣∣∣ s, t ∈ Q+×, s+ t =
1

2
mod Z

}
.

Multiplying this relation by Γ
(
1
2

)3
= π3/2, we get

1 ∈ QΓ
(1

2

)2
+ VectQ

{
B(s, t)

∣∣∣ s, t ∈ Q+×, s+ t =
1

2
mod Z

}
= QB

(1

2
,
1

2

)
+ VectQ

{
B(s, t)

∣∣∣ s, t ∈ Q+×, s+ t =
1

2
mod Z

}
.

By the Wolfart-Wüstholz Theorem, we have either 1 = B(1, 1) ∼ B
(
1
2
, 1
2

)
or 1 ∼ B(s, t)

for some s, t ∈ Q+× such that s + t = 1
2

mod Z. This contradicts Schneider’s theorem
(Theorem 4 above).

(iv) Under the Rohrlich-Lang Conjecture and when λ−µ ≥ 1, we now prove that Fe,f (z)
has grade ≥ λ− µ. Assume that it has grade ≤ k := λ− µ− 1. Let us first observe that
there is nothing to prove when λ− µ = 1. We now assume that λ− µ ≥ 2.
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According to Section 4, we have

1

πκ
∈ VectQ

{ 1

Γ(s1) · · ·Γ(sk)

∣∣∣ s1, ..., sk ∈ Q, s1 + · · ·+ sk = −κ mod Z
}
.

But, for any s1, ..., sk ∈ Q such that s1 + · · · + sk = −κ mod Z, there exists 0 ≤ ` ≤ k
such that s1, .., s` ∈ Q \ Z and s`+1, ..., sk ∈ Z. This leads to:

1

πκ
∈



k∑
`=1

VectQ

{ 1

Γ(s1) · · ·Γ(s`)

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` = −κ mod Z
}

if κ 6∈ Z

Q +
k∑
`=2

VectQ

{ 1

Γ(s1) · · ·Γ(s`)

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` ∈ Z
}

otherwise.

Using the complements formula, we obtain

1

πκ
∈



k∑
`=1

VectQ

{Γ(s1) · · ·Γ(s`)

Γ(12)2`

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` = κ mod Z
}

if κ 6∈ Z

Q +

k∑
`=2

VectQ

{Γ(s1) · · ·Γ(s`)

Γ(12)2`

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` ∈ Z
}

otherwise.

Multiplying this relation by Γ(1
2
)2κ = πκ, we get

1 ∈



k∑
`=1

VectQ

{Γ(s1) · · ·Γ(s`)

Γ(12)2`−2κ

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` = κ mod Z
}

if κ 6∈ Z

Q
1

Γ(12)−2κ
+

k∑
`=2

VectQ

{Γ(s1) · · ·Γ(s`)

Γ(12)2`−2κ

∣∣∣ s1, ..., s` ∈ Q \ Z, s1 + · · ·+ s` ∈ Z
}

otherwise.

By the Rohrlich-Lang Conjecture, we conclude that either Γ
(
1
2

)2κ ∼ 1 or there exist
` ∈ {1, . . . , k} (with ` ≥ 2 if κ ∈ Z) and s1, ..., s` ∈ Q \ Z with s1 + · · · + s` = κ mod Z
such that Γ(s1) · · ·Γ(s`)Γ

(
1
2

)2κ−2` ∼ 1 i.e.

G(s1) · · ·G(s`)G(1)`−2κ ∼ 1.

Therefore, we have either κ = 0 (by the transcendence of Γ(1
2
)), which is excluded because

λ− µ ≥ 2, or `− 2κ = 0 (by Proposition 3) i.e. λ− µ = `, which is also excluded because
` ≤ λ+ µ− 1.

6. proof of Corollary 1

The series
∞∑
n=0

(
a1n

b1n

)
zn



15

is algebraic by Proposition 4(ii). Indeed, its Landau function is

[a1x]− [(a1 − b1)x]− [b1x] = {(a1 − b1)x}+ {b1x} − {a1x},
which takes values in [0, 2), hence only the values 0 or 1.

