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Abstract. The last years have seen a growing interest from mathematicians
in Mahler functions. This class of functions includes the generating series of the
automatic sequences. The present paper is concerned with the following prob-
lem, which is omnipresent in combinatorics: a set of Mahler functions u1, ..., un
being given, are u1, ..., un and their successive derivatives algebraically inde-
pendent? In this paper, we give general criteria ensuring an affirmative answer
to this question. We apply our main results to the generating series attached
to the so-called Baum-Sweet and Rudin-Shapiro automatic sequences. In par-
ticular, we show that these series are hyperalgebraically independent i.e. that
these series and their successive derivatives are algebraically independent. Our
approach relies of the parametrized difference Galois theory (in this context,
the algebro-differential relations between the solutions of a given Mahler equa-
tion are reflected by a linear differential algebraic group).
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Introduction

This paper grew out of an attempt to understand the algebraic relations between
classical Mahler functions and their successive derivatives. By Mahler function, we
mean a function f(z) such that

(1) an(z)f(z
pn) + an−1(z)f(z

pn−1

) + · · ·+ a0(z)f(z) = 0

for some integers p ≥ 2, n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with
a0(z)an(z) 6= 0.

The study of this class of functions was originally motivated by the work of
Mahler in [Mah29, Mah30a, Mah30b] about the algebraic relations between special
values at algebraic points of Mahler functions. This arithmetic aspect of the theory
of the Mahler functions was developed further by several authors, e.g. Becker,
Kubota, Loxton, van der Poorten, Masser, Nishioka, Töfer. We refer to Nishioka’s
book [Nis96] and Pellarin’s paper [Pel09] for more informations and references. We
shall simply mention that, quite recently, Philippon [Phi15] proved a refinement
of Nishioka’s analogue of the Siegel-Shidlovski theorem, in the spirit of Beukers’
refinement of the Siegel-Shidlovski theorem [Beu06]. Roughly speaking, it says
that the algebraic relations over Q between the above-mentioned special values
come from algebraic relations over Q(z) between the functions themselves. These
functional relations are at the hearth of the present paper.

The attractiveness of the theory of Mahler functions comes from (to a
large extend) its close connection with automata theory: the generating series
f(z) =

∑
k≥0 skz

k of any p-automatic sequence (sk)k≥0 ∈ QN
(and, actually, of any

p-regular sequence) is a Mahler function; see Mendès France’s [MF80], Adamczewski
and Bell’s [AB13], and Becker’s [Bec94], and the references therein, especially to the
works of Dumas and Randé. The famoust examples are the generating series of the
Thue-Morse, the paper-folding, the Baum-Sweet and the Rudin-Shapiro sequences
(see Allouche and Shallit’s book [AS03]). Note that all of these classical series are
associated to Mahler equations of order n ≤ 2.

The Mahler functions also appear in many other circumstances such as the com-
binatorics of partitions, the enumeration of words and the analysis of algorithms of
the type divide and conquer; see for instance [DF96] and the references therein.

It is a classical problem (in combinatorics in particular) to determine whether
or not a given generating series is transcendental or even hypertranscendental over
C(z)1.

The hypertranscendence over C(z) of Mahler functions solutions of inhomoge-
neous Mahler equations of order one can be studied by using the work of Nish-
ioka [Nis96]; see also the work of Nguyen [Ngu11, Ngu12] via difference Galois
theory. This can be applied to the paper-folding generating series for instance.

The present work started with the observation that, besides this case, very few
was known. For instance, the hypertranscendence of the Baum-Sweet or of the
Rudin-Shapiro generating series was not known (the corresponding Mahler equa-
tions are of order two). The main objective of the present work is to develop an
approach, as systematic as possible, in order to prove the hypertranscendence of
such series.

To give an idea of the content of this paper, we mention the following result
(see Theorem 4.2), which is a consequence of one of our main hypertranscendence
criteria. In what follows, we consider the field K = ∪j≥1C(z1/j) endowed with the
field automorphism φ given by φ(f(z)) = f(zp). We obtain in this way a difference

1We say that a series f(z) ∈ C((z)) is hypertranscendental over C(z) if f(z) and all its deriva-
tives are algebraically independent over C(z).
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field with field of constants Kφ = C, and we have at our disposal a difference Galois
theory over K (see Section 1.1).

Theorem. Assume that the difference Galois group over K of the Mahler equation
(1) contains SLn(C) and that an(z)/a0(z) is a monomial. Let f(z) ∈ C((z)) be
a nonzero solution of (1). Then, the series f(z), f(zp), . . . , f(zp

n−1

) and all their
successive derivatives are algebraically independent over C(z). In particular, f(z)
is hypertranscendental over C(z).

The hypothesis that an(z)/a0(z) is a monomial is satisfied in any of the above-
mentioned cases. Moreover, in the case n = 2, there is an algorithm to determine
whether or not the difference Galois group over K of equation (1) contains SL2(C);
see [Roq15]. It turns out that the difference Galois groups involved in the Baum-
Sweet and in the Rudin-Shapiro cases both contain SL2(C) (see [Roq15, Section 9]).
Therefore, we have the following consequences of the above theorem (see Theorems
4.3 and 4.4). In what follows, we denote by fBS(z) and fRS(z) the generating series
of the Baum-Sweet and of the Rudin-Shapiro sequences.

Corollary. The series fBS(z), fBS(z2) and all their successive derivatives are
algebraically independent over C(z). In particular, fBS(z) is hypertranscendental
over C(z).

Corollary. The series fRS(z), fRS(−z) and all their successive derivatives are
algebraically independent over C(z). In particular, fRS(z) is hypertranscendental
over C(z).

Actually, our methods also allow to study the relations between these series. We
prove the following result (see Theorem 4.6).

Corollary. The series fBS(z), fBS(z2), fRS(z), fRS(−z) and all their successive
derivatives are algebraically independent over C(z).

We shall now say a few words about the proofs of these results. Our approach re-
lies on the parametrized difference Galois theory developed by Hardouin and Singer
in [HS08]. Roughly speaking, to the difference equation (1), they attach a linear dif-
ferential algebraic group over a differential closure C̃ of C – called the parametrized
difference Galois group – which reflects the algebro-differential relations between
the solutions of the equation. The above theorem is actually a consequence of
the following purely Galois theoretic statement (see Section 3.2 for more general
results).

Theorem. Assume that the difference Galois group over K of the Mahler equation
(1) contains SLn(C) and that an(z)/a0(z) is a monomial. Then, the parametrized
difference Galois group of equation (1) is caught between SLn(C̃) and C×SLn(C̃).

Roughly speaking, the fact that the parametrized difference Galois group of
equation (1) contains SLn(C̃) says that the algebro-differential relations between
the elements of a basis f1, . . . , fn of solutions (in a suitable sense) of the equation
(1) are generated by the relations satisfied by the determinant of the associated
Wronskian matrix (fj(z

pi−1

))1≤i,j≤n. In particular, there is no nontrivial algebro-
differential relations between the entries of a given column of this matrix, and this is
exactly the conclusion of the first theorem stated in this introduction (with f1 = f).

Note that, in order to use the parametrized difference Galois theory developed
by Hardouin and Singer, one cannot work with the base field K endowed with
the automorphism φ and the usual derivation d/dz because φ and d/dz do not
commute. In order to solve this problem, we follow an idea due to Michael Singer,
by introducing the field K(log(z)) and the derivation z log(z)d/dz. The use of
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this derivation, the field K(log(z)), Lemma 2.3 and Proposition 2.6 below appear
in an unpublished proof2 due to M. Singer of the fact that the Mahler function∑
n≥0 z

pn is hypertranscendental.

This paper is organized as follows. Section 1 contains reminders and com-
plements on difference Galois theory. Section 2 starts with reminders and
complements on parametrized difference Galois theory. Then, we state and prove
user-friendly hypertranscendence criteria for general difference equations of order
one. We finish this section with complements on (projective) isomonodromy for
general difference equations from a Galoisian point of view. In Section 3, we first
study the hypertranscendence of the solutions of Mahler equations of order 1. We
then come to higher order equations and give our main hypertranscendence criteria
for Mahler equations. Section 4 provides user-friendly hypertrancendence criteria
and is mainly devoted to applications of our main results to the generating series
of classical automatic sequences.

Acknowledgements. We would like to thank Michael Singer for discussions and
support of this work.

General conventions. All rings are commutative with identity and contain the
field of rational numbers. In particular, all fields are of characteristic zero.

1. Mahler equations and difference Galois theory

1.1. Difference Galois theory. For details on what follows, we refer to [vdPS97,
Chapter 1].

A φ-ring (R,φ) is a ring R together with a ring automorphism φ : R → R. An
ideal of R stabilized by φ is called a φ-ideal of (R,φ). If R is a field, then (R,φ)
is called a φ-field. To simplify the notations, we will, most of the time, write R
instead of (R,φ).

The ring of constants of the φ-ring R is defined by

Rφ := {f ∈ R | φ(f) = f}.

If Rφ is a field, it is called the field of constants.
A φ-morphism (resp. φ-isomorphism) from the φ-ring (R,φ) to the φ̃-ring (R̃, φ̃)

is a ring morphism (resp. ring isomorphism) ϕ : R→ R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.
Given a φ-ring (R,φ), a φ̃-ring (R̃, φ̃) is a R-φ-algebra if R̃ is a ring extension of R

and φ̃|R = φ; in this case, we will often denote φ̃ by φ. Two R-φ-algebras (R̃1, φ̃1)

and (R̃2, φ̃2) are isomorphic if there exists a φ-isomorphism ϕ from (R̃1, φ̃1) to
(R̃2, φ̃2) such that ϕ|R = IdR.

