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Abstract. We solve the problem of describing the solutions of E-operators of order µ ≥ 1
admitting at z = 0 a basis over C of local solutions which are all holomorphic at z = 0.

We prove that the components of such a basis can be taken of the form
∑`
j=1 Pj(z)e

βjz,

where ` ≤ µ, β1, . . . , β` ∈ Q×
, and P1(z), . . . , P`(z) ∈ Q[z].

1. Introduction

We fix an enbedding of Q into C. An E-function is a power series

f(z) =
∞∑
n=0

an
n!
zn ∈ Q[[z]]

such that:

(1) f(z) satisfies a non-zero linear differential equation with coefficients in Q(z);
(2) there exists C > 0 such that

(a) for any σ ∈ Gal(Q/Q), we have |σ(an)| ≤ Cn+1;
(b) there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam

is an algebraic integer for all m ≤ n.

A G-function at z = 0 is a power series f(z) =
∑∞

n=0 anz
n ∈ Q[[z]] such that

∑∞
n=0

an
n!
zn

is an E-function. Both classes of functions have been first introduced by Siegel (1). Much
work has been devoted to the study of the Diophantine nature of the values of these
functions, and the properties of the differential equations they satisfy proved to be crucial;
we refer to [1, 4, 6, 10] for surveys of these results.

A theorem of Chudnovkii [5] says that if L ∈ Q[z, d
dz

] \ {0} is the minimal differential

operator annihilating a G-function at z = 0, then all its solutions at any point α ∈ Q∪{∞}
are essentially G-functions of the variable z−α or 1/z if α =∞. Such a differential operator
is called a G-operator. Throughout the paper, by “solution of a differential operator L”,
it must be understood “solution of the differential equation Ly(z) = 0”.

Recently, André [2, 3] defined an E-operator as a differential operator in Q[z, d
dz

] such
that its Fourier-Laplace transform is a G-operator. Recall that the Fourier-Laplace trans-

form L̂ ∈ Q[z, d
dz

] of an operator L ∈ Q[z, d
dz

] is the image of L by the automorphism of

the Weyl algebra Q[z, d
dz

] defined by z 7→ − d
dz

and d
dz
7→ z. Any E-function is solution of

Date: March 20, 2016.
1His definition was slightly less restrictive, but it is now believed that both definitions define the same

class of functions.
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an E-operator, which is not necessarily minimal for the degree in d
dz

but is minimal for the
degree in z. André proved that the only possible singular points of an E-operator are 0 and
∞, 0 being a regular singularity. In general, ∞ is an irregular singularity but the slopes of
the Newton polygon of L are in {0, 1}. We emphasize that the solutions of E-operators are
not holomorphic at z = 0 in general, as they may have a non-trivial monodromy around 0.
This note grew out from the observation that the solutions of “non-trivial” E-operators
we have found in the literature have a non-trivial monodromy. Our main result shows that
this is actually a general fact.

Theorem 1. Consider an E-operator L ∈ Q[z, d
dz

] of order µ having a basis over C of
holomorphic solutions at z = 0. Then, L has a basis over C of solutions of the form

P1(z)eβ1z + · · ·+ P`(z)eβ`z (1.1)

for some integer ` ≤ µ, some β1, . . . , β` ∈ Q×, and some P1(z), . . . , P`(z) ∈ Q[z].

Remark. In [4], Bertrand gives two new proofs of the Siegel-Shidlovskii Theorem using
Laurent’s interpolation determinants method. The second proof given in Section 5 of [4]
works under the assumption that the solutions of the underlying E-operator are holomor-
phic at z = 0. He then observes that “cette hypothèse n’est en pratique vérifiée que dans
le cas du théorème de Lindemann-Weierstrass” (2). Theorem 1 shows that Bertrand’s
observation is the general situation: his second proof is indeed only a new proof of the
Lindemann-Weierstrass Theorem, as it does not cover any other E-function than those of
the form (1.1).

As a by-product of the proof of Theorem 1, we also obtain the following result.

Theorem 2. Given an E-operator L ∈ Q[z, d
dz

], if the equation Ly(z) = 0 has a non-

zero local solution F (z − α) at some α ∈ Q× such that F (z) is an E-function, then the
conclusion of Theorem 1 holds.