It follows that, for any integer k ≥ 1, the grade of

∞∑
n=0

( k∏
j=1

(
ajn

bjn

))
zn =

∞∑
n=0

(
a1n

b1n

)
zn ∗ · · · ∗

∞∑
n=0

(
akn

bkn

)
zn

is ≤ k. That its grade is ≥ k under Rohrlich-Lang Conjecture is a consequence of Theo-
rem 1(iv) because this series is an instance of a function Fe,f (z) for which λ− µ = k. This
is unconditional if k = 1, 2 or 3 by (ii) and (iii) of the same theorem.

7. Proof of Theorem 2

By Stirling’s fomula, for any rational number s 6∈ Z≤0,
(s)n
n!

=
1 + o(1)

Γ(s)ns−1
.

It follows that

[zn]pFp−1(a,b; z) =
Γ(b1) · · ·Γ(bp)

Γ(a1) · · ·Γ(ap)
· 1 + o(1)

nκ

where bp := 1 and

κ =

p∑
j=1

aj −
p∑
j=1

bj.

We set

h := h(a,b) := #{1 ≤ j ≤ p : bj ∈ Z} −#{1 ≤ j ≤ p : aj ∈ Z}.
If h = 0, there is nothing to prove. We now consider the case h 6= 0. Assume that

pFp−1(a,b; z) has grade ≤ k := |h| − 1. Arguing as for the proof of Theorem 1(iv), we get
that either

κ ∈ Z and
Γ(b1) · · ·Γ(bp)

Γ(a1) · · ·Γ(ap)
∼ 1

or there exists 1 ≤ ` ≤ k, with ` ≥ 2 if κ ∈ Z, and there exist s1, ..., s` ∈ Q \ Z with
s1 + · · ·+ s` = κ mod Z such that

Γ(b1) · · ·Γ(bp)

Γ(a1) · · ·Γ(ap)
∼ Γ(s1) · · ·Γ(s`)Γ

(1

2

)−2`
.

Up to renumbering, we can assume that a1, . . . , aq ∈ Z and b1, . . . , bq+h−1, bp ∈ Z, and none
of the other ai and bj are integers. Using the complements formula, we get that either
κ ∈ Z and

1 ∼ Γ(aq+1) · · ·Γ(ap)Γ(−bq+h) · · ·Γ(−bp−1)Γ(1/2)−2(p−q−h)

∼ G(1)−hG(a1) · · ·G(aq)G(−b1) · · ·G(−bq+h−1)
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or

1 ∼ Γ(s1) · · ·Γ(s`)Γ(1/2)−2`Γ(aq+1) · · ·Γ(ap)Γ(−bq+h) · · ·Γ(−bp−1)Γ(1/2)−2(p−q−h)

∼ G(1)`−hG(s1) · · ·G(s`)G(a1) · · ·G(aq)G(−b1) · · ·G(−bq+h−1).
Proposition 3 entails that either h = 0 or ` = h. Both cases are excluded.

8. Proof of Corollary 2

We consider a = (a1, ..., ap) ∈ (Q \ Z≤0)p and b1 = · · · = bp−1 = 1. Then, we have

pFp−1

[
a1, a2, . . . , ap

1, . . . , 1
; z

]
= 1F0

[
a1
−; z

]
∗ · · · ∗ 1F0

[
ap
−; z

]
=

1

(1− z)a1
∗ · · · ∗ 1

(1− z)ap
.

Hence, gradeQ(pFp−1(a,b; z)) ≤ p. The result follows from Theorem 2, which gives the
other inequality.

9. Proof of Proposition 1

We want to prove that

3F2

[
1/7, 2/7, 4/7

1/2, 1
; z

]
has infinite grade under the Rohrlich-Lang conjecture. Assume that it has finite grade k.
The proof of Theorem 2 given in Section 7 shows that there exist 1 ≤ ` ≤ k and s1, ..., s` ∈
Q \ Z with s1 + · · ·+ s` = 1

2
mod Z such that

1 ∼ G(1)`−2G(s1) · · ·G(s`)G
(1

2

)
G
(1

7

)
G
(2

7

)
G
(4

7

)
.