We fix a φ-field K such that k := Kφ is algebraically closed. We consider the
following linear difference system

(2) φ(Y ) = AY, with A ∈ GLn(K), n ∈ N∗.

By [vdPS97, §1.1], there exists a K-φ-algebra R such that
1) there exists U ∈ GLn(R) such that φ(U) = AU (such a U is called a

fundamental matrix of solutions of (2));
2) R is generated, as a K-algebra, by the entries of U and det(U)−1;
3) the only φ-ideals of R are {0} and R.

2Letter from Michael Singer to the second author (February 25, 2010).
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Such a R is called a Picard-Vessiot ring, or PV ring for short, for (2) over K.
By [vdPS97, Lemma 1.8], we have Rφ = k. Two PV rings are isomorphic as
K-φ-algebras. A PV ring R is not always an integral domain. However, there
exist idempotents elements e1, . . . , es of R such that R = R1 ⊕ · · · ⊕Rs where the
Ri := Rei are integral domains which are transitively permuted by φ. In particular,
R has no nilpotent element and one can consider its total ring of quotients QR, i.e.
the localization of R with respect to the set of its nonzero divisors, which can be
decomposed as the direct sum QR = K1 ⊕ · · · ⊕Ks of the fields of fractions Ki of
the Ri. The ring QR has a natural structure of R-φ-algebra and we have QRφ = k.
Moreover, the Ki are transitively permuted by φ. We call the φ-ring QR a total
PV ring for (2) over K.

The following lemma gives a characterization of the PV rings.

Lemma 1.1 ([HS08, Proposition 6.17]). Let S be a K-φ-algebra with no nilpotent
element and let QS be its total ring of quotients. If the following properties hold:

(1) there exists V ∈ GLn(S) such that φ(V )V −1 = B ∈ GLn(K) and such that
S is generated, as a K-algebra, by the entries of V and by det(V )−1,

(2) QSφ = k,
then S is a PV ring for the difference system φ(Y ) = BY over K.

As a corollary of the above lemma, we find

Lemma 1.2. Let R be a PV ring over K and let S be a K-φ-subalgebra of R. If
there exists V ∈ GLn(S) such that φ(V )V −1 = B ∈ GLn(K) and such that S is
generated, as a K-algebra, by the entries of V and by det(V )−1 then S is a PV ring
for φ(Y ) = BY over K.

Proof. Since R has no nilpotent element, S has no nilpotent element. By [HS08,
Corollary 6.9], the total ring of quotients QS of S embed into the total ring of
quotients QR of R. Since QRφ = k, we have QSφ = k. Lemma 1.1 yields the
desired result. �

The difference Galois group Gal(QR/K) of R over K is the group of K-φ-
automorphisms of QR commuting with φ:

Gal(QR/K) := {σ ∈ Aut(QR/K) | φ ◦ σ = σ ◦ φ}.

Abusing notations, we shall sometimes denote by Gal(QR/F ) the group
{σ ∈ Aut(QR/F ) | φ ◦ σ = σ ◦ φ} for F a K-φ-subalgebra of QR.

An easy computation shows that, for any σ ∈ Gal(QR/K), there exists a unique
C(σ) ∈ GLn(k) such that σ(U) = UC(σ). By [vdPS97, Theorem 1.13], the faithful
representation

Gal(QR/K) → GLn(k)

σ 7→ C(σ)

identifies Gal(QR/K) with a linear algebraic subgroup of GLn(k). If we choose
another fundamental matrix of solutions U , we find a conjugate representation.

A fundamental theorem of difference Galois theory ([vdPS97, Theorem 1.13])
says that R is the coordinate ring of a G-torsor over K. In particular, the dimension
of Gal(QR/K) as a linear algebraic group over k coincides with the transcendence
degree of the Ki over K. Thereby, the difference Galois group controls the algebraic
relations satisfied by the solutions.

The following proposition gives a characterization of the normal algebraic sub-
groups of Gal(QR/K).
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Proposition 1.3. An algebraic subgroup H of Gal(QR/K) is normal if and only
if the φ-ring QRH := {g ∈ QR | ∀σ ∈ H,σ(g) = g} is stable under the action of
Gal(QR/K). In this case, the K-φ-algebra QRH is a total PV ring over K and the
following sequence of group morphisms is exact

0 // H
ι // Gal(QR/K)

π // Gal(QRH/K) // 0,

where ι is the inclusion of H in Gal(QR/K) and π denotes the restriction of the
elements of Gal(QR/K) to QRH .

Proof. Assume thatH is normal in Gal(QR/K). For all τ ∈ Gal(QR/K), g ∈ QRH ,
and σ ∈ H, we have

σ(τ(g)) = τ((τ−1στ)(g)) = τ(g).

This shows that QRH is stable under the action of Gal(QR/K). Conversely, assume
that QRH is stable under the action of Gal(QR/K). Then, we can consider the
restriction morphism

π : Gal(QR/K) → Gal(QRH/K)

σ 7→ σ|QRH .

By Galois correspondence (see [HS08, Theorem 6.20]), we have ker(π) = H and,
hence, H is normal in Gal(QR/K). The rest of the proof is [vdPS97, Corollary
1.30]. �

Corollary 1.4. Let f be an invertible element of R such that φ(f) = af for some
a ∈ K. Let Qf ⊂ QR be the total ring of quotients of K[f, f−1]; this is a total PV
ring for φ(y) = ay over K. Then, Gal(QR/Qf ) is a solvable algebraic group if and
only if Gal(QR/K) is a solvable algebraic group.

Proof. We have QRGal(QR/Qf ) = Qf (in virtue of the Galois correspondence
[vdPS97, Theorem 1.29.3]) and Qf is stable under the action of Gal(QR/K) (be-
cause, for all σ ∈ Gal(QR/K), we have σ(f)f−1 ∈ QRφ = k). By Proposition 1.3,
Gal(QR/Qf ) is normal in Gal(QR/K) and the sequence

0 // Gal(QR/Qf )
ι // Gal(QR/K)

π // Gal(Qf/K) // 0

is exact. Since Gal(Qf/K) ⊂ GL1(k) is abelian, the group Gal(QR/K) is solvable
if and only if the same holds for Gal(QR/Qf ). �

1.2. More specific results about Mahler equations. Now, we restrict our-
selves to the Mahlerian context.

We let p ≥ 2 be an integer.
We consider the field

K := ∪j≥1C
(
z1/j

)
.

The field automorphism

φ : K → K

f(z) 7→ f(zp)

gives a structure of φ-field on K such that Kφ = C.
We also consider the field K′ := K(log(z)). The field automorphism

φ : K′ → K′

f(z, log(z)) 7→ f(zp, p log(z))

gives a structure of φ-field on K′ such that K′φ = C.
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In the sequel, we shall consider Mahler equations above the φ-field K and also
above its φ-field extension K′. We shall now study the effect of the base extension
for K to K′ on the difference Galois groups.

We first state and prove a lemma.

Lemma 1.5. Let L be a φ-subfield of K′ that contains K. There exists an integer
k ≥ 0 such that L = K(log(z)k).

Proof. The case L = K is obvious (take k = 0). We shall now assume that L 6= K.
Lemma 1.1 ensures that K′ is a total PV ring over K for the equation φ(y) = py.
The action of Gal(K′/K) on log(z) allows to see Gal(K′/K) as an algebraic sub-
group of C×. Since log(z) is transcendental over K, we have Gal(K′/K) = C×.
Since L 6= K, the group Gal(K′/L) is a proper algebraic subgroup of C× and,
hence, is a group of roots of the unity. Let k ≥ 1 be an integer such that
Gal(K′/L) = µk := {c ∈ C× | ck = 1}. Then, log(z)k is fixed by Gal(K′/L) and,
hence, belongs to L by Galois correspondence. Since Gal(K′/K(log(z)k)) ⊂ µk, we
get that L = K(log(z)k). �

We consider the difference system

(3) φ(Y ) = AY

with A ∈ GLn(C(z)). Let R′ be a PV ring for (3) over K′; then QR′ is a total PV
ring for (3) over K′. Let U ∈ GLn(R

′) be a fundamental matrix of solutions of
(3). Let R be the K-subalgebra of R′ generated by the entries of U and det(U)−1.
By [HS08, Corollary 6.9], we have QR ⊂ QR′ . Since QR′φ = K′φ = C, we have
QRφ = C and Lemma 1.1 allows to conclude that R is a PV ring for (3) over K
and QR is a total PV ring for (3) over K.

The restriction morphism

ι : Gal(QR′/K′)→ Gal(QR/K)

is a closed immersion; we will freely identify Gal(QR′/K′) with the subgroup
ι(Gal(QR′/K′)) of Gal(QR/K).

Proposition 1.6. The difference Galois group Gal(QR′/K′) is a normal subgroup
of Gal(QR/K) and the quotient Gal(QR/K)/Gal(QR′/K′) is either trivial or iso-
morphic to C×.

Proof. We set G′ := ι(Gal(QR′/K′)) and G := Gal(QR/K). Let us consider
F := (QR)G

′
= (QR′)G

′ ∩QR = K′ ∩QR. The Galois correspondence [HS08, The-
orem 6.20] ensures that G′ = Gal(QR/F ). Since F/K is a φ-subfield exten-
sion of K′/K, Lemma 1.5 ensures that there exists an integer k ≥ 0 such that
F = K(log(z)k). Since Fφ = C, Lemma 1.1 shows that F is a total PV ring over
K for φ(y) = pky. Using Proposition 1.3, we see that G′ is a normal subgroup of G
and that G/G′ is isomorphic to the difference Galois group over K of φ(y) = pky,
which is trivial if k = 0 and equal to C× otherwise. �

Corollary 1.7. If SLn(C) ⊂ Gal(QR/K) then SLn(C) ⊂ Gal(QR′/K′).