One of the steps in the proof of Theorem 1 is the following result, which is of independent
interest.

Proposition 1. Consider a differential operator L =
∑µ

j=0Aj(z)
(
d
dz

)j
with Aj(z) ∈ Q[z],

and Aµ(z) 6= 0. Let

F (z − α) =
∞∑
n=0

an
n!

(z − α)n ∈ Q[[z − α]]

be a local solution of L at an algebraic point α such that Aµ(α) 6= 0. Let dn denote the
smallest positive integer such that a0, a1, . . . , an are algebraic integers. Then, there exists
a positive integer C such that, for all n ≥ 0, dn divides Cn+1.

Moreover, if F σ(z) :=
∑∞

n=0
σ(an)
n!

zn is an entire function for any σ ∈ Gal(Q/Q), and if
the slopes of the Newton polygon of L at ∞ are ≤ 1, then F (z) is an E-function.

2in practice, this assumption is satisfied only in the case of the Lindemann-Weierstrass Theorem.
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2. Proof of Proposition 1

Up to replacing L by mL for some non zero integer m, we can and will assume that
A0(z), . . . , Aµ(z) are polynomials with algebraic integers coefficients. The vector function
Y (z) = t

(
F (z−α), F ′(z−α), . . . , F (µ−1)(z−α)

)
satisfies the differential system Y ′ = MY

where

M =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1

−A0

Aµ
−A1

Aµ
· · · · · · −Aµ−1

Aµ

 ∈ Mµ(Q(z)).

We define the sequence of square matrices (Mn)n≥0 by M0 = Iµ and, for all n ≥ 0,

Mn+1 = MnM +M ′
n.

Then, we have

Y (z) =

(
∞∑
n=0

Mn(α)

n!
(z − α)n

)
Y (α).

(See [8, p. 93].) By induction on n, we see that Mn is of the form A−nµ M̃n for some

M̃n ∈ Mµ(Q[z]) whose entries are polynomials with algebraic integers coefficients, and that

there exists B > 0 such that the degree of each entry of M̃n is ≤ Bn.
Let α be an algebraic number such that Aµ(α) 6= 0. Let u and v be non-zero integers

such that uα and v/Aµ(α) are algebraic integers. Then, for any n ≥ 0, the entries of

the matrix uBnvnMn(α) = uBnM̃n(α)(v/Aµ(α))n are algebraic integers. Let also w be a
non-zero integer such that the vector wY (α) has algebraic integers components. Then
the n-th Taylor coefficient of each component of Y (z) becomes an algebraic integer after
multiplication by w(uBv)nn!. This proves the first part of the proposition, and in fact a
more precise result.

Let us now assume that, for all σ ∈ Gal(Q/Q), F σ(z) is an entire function and that the
slopes of the Newton polygon of L at ∞ are ≤ 1. Note that, for all σ ∈ Gal(Q/Q), the
slopes of the Newton polygon of Lσ at ∞ are ≤ 1 as well, and, hence, the solutions of Lσ
have at most exponential growth at ∞ in any sector of bounded aperture. In particular,
F σ(z − σ(α)) and, hence, F σ(z) have at most exponential growth of order 1 at ∞, i.e.
|F σ(z)| � eκ|z| for some κ > 0 as z →∞. Using the Cauchy formula

σ(an) =
n!

2iπ

∫
|z|=n

F σ(z)

zn+1
dz

and Stirling’s formula, we then deduce that

lim sup
n→+∞

|σ(an)|1/n ≤ eκ−1 <∞.
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Together with the above bound for the denominator of the Taylor coefficients of F (z), this
implies that F (z) is an E-function.

Remark. The proof shows the following. If the local solution F (z−α) =
∑∞

n=0
an
n!

(z−α) is
entire and of order of growth ≤ 1, then it is a quasi E-function in the following sense: F (z)
satisfies conditions (1), (2b) and a weak version of (2a) for σ = idQ only (a priori), where
these labels refer to the definition of an E-function in the Introduction. The assumption on
F σ(z) in the second part of Proposition 1 forces (2a) for all σ ∈ Gal(Q/Q). We don’t know
if a quasi E-function is automatically an E-function. A similar problem can be formulated
for G-functions.