Proposition 3 ensures that ` = 2. So, there exists s ∈ Q \ 1
2
Z such that

G(s)G
(1

2
− s
)
G
(1

2

)
G
(1

7

)
G
(2

7

)
G
(4

7

)
∼ 1.

According to Rohrlich conjecture, the quantity

f(m) :=
{
ms
}

+
{m

2
−ms

}
+
{m

2

}
+
{m

7

}
+
{2m

7

}
+
{4m

7

}
is equal to 3 for any integer m coprime to lcm{14, b}. We let a ∈ Z and b ∈ Z>0 be such
that s = a/b ∈ Q and (a, b) = 1.

Lemma 1. We have that 7 divides b.

Proof. Assume that 7 does not divide b. Then by the Chinese remainder theorem, we can
find an integer n such that

n ≡ −1 mod b, n ≡ −1 mod 2, n ≡ 1 mod 7.

This n is coprime to lcm{14, b} and we have

f(n) = {−s}+
{1

2
+ s
}

+
3

2
.
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On the other hand, we have

f(1) = {s}+
{1

2
− s
}

+
3

2
.

Since s and s+ 1
2

are not integers, we have

{s}+
{1

2
− s
}

+ {−s}+
{1

2
+ s
}

= 2,

so f(1) + f(n) = 5 and hence either f(1) or f(m) is 6= 3. This is a contradiction, and 7
divides b. �

Lemma 2. We have b 6= 7, 14, 21, 28.

Proof. This was verified with a computer with a case by case inspection. �

We shall now derive a contradiction by proving that there exist two integers m,m′

coprime to lcm{14, b} such that f(m) 6= f(m′). Note that{m
2

}
+
{m

7

}
+
{2m

7

}
+
{4m

7

}
only depends on m mod 14. Therefore, it is sufficient to prove that there exist two integers
m,m′ coprime to lcm{14, b} such that m = m′ mod 14 and{

ms
}

+
{m

2
−ms

}
6=
{
m′s
}

+
{m′

2
−m′s

}
.

But, for any m coprime to lcm{14, b}, we have

{
ms
}

+
{m

2
−ms

}
=
{
ms
}

+
{1

2
−ms

}
=


1
2

if {ms} ∈
(
0, 1

2

)
3
2

if {ms} ∈
(
1
2
, 1
)
.

Therefore, it is sufficient to prove the following lemma, the proof of which follows an idea
of our colleague Emmanuel Peyre.

Lemma 3. There exist two integers m,m′ coprime to lcm{14, b} such that m = m′ mod 14
and

{ms} ∈
(

0,
1

2

)
and {m′s} ∈

(1

2
, 1
)
.

Proof. We let α and β be the 2-adic and the 7-adic valuations of b and we set b′ := b/(2α7β),
which is coprime to 14. Recall that 7 divides b i.e. β ≥ 1. We split the proof according to
the following three cases:

• α ≥ 1 and b′ 6= 1,
• α = 0 and b′ 6= 1,
• b′ = 1.



18

We first assume that α ≥ 1 and b′ 6= 1 (so b′ ≥ 3, because b′ is odd). Note that, for all u
coprime to b′, we have (2α7βu+ b′, lcm{14, b}) = 1. Therefore, it is sufficient to prove that
there exists u ∈ Z coprime to b′ such that

(2α7βu+ b′)a ∈
{

1, ...,
b

2
− 1
}

mod bZ

and that there exists u′ ∈ Z coprime to b′ such that

(2α7βu′ + b′)a ∈
{ b

2
+ 1, ..., b− 1

}
mod bZ.

More generally, we claim that, for all c ∈ Z, there exists u ∈ Z coprime to b′ such that

(2α7βu+ b′)a ∈ I mod bZ

where I := {c+ 1, ..., c+ b
2
− 1} i.e. that

X := #
{
u ∈ (Z/b′Z)×

∣∣ 2α7βua ∈ I ′ mod bZ
}
≥ 1

where I ′ = I − b′a. Since multiplication by a induces a permutation of (Z/b′Z)×, we see
that

X = #
{
u ∈ (Z/b′Z)×

∣∣ 2α7βu ∈ I ′ mod bZ
}
.