2. Parametrized difference Galois theory

We will use standard notions and notations of difference and differential algebra
which can be found in [Coh65] and [vdPS97].
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2.1. Differential algebra. A δ-ring (R, δ) is a ring R endowed with a deriva-
tion δ : R → R (this means that δ is additive and satisfies the Leibniz rule
δ(ab) = δ(a)b+ aδ(b), for all a, b ∈ R). If R is a field, then (R, δ) is called a δ-
field. To simplify the notations, we will, most of the time, write R instead of
(R, δ).

We denote by Rδ the ring of δ-constants of the δ-ring R, i.e.

Rδ := {c ∈ R | δ(c) = 0}.
If Rδ is a field, it is called the field of δ-constants.

Given a δ-ring (R, δ), a δ̃-ring (R̃, δ̃) is a R-δ-algebra if R̃ is a ring extension of
R and δ̃|R = δ; in this case, we will often denote δ̃ by δ. Let K be a δ-field. If
L is a K-δ-algebra and a field, we say that L/K is a δ-field extension. Let R be
a K-δ-algebra and let a1, . . . , an ∈ R. We denote by K{a1, . . . , an} the smallest
K-δ-subalgebra of R containing a1, . . . , an. Let L/K be a δ-field extension and
let a1, . . . , an ∈ L. We denote by K〈a1, . . . , an〉 the smallest K-δ-subfield of L
containing a1, . . . , an.

The ring of δ-polynomials in the differential indeterminates y1, . . . , yn and with
coefficients in a differential field (K, δ), denoted by K{y1, . . . , yn}, is the ring of
polynomials in the indeterminates {δjyi | j ∈ N, 1 ≤ i ≤ n} with coefficients in K.

Let R be be a K-δ-algebra and let a1, . . . , an ∈ R. If there exists a nonzero
δ-polynomial P ∈ K{y1, . . . , yn} such that P (a1, . . . , an) = 0, then we say that
a1, . . . , an are hyperalgebraically dependent over K. Otherwise, we say that
a1, . . . , an are hyperalgebraically independent over K.

A δ-field k is called differentially closed if, for every (finite) set of δ-polynomials
F , if the system of differential equations F = 0 has a solution with entries in some
δ-field extension L, then it has a solution with entries in k. Note that the field
of δ-constants kδ of any differentially closed δ-field k is algebraically closed. Any
δ-field k has a differential closure k̃, i.e. a differentially closed δ-field extension,
and we have k̃δ = k.

From now on, we consider a differentially closed δ-field k.
A subset W ⊂ kn is Kolchin-closed (or δ-closed, for short) if there exists

S ⊂ k{y1, . . . , yn} such that

W = {a ∈ kn | ∀f ∈ S, f(a) = 0} .
The Kochin-closed subsets of kn are the closed sets of a topology on kn, called the
Kolchin topology. The Kolchin-closure of W ⊂ kn is the closure of W in kn for the
Kolchin topology.

Following Cassidy in [Cas72, Chapter II, Section 1, p. 905], we say that a sub-
group G ⊂ GLn(k) ⊂ kn×n is a linear differential algebraic group (LDAG) if G
is the intersection of a Kolchin-closed subset of kn×n (identified with kn

2

) with
GLn(k).

A δ-closed subgroup, or δ-subgroup for short, of an LDAG is a subgroup that is
Kolchin-closed. The Zariski-closure of a LDAG G ⊂ GLn(k) is denoted by G and
is a linear algebraic group.

We will use the following fundamental result.

Proposition 2.1 ([Cas72], Proposition 42). Let k be a differentially closed field.
Let C := kδ. A Zariski-dense δ-closed subgroup of SLn(k) is either conjugate to
SLn(C) or equal to SLn(k).

We will also use the following results.

Lemma 2.2. Let k be a differentially closed field. Let C := kδ. The normalizer of
SLn(C) in GLn(k) is k×SLn(C).
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Proof. Let M ∈ GLn(k) be in the normalizer of SLn(C). Consider N ∈ SLn(C).
We have MNM−1 ∈ SLn(C). In particular, δ(MNM−1) = 0, i.e. δ(M)NM−1 −
MNM−1δ(M)M−1 = 0 so M−1δ(M) commutes with N . It follows that
M−1δ(M) = cIn for some c ∈ k×. So, the entries of M = (mi,j)1≤i,j≤n are
solutions of δ(y) = cy. Let i0, j0 be such that mi0,j0 6= 0. Then, M = mi0,j0M

′

with M ′ = 1
mi0,j0

M ∈ GLn(k
δ) = GLn(C). Hence, the normalizer of SLn(C) in

GLn(k) is included in k×SLn(C). The other inclusion is obvious. �

2.2. Difference-differential algebra. A (φ, δ)-ring (R,φ, δ) is a ring R endowed
with a ring automorphism φ and a derivation δ : R→ R (in other words, (R,φ) is
a φ-ring and (R, δ) is a δ-ring) such that φ commutes with δ. If R is a field, then
(R,φ, δ) is called a (φ, δ)-field. If there is no possible confusion, we will write R
instead of (R,φ, δ).

We have straightforward notions of (φ, δ)-ideals, (φ, δ)-morphisms, (φ, δ)-
algebras, etc, similar to the notions recalled in Sections 1 and 2.1. We omit the
details and refer for instance to [HS08, Section 6.2], and to the references therein,
for details.

In order to use the parametrized difference Galois theory developed in [HS08],
we will need to work with a base (φ, δ)-field K such that k := Kφ is differentially
closed. Most of the common function fields do not satisfy this condition. The
following result shows that we can embed any (φ, δ)-field with algebraically closed
field of constants into a (φ, δ)-field with differentially closed field of constants.

Lemma 2.3. Let F be a (φ, δ)-field with k := Fφ algebraically closed. Let k̃ be a
differentially closed field containing k. Then, the ring k̃⊗kF is an integral domain
whose fraction field K is a (φ, δ)-field extension of F such that Kφ = k̃.

Proof. The first assertion follows from the fact that, since k is algebraically closed,
the extension k̃/k is regular.

In what follows, we see F in k̃⊗k F and k̃ in k̃⊗k F via the maps

F → k̃⊗k F
f 7→ 1⊗ f and k̃ → k̃⊗k F

a 7→ a⊗ 1.

The maps

φ : k̃⊗k F → k̃⊗k F
(a, b) 7→ a⊗ φ(b) and δ : k̃⊗k F → k̃⊗k F

(a, b) 7→ δ(a)⊗ b+ a⊗ δ(b)

are well-defined and endow k̃⊗k F with a structure of F -(φ, δ)-algebra.
To prove the second statement, we first show that any φ-ideal of k̃ ⊗k F is

trivial. Let (ci)i∈I be a k-basis of k̃. Let I be a nonzero φ-ideal of k̃⊗k F and let
w =

∑n
i=1 ci ⊗ fi be a nonzero element of I with fi ∈ F and n minimal. Without

loss of generality, we can assume that f1 = 1. Since φ(w)−w =
∑n
i=2 ci⊗(φ(fi)−fi)

is an element of I with fewer terms than w, it must be equal to 0. This implies
that, for all i ∈ {1, . . . , n}, φ(fi) = fi, i.e. fi ∈ k. Then, w = (

∑n
i=1 cifi) ⊗ 1 is

invertible in k̃⊗k F and, hence, I = k̃⊗k F .
Let c ∈ Kφ. Since I := {d ∈ k̃⊗kF | dc ∈ k̃⊗kF} is a nonzero φ-ideal of k̃⊗kF ,

we must have I = k̃ ⊗k F . In particular, 1 ∈ I and, hence, c ∈ k̃ ⊗k F . Writing
c =

∑
i∈I ci ⊗ fi, we see that φ(c) = c implies φ(fi) = fi for all i ∈ {1, . . . , n}.

Therefore, the fi are in k and, hence, c belongs to k̃. �

2.3. Parametrized difference Galois theory. For details on what follows, we
refer to [HS08].
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Let K be a (φ, δ)-field with k := Kφ differentially closed. We consider the
following linear difference system

(4) φ(Y ) = AY

with A ∈ GLn(K) for some integer n ≥ 1.
By [HS08, § 6.2.1], there exists a K-(φ, δ)-algebra S such that
1) there exists U ∈ GLn(S) such that φ(U) = AU (such a U is called a

fundamental matrix of solutions of (4));
2) S is generated, as K-δ-algebra, by the entries of U and det(U)−1;
3) the only (φ, δ)-ideals of S are {0} and S.

Such a S is called a parametrized Picard-Vessiot ring, or PPV ring for short, for
(4) over K. It is unique up to isomorphism of K-(φ, δ)-algebras. A PPV ring is not
always an integral domain. However, there exist idempotent elements e1, . . . , es of
R such that R = R1⊕ · · · ⊕Rs where the Ri := Rei are integral domains stable by
δ and transitively permuted by φ. In particular, S has no nilpotent element and
one can consider its total ring of quotients QS . It can be decomposed as the direct
sum QS = K1 ⊕ · · · ⊕Ks of the fields of fractions Ki of the Ri. The ring QS has
a natural structure of R-(φ, δ)-algebra and we have QSφ = k. Moreover, the Ki

are transitively permuted by φ. We call the (φ, δ)-ring QS a total PPV ring for (4)
over K.