3. Proof of Theorem 1

Using Theorem 4.3 (iii) in [2], we see that L has a basis over C of solutions E1, . . . , Eµ
which consists of E-functions. Then, for any σ ∈ Gal(Q/Q), the E-functions Eσ

1 , . . . , E
σ
µ

form a basis over C of solutions of Lσ. Indeed, if Eσ
1 , . . . , E

σ
µ were C-linearly dependent,

they would also be Q-linearly dependent, and using σ−1 on the induced Q-relations of Tay-
lor coefficients, this would imply that E1, . . . , Eµ are Q-linearly dependent. In particular,

for any σ ∈ Gal(Q/Q), any solution of Lσ is an entire function.

Let us consider α ∈ Q×. Theorem 4.3 (iv) of [2] ensures that the slopes of the Newton
polygon of L at ∞ are ≤ 1. Using Proposition 1, we infer that the differential operator L
admits at z = α a basis of solutions of the form F1(z−α), . . . , Fµ(z−α), where each Fj(z)
is an E-function. We now fix j and we set F (z) := Fj(z). We have

LαF (z) = 0

where Lα is the shifted operator (of order µ) obtained by changing z to z + α in L.
We recall that the Laplace transform of F (z) =

∑∞
n=0

an
n!
zn is defined by g(z) :=∫∞

0
e−ztF (t)dt. Locally around z = ∞, we have g(z) =

∑∞
n=0

an
zn+1 , which is a G-function

of the variable 1/z. Denoting by L̂α the Fourier-Laplace transform of Lα, we have(
d

dz

)µ
L̂α
(
g(z)

)
= 0.

(This is a general property, see [2, p. 716].) Since L̂α = eαzL̂e−αz, the above equality can
be rewritten as follows:

L̂
(
e−αzg(z)

)
= e−αzP (z) (3.1)

for some P (z) ∈ Q[z] of degree ≤ µ− 1. Let S be the (finite) set of singularities of g over
P1(C). Consider [γ] ∈ π1(P1(C) \ S, z0) (where z0 ∈ P1(C) \ S is arbitrary) and denote by
[γ]g the analytic continuation of g along [γ]. We set var[γ](g) = [γ]g− g. Then, we deduce
from (3.1) that

L̂
(
e−αzvar[γ](g)

)
= 0.

Therefore, we have

var[γ](g)(z) = eαzϕ(z)
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for some solution ϕ of L̂. We claim that ϕ = 0. Indeed, assume at the contrary that

ϕ 6= 0. Note that L̂ is a G-operator and, hence, a fuchsian operator. Thus, ϕ has moderate
growth at ∞, so that eαzϕ(z) has exponential growth at ∞ along some direction. But, g
is a G-function hence it has moderate growth near each s ∈ S along any sector with finite
aperture. It follows that var[γ](g) has moderate growth at ∞ along any sector with finite
aperture. Whence a contradiction.

Therefore, we have var[γ](g) = 0 i.e. [γ]g = g. In other words, the monodromy of g is

trivial. Since g has moderate growth at each s ∈ S, we get g ∈ Q(z).

To recover F (z) from g(z), we use the inverse Laplace transform formula. Let δ be any
real number larger than 0 and than all the real parts of the singularities of g(z). Then,
by [7, p. 61, Théorème 1], we have

lim
T→+∞

1

2iπ

δ+iT∫
δ−iT

g(x)

x
exzdx =


∫ z
0
F (u)du if z > 0

0 if z < 0.

Now, since g(z) is a rational function, the integral

lim
T→+∞

1

2iπ

δ+iT∫
δ−iT

g(x)

x
exzdx

is easily computed by the residues theorem; see [9] for a similar computation. It is equal
to
∑

ρQρ(z)eρz when z > 0, where the summation is over the poles of g(x)/x and where

each Qρ(z) ∈ Q[z]. Hence, by differentiation, for z > 0, we have

F (z) =
∑
ρ

(
Q′ρ(z) + ρQρ(z)

)
eρz. (3.2)

By analytic continuation, this identity holds for any z ∈ C. Since F (z) represents any local
solution of Ly(z) = 0 at z = α, it follows that L has a basis of solutions of the form (3.2).
This completes the proof of the theorem.
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