By the exclusion-inclusion principle, we have:

X =
∑
d|b′

µ(d)Yd

where µ is the Möbius function and

Yd := #
{
u ∈ dZ/b′Z

∣∣ 2α7βu ∈ I ′ mod bZ
}
.

But Yd is equal to the number of integers k ∈ {1, ..., b′/d} such that 2α7βkd ∈ I ′ mod bZ
i.e the number of integers k ∈ {1, ..., b′/d} such that k ∈ 1

2α7βd
I ′ mod b′

d
Z. Since 1

2α7βd
I ′ is

included in an interval of length < b′

d
, we get that Yd is the number of integers in 1

2α7βd
I ′

i.e. the number of elements of I ′ divisible by 2α7βd. Therefore,

Yd =

⌊
b
2
− 1

2α7βd

⌋
+ `d =

⌊
b

2d

⌋
+ `d =

b′

2d
− 1

2
+ `d

for some `d ∈ {0, 1}; we set `′d = `d − 1
2
∈ {±1

2
}. Hence,

X =
∑
d|b′

µ(d)
( b′

2d
+ `′d

)
=

1

2

∑
d|b′

µ(d)
b′

d
+
∑
d|b′

µ(d)`′d =
1

2
ϕ(b′) +

∑
d|b′

µ(d)`′d,

where ϕ is Euler’s totient function. Therefore X ≥ 1 if and only if∑
d|b′

µ(d)`′d > −
1

2
ϕ(b′). (9.1)
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But ∑
d|b′

µ(d)`′d ≥ −
1

2

∑
d|b′
|µ(d)|.

Therefore (9.1) holds if ∑
d|b′
|µ(d)| < ϕ(b′). (9.2)

This equality is true because b′ ≥ 3. Indeed if b′ = pα1
1 · · · p

αk
k where p1, ..., pk are prime

numbers and α1, ..., αk ∈ Z>0 then the left hand side of (9.2) is the number of square
free divisors of b′, which is equal to 2k, and the right hand side is equal to pα1−1

1 (p1 −
1) · · · pαk−1k (pk − 1) and it is easily seen that the former is less than the latter if b′ ≥ 3.
This proves our claim.

We now assume that α = 0 and b′ 6= 1. Note that, for all u coprime to b′, we have
(2 · 7βu + b′, lcm{14, b}) = 1. Therefore, it is sufficient to prove that there exists u ∈ Z
coprime to b′ such that

(2 · 7βu+ b′)a ∈
{

1, ...,
b− 1

2

}
mod bZ

and that there exists u′ ∈ Z coprime to b′ such that

(2 · 7βu′ + b′)a ∈
{b+ 1

2
, ..., b− 1

}
mod bZ.

More generally, we claim that, for all c ∈ Z, there exists u ∈ Z coprime to b′ such that

(2 · 7βu+ b′)a ∈ I mod bZ

where I := {c+ 1, ..., c+ b−1
2
} i.e. that

X := #
{
u ∈ (Z/b′Z)×

∣∣ 2 · 7βua ∈ I ′ mod bZ
}
≥ 1

where I ′ = I − b′a. Since multiplication by 2a induces a permutation of (Z/b′Z)×, we see
that

X = #
{
u ∈ (Z/b′Z)×

∣∣ 7βu ∈ I ′ mod bZ
}
.

By the exclusion-inclusion principle, we have

X =
∑
d|b′

µ(d)Yd

where

Yd := #
{
u ∈ dZ/b′Z

∣∣ 7βu ∈ I ′ mod bZ
}
.

Arguing as above for the case α ≥ 1 and b′ 6= 1, we get

Yd =

⌊
b− 1

2 · 7βd

⌋
+ `d =

⌊
b′

2d

⌋
+ `d =

b′

2d
− 1

2
+ `d

for some `d ∈ {0, 1}; we set `′d = `d − 1
2
∈ {±1

2
}. Now, the end of the proof is exactly the

same that in the previous case α ≥ 1 and b′ 6= 1.
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It only remains to consider the case b′ = 1 i.e. b = 2α7β. Note that, for all u ∈ Z, we
have (14u+ 1, b) = 1. Therefore, it is sufficient to prove that E :=

{
{(14u+ 1)s}

∣∣ u ∈ Z
}

satisfies

E ∩
(
0,

1

2

)
6= ∅ and E ∩

(1

2
, 1
)
6= ∅.