The parametrized difference Galois group Galδ(QS/K) of S over (K, φ, δ) is the
group of K-(φ, δ)-automorphisms of QS :

Galδ(QS/K) := {σ ∈ Aut(QS/K) | φ ◦ σ = σ ◦ φ and δ ◦ σ = σ ◦ δ}.
Note that, if δ = 0, then we recover the difference Galois groups considered in

Section 1.1.
A straightforward computation shows that, for any σ ∈ Galδ(QS/K), there exists

a unique C(σ) ∈ GLn(k) such that σ(U) = UC(σ). By [HS08, Proposition 6.18],
the faithful representation

Galδ(QS/K) → GLn(k)

σ 7→ C(σ)

identifies Galδ(QS/K) with a linear differential algebraic subgroup of GLn(k). If
we choose another fundamental matrix of solutions U , we find a conjugate repre-
sentation.

The parametrized difference Galois group Galδ(QS/K) of (4) reflects the differ-
ential algebraic relations between the solutions of (4). In particular, the δ-dimension
of Galδ(QS/K) coincides with the δ-transcendence degree of the Ki over K (see
[HS08, Proposition 6.26] for definitions and details).

A parametrized Galois correspondence holds between the δ-closed subgroups of
Galδ(QS/K) and the K-(φ, δ)-subalgebras F of QS such that every nonzero divisor
of F is a unit of F (see for instance [HS08, Theorem 6.20]). Abusing notations,
we still denote by Galδ(QS/F ) the group of F -(φ, δ)-automorphisms of QS . The
following proposition is at the heart of the parametrized Galois correspondence.

Proposition 2.4 ([HS08, Theorem 6.20]). Let S be a PPV ring over K. Let F be
a K-(φ, δ)-subalgebra of QS such that every nonzero divisor of F is a unit of F .
Let H be a δ-closed subgroup of Galδ(QS/K). Then, the following hold:

• QGalδ(QS/F )
S := {f ∈ QS | ∀τ ∈ Galδ(QS/F ), τ(f) = f} = F ;

• Galδ(QS/QHS ) = H.

Let S be a PPV ring over K for (4) and let U ∈ GLn(S) be a fundamental matrix
of solutions. Then, the K-φ-algebra R generated by the entries of U and det(U)−1
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is a PV ring for (4) over K and we have QR ⊂ QS . One can identify Galδ(QS/K)

with a subgroup of Gal(QR/K) by restricting the elements of Galδ(QS/K) to QR.

Proposition 2.5 ([HS08], Proposition 2.8). The group Galδ(QS/K) is a Zariski-
dense subgroup of Gal(QR/K).

2.4. Hypertranscendency criteria for equations of order one. The hyper-
transcendence criteria contained in [HS08] are stated for (φ, δ)-fields K such that
the δ-field k := Kφ is differentially closed. Recently some schematic versions (see
for instance [Wib12] or [DVH12]) of [HS08] have been developed and allow to work
over (φ, δ)-fields with algebraically closed field of constants. One could use this
schematic approach to show that the hypertranscendence criteria of [HS08] still
hold over (φ, δ)-fields with algebraically closed field of constants (not necessarily
differentially closed). However, for sake of clarity and simplicity of exposition, we
prefer to show that one can deduce these criteria directly from the ones contained
in [HS08], via simple descent arguments.

Proposition 2.6. Let K be a (φ, δ)-field with k := Kφ algebraically closed and let
(a, b) ∈ K× ×K . Let R be a K-(φ, δ)-algebra and let v ∈ R \ {0}.

• If φ(v) − v = b and v is hyperalgebraic over K, then there exist a nonzero
linear homogeneous δ-polynomial L(y) ∈ k{y} and an element f ∈ K such
that

L(b) = φ(f)− f.
• Assume moreover that v is invertible in R. If φ(v) = av and if v is hyperal-
gebraic over K, then there exist a nonzero linear homogeneous δ-polynomial
L(y) ∈ k{y} and an element f ∈ K such that

L
(
δ(a)

a

)
= φ(f)− f.

The converse of either statement is true if Rφ = k.

Proof. Let us prove the first statement. Let k̃ be a δ-closure of k. Lemma 2.3
assures that L := Frac(k̃⊗kK) is a (φ, δ)-field extension ofK such that Lφ = k̃. Let
L{y} be the ring of δ-polynomials in one variable over L endowed with the structure
of L-(φ, δ)-algebra induced by setting φ(y) := y + b. Without loss of generality, we
can assume that R = K{v}. We identify R with K{y}/I for some (φ, δ)-ideal I
of K{y}. Since v is hyperalgebraic over K, we have I 6= {0}. Moreover, we have
I 6= K{y} because R 6= {0}. We claim that (I) ∩ K{y} = I where (I) denotes
the (φ, δ)-ideal generated by I in L{y}. Indeed, choose a K-basis (ci)i∈I of L with
ci0 = 1 for some i0 ∈ I. Note that (ci)i∈I is also a basis of the K{y}-module L{y}.
Then, (I) consists of the sums of the form

∑
aici with ai ∈ I. It follows easily that

(I)∩K{y} = I, as claimed. In particular, (I) is a proper ideal of L{y} and, hence,
is contained in some maximal (φ, δ)-ideal M of L{y}. The ring S := L{y}/M is a
PPV ring over L for φ(y) = y + b. The image u of y in S is hyperalgebraic over
L (because M 6= {0}) and is a solution of φ(y) = y + b. By [HS08, Proposition
3.1], there exist a nonzero linear homogenous δ-polynomial L0(y) ∈ k̃{y} and g ∈ L
such that

(5) L0(b) = φ(g)− g.

Let (hi)i∈I be a k-basis of K. Without loss of generality, we can assume that

L0(y) = δn+1(y) +

n∑
i=0

ciδ
i(y) and g :=

∑r
i=1 ai ⊗ hi∑s
i=1 bi ⊗ hi
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where ai, bi, ci ∈ k̃ and b1 = 1. It is clear that the equation (5) can be rewritten as
an equation of the form∑

j

Pj((ai)i∈{1,...,r}, (bi)i∈{2,...,s}, (ci)i∈{1,...,n})⊗ hj = 0

where the Pj are polynomials with coefficients in k. Thus, for all j,

Pj((ai)i∈{1,...,r}, (bi)i∈{2,...,s}, (ci)i∈{1,...,n}) = 0.

Since k is algebraically closed, there exist αi, βi, γi ∈ k such that, for all j, we have

Pj((αi)i∈{1,...,r}, (βi)i∈{2,...,s}, (γi)i∈{1,...,n}) = 0.

Set β1 := 1. Then, we see that

L(y) := δn+1(y) +

n∑
i=0

γiδ
i(y) and f :=

∑
i αi ⊗ hi∑
i βi ⊗ hi

satisfy the conclusion of the first part of the proposition.
Conversely, if Rφ = k and if there exist a nonzero linear homogeneous δ-

polynomial L(y) ∈ k{y} and an element f ∈ K such that L(b) = φ(f) − f , then
L(v)− f belongs to Rφ = k. Since L(y) is nonzero, v is differentially algebraic over
K.

The proof of the second statement is similar. It can also be deduced from the
first statement by noticing that, if φ(v) = av then φ( δvv ) =

δv
v + δa

a and by using
the fact that v is hyperalgebraic over K if and only if the same holds for δv

v .
�

Remark 2.7. In Proposition 2.6, we require that v is invertible in R. This assump-
tion is automatically satisfied if we assume that R is similar to a total PPV ring.
More precisely, assume that R = ⊕x∈Z/sZKx, where the Kx are δ-field extensions
of K, such that φ(Kx) = Kx+1. Then, any nonzero solution v ∈ R of φ(y) = ay

for a ∈ K× is invertible. Indeed, v =
∑
x∈Z/sZ vx for some vx ∈ Kx. Since v 6= 0,

there exists x0 ∈ Z/sZ such that vx0
6= 0. From the equation φ(v) = av, we get

φ(vx0−1) = avx0
. So, vx0−1 6= 0. Iterating this argument, we see that, for all

x ∈ Z/sZ, vx 6= 0. Hence, v is invertible in R.

2.5. Isomonodromy and projective isomonodromy. Let K be a (φ, δ)-field
with k := Kφ algebraically closed. Let k̃ be a δ-closure of k. Let C := k̃δ be the
(algebraically closed) field of constants of k̃. Lemma 2.3 ensures that k̃⊗k K is an
integral domain and that L := Frac(k̃⊗k K) is a (φ, δ)-field extension of K such
that Lφ = k̃. We let QS be the total ring of quotients of a PPV ring S over L of
the difference system

φ(Y ) = AY

where A ∈ GLn(K).

Proposition 2.8. The following statements are equivalent:

(1) the group Galδ(QS/L) is conjugate to a subgroup of GLn(C);
(2) there exists B̃ ∈ Ln×n such that

(6) φ(B̃) = AB̃A−1 + δ(A)A−1;

(3) there exists B ∈ Kn×n such that

φ(B) = ABA−1 + δ(A)A−1.
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Proof. The equivalence between (1) and (2) is [HS08, Proposition 2.9]. In order to
complete the proof of the proposition, it remains to prove that, if the equation (6)
has a solution B̃ in Ln×n, then it has a solution in Kn×n. This follows from an
argument similar to the descent argument used in the proof of Proposition 2.6. �

We now consider a “projective isomonodromic” situation, in the spirit of [MS13].
Let U ∈ GLn(S) be a fundamental matrix of solutions of φ(Y ) = AY and let
d := det(U) ∈ S×.