But 14Zs + Z = 14aZ+bZ
b

contains 14
b
Z. So E contains the fractional part of any rational

number in 14
b
Z + s. Since 14

b
< 1

2
(by Lemma 2), the result follows. �

10. Christol’s hypergeometric function

In [6], Christol states that the hypergeometric series (of height 2)

C(z) := 3F2

[
1
9
, 4
9
, 5
9

1
3
, 1

; z

]
est globalement bornée mais ne semble pas être le produit de Hadamard de deux fonctions
de hauteur 1. Let us make a few comments on this statement:

a) From the discussion preceeding his statement, we can infer that he meant “two globally
bounded hypergeometric functions of height 1”. Indeed, without the “global boundedness”
assumption, C(z) is the Hadamard product of the two hypergeometric functions

2F1

[
1
9
, 4
9

1
3

; z

]
and 1F0

[
5
9
−; z

]
=

1

(1− z)5/9

which are both of height 1. The former is not algebraic and not even globally bounded.

b) He called reduced a hypergeometric series such that ai − bj 6∈ Z for any (i, j) ∈
{1, 2, . . . , p}2, with bp := 1. He then proved that a not necessarily reduced globally bounded

hypergeometric series F (z), with rational parameters and of height 1, is of the form L(F̃ (z))

for some differential operator L with coefficients in Q(z) and F̃ (z) a reduced globally
bounded hypergeometric series of height 1.

c) He proved that reduced globally bounded hypergeometric series with rational param-
eters and height 1 have a certain interlacing property, which turns out to be the exact
necessary and sufficient condition of Beukers-Heckman [3] for algebraicity over Q(z).

From a), b) and c), we can rephrase Christol’s statement as follows:

The function C(z) does not seem to be the Hadamard product of two algebraic hyperge-
ometric series with rational coefficients.

This statement would follow if we could prove that gradeQ(C(z)) ≥ 3. Clearly C(z)

has grade ≥ 2 i.e. it is not algebraic over Q(z) because its does not satisfy the necessary
interlacing property of Beukers-Heckman. One can try to prove that its grade is not 2 by
the strategy used in the previous sections. Since

[zn]C(z) =

(
1
9

)
n

(
4
9

)
n

(
5
9

)
n(

1
3

)
n

(
1
)2
n

=
Γ
(
1
3

)
Γ
(
1
9

)
Γ
(
4
9

)
Γ
(
5
9

) · 1 + o(1)

n11/9
,
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we are led to decide whether or not there exists some rational number s such that s, 7
9
+s 6∈ Z

and

G
(1

3

)
G
(8

9

)
G
(
s+

7

9

)
G
(
− s
)
∼ 1.

We would like to show that there is no solution, under the Rohrlich-Lang Conjecture at
least. However, it turns out that there are solutions (mod Z): for instance, s = 1

3
, 8
9

(explained by the complements formula), 4
9

(explained by the distribution relations and

complements formula) and also 1
2

and many more. Therefore, this approach does not yield
any contradiction and the profusion of solutions does not help to describe in any useful
way the putative algebraic functions A(z) and B(z) such that C(z) = A(z) ∗B(z).

Finally, as for the hypergeometric function of Proposition 1, if one can prove that
gradeQ(C(z)) ≥ 3, then automatically gradeQ(C(z)) = ∞ under the Rohrlich-Lang Con-
jecture.

11. Proof of Proposition 2

The main result of [14] is that, as n→ +∞,

[zn]Mr(z) =
n∑
k=0

(
n

k

)r0(n+ k

n

)r1(n+ 2k

n

)r2
· · ·
(
n+mk

n

)rm
∼ C

ωn

(nπ)
R−1
2

where R =
∑m

j=0 rj and C, ω ∈ Q×. We are exactly in the same situation as in (5.1), where
R− 1 is replaced by λ− µ. Therefore, the proof of Proposition 2 is the same as the proof
of Theorem 1 in Section 5, mutatis mutandis.
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