Proposition 2.9. Assume that the difference Galois group of φ(Y ) = AY over
the φ-field K contains SLn(k) and that the parametrized difference Galois group
of φ(y) = det(A)y over the (φ, δ)-field L is included in C×. Then, we have the
following alternative:

(1) Galδ(QS/L) is conjugate to a subgroup of GLn(C) that contains SLn(C);
(2) Galδ(QS/L) is equal to a subgroup of C×SLn(k̃) that contains SLn(k̃).

Moreover, the first case holds if and only if there exists B ∈ Kn×n such that

(7) φ(B) = ABA−1 + δ(A)A−1.

Proof. Let R be the L-φ-algebra generated by the entries of U and by det(U)−1;
this is a PV ring for φ(Y ) = AY over the φ-field L. Using [CHS08, Corollary
2.5], we see that the hypothesis that the difference Galois group of φ(Y ) = AY

over the φ-field K contains SLn(k) implies that Gal(QR/L) contains SLn(k̃). So,
Gal(QR/L)der = SLn(k̃). Since Galδ(QS/L) is Zariski-dense in Gal(QR/L), we
have that Galδ(QS/L)derδ (this is the Kolchin-closure of the derived subgroup of
Galδ(QS/L); see Section 4.4.1) is Zariski-dense in Gal(QR/L)der = SLn(k̃). By
Proposition 2.1, Galδ(QS/L)derδ is either conjugate to SLn(C) or equal to SLn(k̃).
SinceGalδ(QS/L)derδ is a normal subgroup ofGalδ(QS/L), Lemma 2.2 ensures that
Galδ(QS/L) is either conjugate to a subgroup of k̃×SLn(C) containing SLn(C)

or is equal to a subgroup of GLn(k̃) containing SLn(k̃). But, the parametrized
difference Galois group of φ(y) = det(A)y over L, which can be identified with
det(Galδ(QS/L)), is contained in C×. Therefore, Galδ(QS/L) is either contained
in C×SLn(C) = GLn(C) or in C×SLn(k̃). Whence the first part of the proposition.

The second part of the proposition follows from Proposition 2.8. �

Proposition 2.10. Assume that the difference Galois group of φ(Y ) = AY over
the φ-field K contains SLn(k) and that the parametrized difference Galois group of
φ(y) = det(A)y over the (φ, δ)-field L is k̃×. We have the following alternative:

(1) Galδ(QS/L) is conjugate to k̃×SLn(C);
(2) Galδ(QS/L) is equal to GLn(k̃).

Moreover, the first case holds if and only if there exists B ∈ Kn×n such that

(8) φ(B) = ABA−1 + δ(A)A−1 − 1

n
δ(det(A)) det(A)−1In.

Proof. Arguing as for the proof of Proposition 2.9, we see that Galδ(QS/L) is either
conjugate to a subgroup of k̃×SLn(C) containing SLn(C) or equal to a subgroup
of GLn(k̃) containing SLn(k̃). Now, the first part of the proposition follows from
the fact that the parametrized difference Galois group of φ(y) = det(A)y over L,
which can be identified with det(Galδ(QS/L)), is equal to k̃×.

We shall now prove that the first case holds if and only if there exists B ∈ Ln×n

such that

(9) φ(B) = ABA−1 + δ(A)A−1 − 1

n
δ(det(A)) det(A)−1In.
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Let us first assume that Galδ(QS/L) is conjugate to k̃×SLn(C). So, there exists
a fundamental matrix of solutions U ∈ GLn(S) of φ(Y ) = AY such that, for all
σ ∈ Galδ(QS/L), there exist ρσ ∈ k̃× andMσ ∈ SLn(C) such that σ(U) = UρσMσ.
Note that σ(d) = dρnσ. Easy calculations show that the matrix

B := δ(U)U−1 − 1

n
δ(d)d−1In ∈ Sn×n

is left invariant by the action of Galδ(QS/L), and, hence, belongs to Ln×n in virtue
of Proposition 2.4, and that B satisfies equation (9).

Conversely, assume that there exists B ∈ Ln×n satisfying equation (9). Consider

B1 = B +
1

n
δ(d)d−1In ∈ Sn×n.

Note that

φ(B1) = AB1A
−1 + δ(A)A−1.

Let U ∈ GLn(S) be a fundamental matrix of solutions of φY = AY . We
have φ(δ(U) − B1U) = A(δ(U) − B1U). So, there exists C ∈ k̃n×n such that
δ(U)−B1U = UC. Since k̃ is differentially closed, we can find D ∈ GLn(k̃) such
that δ(D) + CD = 0. Then, V := UD is a fundamental matrix of solutions of
φY = AY such that δ(V ) = B1V. Consider σ ∈ Galδ(QS/L) and let Mσ ∈ GLn(k̃)
be such that σ(V ) = VMσ; note that σ(d) = dρσ where ρσ = det(Mσ). On
the one hand, we have σ(δ(V )) = σ(B1V ) = (B1 + 1

nδ(ρσ)ρ
−1
σ In)VMσ. On the

other hand, we have σ(δ(V )) = δ(σ(V )) = δ(VMσ) = B1VMσ + V δ(Mσ). So,
1
nδ(ρσ)ρ

−1
σ Mσ = δ(Mσ). So, the entries of Mσ = (mi,j)1≤i,j≤n are solutions of

δ(y) = 1
nδ(ρσ)ρ

−1
σ y. Let i0, j0 be such that mi0,j0 6= 0. Then, Mσ = mi0,j0M

′ with
M ′ = 1

mi0,j0
Mσ ∈ GLn(k̃

δ) = GLn(C), whence the desired result.
To conclude the proof, we have to show that if (9) has a solution B in Ln×n

then it has a solution in Kn×n. This can be proved by using an argument similar
to the descent argument used in the proof of Proposition 2.6. �

3. Hypertranscendence of solutions of Mahler equations

Now, we focus our attention on Mahler equations.
We use the notations of Section 1.2: p ≥ 2 is an integer, K := ∪j≥1C

(
z1/j

)
and K′ := K(log(z)). We endow K with the structure of φ-field given by
φ(f(z)) := f(zp). We endow K′ := K(log(z)) with the structure of φ-field given by
φ(f(z, log(z))) := f(zp, p log(z)). We have Kφ = K′φ = C.

The derivation

δ := z log(z)
d

dz

gives a structure of (φ, δ)-field over K′ (so, δ commutes with φ, and this is the
reason why we work with δ instead of a simplest derivation). We also set

ϑ := z
d

dz
.

We denote by C̃ a differential closure of (C, δ). We have C̃δ = C. As in Lemma
2.3, we consider L = Frac(C̃⊗C K′) = ∪j≥1C̃

(
z1/j

)
(log(z)), which is a (φ, δ)-field

extension of K′ such that Lφ = C̃.
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3.1. Homogeneous Mahler equations of order one. In this section, we con-
sider the difference equation of order one

(10) φ(y) = ay

where a ∈ C(z)×. We let S be a PPV ring over L for the equation (10).
Since S is an L-(φ, δ)-algebra, it can be seen as a C(z)-ϑ-algebra, (i.e. over the

differential field (C(z), ϑ)) by letting ϑ acts as 1
log(z)δ.

Proposition 3.1. Let R be a K′-(φ, δ)-algebra such that Rφ = C. Let u be an in-
vertible element of R such that φ(u) = au. The following statements are equivalent:

(1) u is hyperalgebraic over (C(z), ϑ)3;
(2) Galδ(QS/L) is conjugate to a subgroup of C×;
(3) there exists d ∈ C(z) such that ϑ(a) = a(pφ(d)− d);
(4) there exist c ∈ C×, m ∈ Z and f ∈ C(z)× such that a = czmφ(f)

f .

Proof. We first prove the implication (3) ⇒ (2). Assume that there exists
d ∈ C(z) such that ϑ(a) = a(pφ(d) − d). Then, d1 := d log(z) ∈ K′ satisfies
δ(a) = a(φ(d1)− d1) and, hence, Galδ(QS/L) is conjugate to a subgroup of C× in
virtue of Proposition 2.8.

We now prove (2)⇒ (3). We assume thatGalδ(QS/L) is conjugate to a subgroup
of C×. By Proposition 2.8, there exists d1 ∈ K′ such that δ(a) = a(φ(d1) − d1).
Therefore, we have

(11) ϑ(a) = a(pφ(d2)− d2)
with d2 := d1

log(z) ∈ K′. We shall now prove that there exists d3 ∈ K such that
ϑ(a) = a(pφ(d3)−d3). Indeed, let u(X,Y ) ∈ C(X,Y ), k ≥ 1 and v ∈ C(X) be such
that d2 = u(z1/k, log(z)) and ϑ(a)

a = v(z). The equation (11) can be rewritten as
follows

v(z) = pu(zp/k, p log(z))− u(z1/k, log(z)).
Since z1/k and log(z) are algebraically independent over C, we get

v(Xk) = pu(Xp, pY )− u(X,Y ).

We see u(X,Y ) has an element of C(X)(Y ) ⊂ C(X)((Y )) as follows:
u(X,Y ) =

∑
j≥−N uj(X)Y j , for some N ∈ Z. We have

v(Xk) = pu(Xp, pY )− u(X,Y ) =
∑
j≥−N

(pj+1uj(X
p)− uj(X))Y j .

Equating the coefficients of Y 0 in this equality, we obtain

pu0(X
p)− u0(X) = v(Xk).

Hence, d3 := u0(z
1/k) has the required property.

We claim that d3 belongs to C(z). Indeed, suppose to the contrary that
d3 6∈ C(z). Let k ≥ 2 be such that d3 ∈ C(z1/k). We see d3 in C((z1/k)):
d3 =

∑
j≥−N d3,jz

j/k for some N ∈ Z. Let j0 ∈ Z be such that k 6 |j0 and d3,j0 6= 0,
with |j0| minimal for this property. Then, the coefficient of zj0/k in pφ(d3)− d3 is
nonzero, and this contradicts the fact that pφ(d3)−d3 belongs to C(z). This proves
(3).

We now prove (3) ⇒ (1). Assume that there exists d ∈ C(z) such that
ϑ(a) = a(pφ(d) − d). Then, d1 := d log(z) ∈ K′ satisfies δ(a) = a(φ(d1) − d1)
and, hence, Proposition 2.6 ensures that u is hyperalgebraic over (K′, δ). There-
fore, u is hyperalgebraic over (K′, ϑ) and the conclusion follows from the fact that
(K′, ϑ) is hyperalgebraic over (C(z), ϑ).

3Of course, u is hyperalgebraic over (C(z), ϑ) if and only if u is hyperalgebraic over (C(z), d/dz).
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We now prove (1) ⇒ (3). Proposition 2.6, applied to the difference equation
φ(y) = ay over the (φ, δ)-field K′, ensures that there exist L1 :=

∑ν
i=1 βiδ

i with
coefficients β1, . . . , βν = 1 in C and g1 ∈ C(z1/k, log(z)) such that

(12) L1

(
δ(a)

a

)
= φ(g1)− g1.

We shall now prove that there exists g2 ∈ C(z1/k) such that

ϑν
(
ϑ(a)

a

)
= pν+1φ(g2)− g2.

Indeed, it is easily seen that there exists v(X,Y ) ∈ C(X)[Y ] such that
L1

(
δ(a)
a

)
= v(z, log(z)). Using the fact that δi = log(z)iϑi+ terms of lower de-

gree in log(z), we see that

L1

(
δ(a)

a

)
= L1

(
log(z)

ϑ(a)

a

)
= ϑν

(
ϑ(a)

a

)
(log(z))ν+1

+ terms of lower degree in log(z).

On the other hand, let u(X,Y ) ∈ C(X,Y ) and k ≥ 1 be such that
g1 = u(z1/k, log(z)). The equation (12) can be rewritten as follows

v(z, log(z)) = u(zp/k, p log(z))− u(z1/k, log(z)).

Since z1/k and log(z) are algebraically independent over C, we get

v(Xk, Y ) = u(Xp, pY )− u(X,Y ).

We see u(X,Y ) has an element of C(X)(Y ) ⊂ C(X)((Y )) as follows:
u(X,Y ) =

∑
j≥−N uj(X)Y j for some N ∈ Z. So,

v(Xk, Y ) = u(Xp, pY )− u(X,Y ) =
∑
j≥−N

(pjuj(X
p)− uj(X))Y j .

Equating the coefficients of Y ν+1 in this equality, and letting X = z1/k, we obtain,

pν+1uν+1(z
p/k)− uν+1(z

1/k) = ϑν
(
ϑ(a)

a

)
.

Therefore, g2 = uν+1(z
1/k) ∈ C(z1/k) has the required property. One can show

that g2 belongs to C(z) by arguing as for the proof of the fact that d3 ∈ C(z) in
the proof of (2) ⇒ (3) above. We now claim that there exists g3 ∈ C(z) such that

ϑ(a)

a
= pφ(g3)− g3.

If ν = 0, then g3 := g2 has the expected property. Assume that ν > 0. Let
G2 =

∫
g2
z be some primitive of g2z that we see as a function on some interval (0, ε),

ε > 0. We have

ϑ (pνφ(G2)−G2) = pν+1φ(g2)− g2 = ϑν
(
ϑ(a)

a

)
,

so there exists C ∈ C such that

pνφ(G2)−G2 = ϑν−1
(
ϑ(a)

a

)
+ C.

Hence, G3 := G2 − C
pν−1 satisfies

pνφ(G3)−G3 = ϑν−1
(
ϑ(a)

a

)
.
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But G3 = G4 + ` where G4 ∈ C(z) and ` is a C-linear combination of log(z) and of
functions of the form log(1 − zξ)4 with ξ ∈ C×. Using the C-linear independence
of any C-linear combination of log(z) and of functions of the form log(1− zξ) with
ξ ∈ C× with any element of C(z), we see that the equality

pνφ(G3)−G3 = (pνφ(G4)−G4) + (pνφ(`)− `) = ϑν−1
(
ϑ(a)

a

)
implies that

pνφ(G4)−G4 = ϑν−1
(
ϑ(a)

a

)
.

Iterating this argument, we find g3 ∈ C(z) with the expected property. This proves
(3).

We shall now prove (3) ⇒ (4). We assume that there exists d ∈ C(z) such that
ϑ(a) = a(pφ(d)− d). We write a = czml with c ∈ C×, m ∈ Z and l ∈ C(z) without
pole at 0 and such that l(0) = 1. Since ϑ(a)

a = ϑ(c−1a)
c−1a , we can assume that c = 1.

A fundamental solution of φ(y) = ay is given by

f0 = z
m
p−1

∏
k≥0

φk(l)−1 ∈ z
m
p−1C[[z]] ⊂ C((z

1
p−1 )).

We have δ(a)a−1 = φ(d̃) − d̃ with d̃ = log(z)d. This is the integrability condition
for the system of equations{

φ(y) = ay

δ(y) = d̃y, i.e. ϑ(y) = dy.

A straightforward calculation shows that δ(f0) − d̃f0 is a solution of φ(y) = ay so
there exists q ∈ C such that δ(f0) = (q + d̃)f0, i.e. log(z)ϑ(f0) = (q + log(z)d)f0
(here, we work in the (φ, δ)-field C((z

1
p−1 ))(log(z)) and we have used the fact that

the field of φ-constants of C((z
1
p−1 ))(log(z)) is equal to C, so that the solutions of

φ(y) = ay in C((z
1
p−1 ))(log(z)) are of the form λf0 for some λ ∈ C). Therefore,

ϑ(f0) = df0. So, f0 satisfies a nonzero linear differential equation with coefficients
in K, and also a nonzero linear Mahler equation with coefficients in K. It follows
from [Béz94, Theorem 1.3] that f0 ∈ C(z

1
p−1 ). Therefore, f0 = z

m
p−1h for some

h ∈ C(z), and, hence, a = φ(f0)f
−1
0 = zmφ(h)h−1.

We shall now prove (4) ⇒ (3). We assume that there exists c ∈ C×, m ∈ Z
and f ∈ C(z)× such that a = czmφ(f)

f . Then, ϑ(a)/a = pφ(d) − d with

d = m/(p− 1) + ϑ(f)
f ∈ C(z). Whence the desired result. �

Remark 3.2. The technics employed above could also be used in order to recover a
famous result of Nishioka about the hypertranscendence of solutions of inhomoge-
neous Mahler equations of order one [Nis84]. A Galoisian approach (but without
parametrized Picard-Vessiot theory) of the work of Nishioka has been proposed by
Nguyen in [Ngu11].

3.2. Mahler equations of higher order with large classical difference Ga-
lois group. Consider the difference system

(13) φ(Y ) = AY

with A ∈ GLn(C(z)). We let S be a PPV ring for (13) over L. The aim of the
present section is to study the parametrized difference Galois group Galδ(QS/L) of
(13) over L under the following assumption.

4Here, log(z) is the principal determination of the logarithm, and log(1 − zξ) is such that
log(1− 0ξ) = 0
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Assumption 3.3. In the rest of this section, we assume that the difference Galois
group of (13) over the φ-field K contains SLn(C).

Note the following result.

Lemma 3.4. Assume that the assumption (3.3) holds. Then, the difference Galois
group of (13) over the φ-field L contains SLn(C̃).

Proof. Corollary 1.7 ensures that the difference Galois group of (13) over the φ-
field K′ contains SLn(C). The fact that the difference Galois group of (13) over
the φ-field L contains SLn(C̃) is now a direct consequence of [CHS08, Corollary
2.5]. �

Let U ∈ GLn(S) be a fundamental matrix of solutions of (13) and set

d := det(U) ∈ S×.

Then, d is a fundamental solution of φ(y) = det(A)y in S. We split our study of
Galδ(QS/L) in two cases, depending on whether d is hyperalgebraic or hypertran-
scendental over (L, δ). Note that Proposition 3.1 may be used to check whether d
is hyperalgebraic or not.

3.2.1. Hyperalgebraic determinant. This section is devoted to the proof of the fol-
lowing result.

Theorem 3.5. Assume that the assumption (3.3) holds and that d is hyperalge-
braic over (C(z), ϑ) (or, equivalently, that the parametrized difference Galois group
of φ(y) = det(A)y over L is included in C×; see Proposition 3.1). Then, the
parametrized difference Galois group Galδ(QS/L) is a subgroup of C×SLn(C̃) con-
taining SLn(C̃).

Before proceeding with the proof of this theorem, we give some lemmas.

Lemma 3.6. Assume that the assumption (3.3) holds and that d is hyperalgebraic
over (C(z), ϑ) (or, equivalently, that the parametrized difference Galois group of
φ(y) = det(A)y over L is included in C×; see Proposition 3.1). Then, we have the
following alternative:

(1) Galδ(QS/L) is conjugate to a subgroup of GLn(C) containing SLn(C);
(2) Galδ(QS/L) is equal to a subgroup of C×SLn(C̃) containing SLn(C̃).

Moreover, the first case holds if and only if there exists B ∈ Kn×n such that

(14) pφ(B) = ABA−1 + ϑ(A)A−1.

Proof. Using Proposition 2.9, we are reduced to prove that the equation

(15) φ(B) = ABA−1 + δ(A)A−1

has a solution B ∈ K′n×n if and only if the equation (14) has a solution B ∈ Kn×n.
Assume that the equation (15) has a solution B ∈ K′n×n. Let

u(X,Y ) ∈ C(X,Y )n×n, k ≥ 1, v(X) ∈ GLn(C(X)) and w(X) ∈ C(X)n×n be such
that

B = u(z1/k, log(z)), A = v(z) and δ(A)A−1 = log(z)w(z).

The equation (15) can be rewritten as follows

u(zp/k, p log(z)) = v(z)u(z1/k, log(z))v(z)−1 + log(z)w(z).

Since z1/k and log(z) are algebraically independent over C, we get

u(Xp, pY ) = v(Xk)u(X,Y )v(Xk)−1 + Y w(Xk).
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We see u(X,Y ) has an element of C(X)(Y )n×n ⊂ C(X)((Y ))n×n: u(X,Y ) =∑
j≥−N uj(X)Y j for some N ∈ Z. We have

∑
j≥−N

uj(X
p)pjY j =

 ∑
j≥−N

v(Xk)uj(X)v(Xk)−1Y j

+ Y w(Xk).

Equating the terms of degree 1 in Y , we get

pu1(X
p) = v(Xk)u1(X)v(Xk)−1 + w(Xk).

Therefore, B1 := u1(z
1/k) ∈ K is a solution of (14).

Conversely, assume that the equation (14) has a solution B ∈ Kn×n. Then
B1 := B log(z) ∈ K′n×n satisfies

φ(B1) = AB1A
−1 + δ(A)A−1.

�

Lemma 3.7. Assume that the system φ(Y ) = BY , with B ∈ GLn(K
′), has a

solution u = (u1, . . . , un)
t with coefficients in C((z1/k)) for some integer k ≥ 1.

Then, there exists a PPV ring T over L of φ(Y ) = BY that contains the L-δ-
algebra L{u1, . . . , un}.

Proof. The result is obvious if u = (0, . . . , 0)t. We shall now assume that
u 6= (0, . . . , 0)t. We consider the field K̂′ := ∪j≥1C((z1/j))(log(z)). We equip
K̂′ with the structure of (φ, δ)-field given by φ(f(z, log(z))) = f(zp, p log(z)) and

δ = log(z)z d
dz . It is easily seen that K̂′

φ
= C. One can see K′ as a (φ, δ)-subfield

of K̂′. We let F = K′〈u1, . . . , un〉 be the δ-subfield of K̂′ generated over K′ by
u1, . . . , un; this is a (φ, δ)-subfield of K̂′ such that Fφ = C. By Lemma 2.3, C̃⊗C F
is an integral domain and its field of fractions L1 = L〈u1, . . . , un〉 is a (φ, δ)-field
such that Lφ1 = C̃. We consider a PPV ring S1 for φ(Y ) = BY over L1 and we let
U ∈ GLn(S1) be a fundamental matrix of solutions of this difference system. We
can assume that the first column of U is u. Then, the L-(φ, δ)-algebra T generated
by the entries of U and by det(U)−1 contains L{u1, . . . , un} and is a PPV ring for
φ(Y ) = BY over L. Whence the result. �

Lemma 3.8. Let us consider a vector u = (u1, . . . , un)
t with coefficients in

K̂ := ∪j≥1C((z1/j)) such that φ(u) = Bu for some B ∈ GLn(K). Assume more-
over that each ui satisfies some nonzero linear differential equation with coefficients
in ∪j≥1C̃(z1/j), with respect to the derivation ϑ. Then, the ui actually belong to
K.

Proof. According to the cyclic vector lemma, there exists P ∈ GLn(K) such
that Pu = (f, φ(f), . . . , φn−1(f))t for some f ∈ K̂ which is a solution of a
nonzero linear Mahler equation (i.e. a φ-difference equation) of order n with co-
efficients in K. Moreover, f satisfies a nonzero linear differential equation with
coefficients in ∪j≥1C̃(z1/j), with respect to the derivation ϑ, because it is a K-
linear combination of the ui and the ui themselves satisfy such equations. It
follows from [Béz94, Theorem 1.3] that f belongs to K. Hence, the entries of
u = P−1(Pu) = P−1(f, φ(f), . . . , φn−1(f))t actually belong to K, as expected. �

Lemma 3.9. There exists c ∈ C× such that the difference system φ(Y ) = c−1AY

has a nonzero solution u = (u1, . . . , un)
t with coefficients in K̂ := ∪j≥1C((z1/j)).

Proof. According to [Roq15, Section 4], the system φ(Y ) = AY is triangularizable
over K̂, i.e. there exists P̂ ∈ GLn(K̂) such that φ(P̂ )−1AP̂ =: (vi,j)1≤i,j≤n is
upper-triangular. Let c ∈ C×, m ∈ Z and l ∈ 1 + z1/kC[[z1/k]] be such that
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v1,1 = czml. We consider A1 = c−1A ∈ GLn(C(z)). Then, the system φ(Y ) = A1Y

has a nonzero solution with entries in K̂, namely u = (u1, . . . , un)
t := P̂ (f, 0, . . . , 0)t

with f := z
m
p−1

∏
j≥0 φ

j(l)−1. �

Proof of Theorem 3.5. We let c ∈ C× and u = (u1, . . . , un)
t be as in Lemma 3.9,

and we set A1 := c−1A ∈ GLn(C(z)). Thanks to Lemma 3.7, we can consider a PPV
ring S1 for φ(Y ) = A1Y over L that contains L{u1, . . . , un}. We let U1 ∈ GLn(S1)
be a fundamental matrix of solutions of φ(Y ) = A1Y whose first column is u.

We denote by G the difference Galois group of φ(Y ) = AY over the φ-field K,
and by Gδ its parametrized difference Galois group over the (φ, δ)-field L. Similarly,
we denote by G1 the difference Galois group of φ(Y ) = A1Y over the φ-ring K,
and by Gδ1 its parametrized difference Galois group over the (φ, δ)-field L.

We have Gder1 = Gder = SLn(C), so G1 contains SLn(C). Moreover, the
parametrized difference Galois group of φ(y) = det(A1)y = c−n det(A)y over
L is a subgroup of C× (because the parametrized difference Galois group of
φ(y) = det(A)y over L is a subgroup of C× by hypothesis, and the parametrized
difference Galois group of φ(y) = c−ny over L satisfies the same property).

We claim that Gδ1 is a subgroup of C×SLn(C̃) that contains SLn(C̃). Indeed,
according to Lemma 3.6, it is sufficient to prove that there is no B ∈ Kn×n

such that ϑ(A1) = pφ(B)A1 − A1B. Assume at the contrary that such a B
exists. The equation ϑ(A1) = pφ(B)A1 − A1B, which can be rewritten as
δ(A1) = φ(log(z)B)A1 − A1(log(z)B), ensures the integrability of the system of
equations {

φ(Y ) = A1Y

δ(Y ) = (log(z)B)Y.

So, there exists D ∈ GLn(C̃) such that V := U1D ∈ GLn(S1) satisfies{
φ(V ) = A1V

δ(V ) = (log(z)B)V, i.e. ϑ(V ) = BV.

Hence, we have the equalities ϑ(U1)D+U1ϑ(D) = ϑ(U1D) = ϑ(V ) = BV = BU1D
so ϑ(U1) = BU1 − U1ϑ(D)D−1. This formula implies that the (finite dimensional)
∪j≥1C̃(z1/j)-vector space generated by the entries of U1 is stable by ϑ. In particular,
any ui (recall that the ui are the entries of the first column of U) satisfies a nonzero
linear differential equation with coefficients in ∪j≥1C̃(z1/j), with respect to the
derivation ϑ. It follows from Lemma 3.8 that the ui belong to K. Hence, the first
column of U1 is fixed by the Galois group G1 and this contradicts the fact that G1

contains SLn(C).
Therefore, (Gδ)der = (Gδ1)

der contains SLn(C̃). Now, the theorem follows from
Lemma 3.6. �

3.2.2. Hypertranscendental determinant. In the case of an hypertranscendental de-
terminant, we can reduce the computation of the parametrized difference Galois
group to a question concerning the existence of a rational solution of a given Mahler
equation as follows.

Lemma 3.10. Assume that the assumption (3.3) holds and that d is hypertran-
scendental over (C(z), θ) (or, equivalently, that the parametrized difference Galois
group of φ(y) = det(A)y over L is equal to C̃×). We have the following alternative:

(1) Galδ(QS/L) is conjugate to C̃×SLn(C);
(2) Galδ(QS/L) is equal to a GLn(C̃).
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Moreover, the first case holds if and only if there exists B ∈ Kn×n such that

(16) pφ(B) = ABA−1 + ϑ(A)A−1 − 1

n
ϑ(det(A)) det(A)−1In.

Proof. Note that d is hypertranscendental over (L, δ). Using Proposition 2.10, it
remains to prove that the equation

(17) φ(B) = ABA−1 + δ(A)A−1 − 1

n
δ(det(A)) det(A)−1In

has a solution B ∈ K′n×n if and only if the equation (16) has a solution B ∈ Kn×n.
The proof of this fact is similar to the proof of Lemma 3.6. �

Unlike to the situation of Section 3.2.1, it is not completely obvious that we can
bypass the search of rational solutions of (16) to decide which of the two options
of Lemma 3.10 is satisfied. However, we can still get directly some informations on
the hypertranscendence of solutions in ∪j≥1C(z1/j) as follows.

Theorem 3.11. Assume that the assumption (3.3) holds and that d is hypertran-
scendental over (C(z), ϑ). Assume that the difference system φ(Y ) = AY admits
a nonzero solution u = (u1, . . . , un)

t with coefficients in C((z1/k)) for some integer
k ≥ 1. Then, at least one of the ui is hypertranscendental over (C(z), ϑ).

Note the following immediate corollary, which is particularly interesting when
one works with difference equations rather than with difference systems.

Corollary 3.12. Assume that the assumption (3.3) holds and that d is hypertran-
scendental over (C(z), ϑ). Assume that the difference system φ(Y ) = AY admits a
nonzero solution u = (f, φ(f), . . . , φn−1(f))t for some f ∈ C((z1/k)) and some in-
teger k ≥ 1. Then, f (and, hence, any φi(f)) is hypertranscendental over (C(z), ϑ).

The arguments employed in the proof Theorem 3.11 given below are very similar
to the ones used in the hyperalgebraic case. But, we need a new descent argument,
that is contained in the following lemma.

Lemma 3.13. Let L be a δ-field and let L〈a〉 and L〈b1, . . . , bn〉 be two δ-field
extensions of L, both contained in a same δ-field extension of L. Assume that a
is hypertranscendental over L and that any bi is hyperalgebraic over L. Then, the
field extensions L〈a〉 and L〈b1, . . . , bn〉 are linearly disjoint over L.

Proof. If L〈a〉 and L〈b1, . . . , bn〉 are not linearly disjoint over L then a is hyperal-
gebraic over L〈b1, . . . , bn〉. This implies that the differential transcendence degree
of the field L〈a, b1, . . . , bn〉 over L〈b1, . . . , bn〉 is zero. Since the differential tran-
scendence degree of L〈b1, . . . , bn〉 over L is also zero, by hypothesis, we find that
the differential transcendence degree of L〈a, b1, . . . , bn〉 over L is zero by classical
properties of the transcendence degree. This implies that a is hyperalgebraic over
L. �

Proof of Theorem 3.11. Thanks to Lemma 3.7, we can assume that the PPV ring
S for φ(Y ) = AY over L contains L{u1, . . . , un}. We can assume that the first
column of the fundamental matrix of solutions U ∈ GLn(S) of φ(Y ) = AY is u.

We denote by G the difference Galois group of φ(Y ) = AY over the φ-field K,
and by Gδ its parametrized difference Galois group over the (φ, δ)-ring L. Since d
is hypertranscendental over L, the parametrized difference Galois group of φ(y) =
det(A)y over L is C̃×.

Note that Lemma 3.10 implies that Gδ is Kolchin-connected. So, S is an integral
domain.
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We claim that at least one of the ui is hypertranscendental over L. Suppose
at the contrary that all of them are hyperalgebraic. In particular, Gδ is a strict
subgroup of GLn(C̃). Lemma 3.10 ensures that there exists B ∈ Kn×n such that

(18) pφ(B) = ABA−1 + ϑ(A)A−1 − 1

n
ϑ(det(A)) det(A)−1In.

This equation can be rewritten as

φ(B0) = AB0A
−1 + δ(A)A−1 − 1

n
δ(det(A)) det(A)−1In,

where B0 = log(z)B. Set B1 := B0 +
δ(d)
nd . Note that

φ(B1) = AB1A
−1 + δ(A)A−1.

This equation ensures the integrability of the system of equations{
φ(Y ) = AY

δ(Y ) = B1Y.

So, there exists D ∈ GLn(C̃) such that V := UD ∈ GLn(S) satisfies{
φ(V ) = AV

δ(V ) = B1V i.e. ϑ(V ) = (B + ϑ(d)
nd )V.

In particular, we have ϑ(U)D + Uϑ(D) = ϑ(U1D) = ϑ(V ) = (B + ϑ(d)
nd )UD so

ϑ(U) = (B +
ϑ(d)

nd
)U − Uϑ(D)D−1.

If we set F = ∪j≥1C̃(z1/j), the previous formula implies that the F 〈d〉5-vector sub-
space of QS generated by the entries of U and all their successive ϑ-derivatives is of
finite dimension. In particular, any ui satisfies a nonzero linear differential equation
Li(y) = 0 with coefficients in F 〈d〉, with respect to the derivation ϑ. We can as-
sume that the coefficients of Li(y) belong to F{d}. We write Li(y) =

∑
α Li,α(y)dα

where Li,α(y) is a linear differential operator with coefficients in F , with respect to
the derivation ϑ, and dα is a monomial in the ϑi(d)’s. By Lemma 3.13, the ϑ-fields
F 〈d〉 and F 〈u1, ..., un〉 are linearly disjoint over F . It follows easily that there exists
some nonzero Li,α(y) such that Li,α(ui) = 0. Therefore, any ui satisfies a nonzero
linear differential equation with coefficients in F , with respect to the derivation ϑ.
It follows from Lemma 3.8 that the ui belong to K. Hence, the first column of U is
fixed by the difference Galois group G and this contradicts the fact that G contains
SLn(C). �

4. Applications

In this section, we will use the notations introduced at the beginning of Section 3.

4.1. User-friendly hypertranscendence criteria. Consider the Mahler system

(19) φ(Y ) = AY, with A ∈ GLn(C(z)).

Theorem 4.1. Assume that the difference Galois group of the Mahler system (19)
over the φ-field K contains SLn(C) and that detA(z) is a monomial. Then, the
following properties hold:

(1) The parametrized difference Galois group of the Mahler system (19) over L
is a subgroup of C×SLn(C̃) containing SLn(C̃).

5Here, F 〈d〉 denotes the ϑ-field extension generated by d over F .
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(2) Let u = (u1, ..., un)
t be a nonzero solution of (19) with entries in C((z)).

Then, the series u1, u2, . . . , un and all their successive derivatives are alge-
braically independent over C(z). In particular, any ui is hypertranscenden-
tal over C(z).

Proof. The fact that detA(z) is a monomial ensures, in virtue of Proposition 3.1,
that the parametrized difference Galois group of φ(y) = det(A)y is included in C×.
Theorem 3.5 yields the first assertion of the theorem.

We claim that u1, u2, . . . , un are hyperalgebraically independent over C(z). As-
sume at the contrary that they are hyperalgebraically dependent over C(z). Thanks
to Lemma 3.7, there exists a PPV ring S for the system (19) over L containing
K′{u1, u2, . . . , un}. Let U ∈ GLn(S) be a fundamental matrix of solutions of the
system (19) whose first column is u. Then, det(U) is hyperalgebraic over L and
the elements of the first column of U are hyperalgebraically dependent over L. It
follows easily that the δ-transcendence degree of S over L is lower than or equal to
n2−2. This contradicts the fact that the δ-dimension of the parametrized difference
Galois group of equation (19) over L, namely n2−1, is equal to the δ-transcendence
degree of S over L (see [HS08, Proposition 6.26]). �

We shall now state a variant of the last theorem for Mahler equations. Consider
the following Mahler equation

(20) an(z)y(z
pn) + an−1(z)y(z

pn−1

) + · · ·+ a0(z)y(z) = 0

for some integers p ≥ 2, n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with a0(z)an(z) 6=
0. In what follows, by “difference Galois group of equation (20)”, we mean the
difference Galois group of the associated system

(21) φ(Y ) = AY, with A =



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
− a0
an

− a1
an

· · · · · · −an−1

an

 ∈ GLn(C(z)).

Theorem 4.2. Assume that the difference Galois group over the φ-field K of the
Mahler equation (20) contains SLn(C) and that an(z)/a0(z) is a monomial. Then,
the following properties hold:

(1) The parametrized difference Galois group of equation (20) over L is a sub-
group of C×SLn(C̃) containing SLn(C̃).

(2) Let f(z) ∈ C((z)) be a nonzero solution of (20). Then, the se-
ries f(z), f(zp), . . . , f(zp

n−1

) and all their successive derivatives are alge-
braically independent over C(z). In particular, f(z) is hypertranscendental
over C(z).

Proof. Using the fact that the determinant of the matrix A given by formula (21)
is equal to a0/an and the fact that, if f(z) ∈ C((z)) is a nonzero solution of (20),
then (f(z), f(zp), . . . , f(zp

n−1

))t is a nonzero solution of (21) with entries in C((z)),
we see that this theorem is a consequence of Theorem 4.1. �

4.2. The Baum-Sweet sequence. The Baum-Sweet sequence (an)n≥0 is the au-
tomatic sequence defined by an = 1 if the binary representation of n contains no
block of consecutive 0 of odd length, and an = 0 otherwise. It is characterized by
the following recursive equations:

a0 = 1, a2n+1 = an, a4n = an, a4n+2 = 0.
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Let fBS(z) =
∑
n≥0 anz

n be the corresponding generating series. The above recur-
sive equations show that

Y (z) =

(
fBS(z)
fBS(z

2)

)
satisfies the following Mahler system:

(22) φ(Y ) = AY where A =

(
0 1
1 −z

)
∈ GL2(K).

We have used the following notations: p = 2, K = ∪j≥1C(z1/j) and φ is the field
automorphism of K such that φ(z) = z2.

Theorem 4.3. The parametrized difference Galois group of (22) over L is equal to
µ4SL2(C̃), where µ4 ⊂ C× is the group of 4th roots of the unity. The series fBS(z),
fBS(z

2) and all their successive derivatives are algebraically independent over C(z).

Proof. According to [Roq15, Theorem 50], the difference Galois group of (22) over
the φ-field K is equal to µ4SL2(C). Now, the result is a direct consequence of
Theorem 4.2. �

4.3. The Rudin-Shapiro sequence. The Rudin-Shapiro sequence (an)n≥0 is the
automatic sequence defined by an = (−1)bn where bn is the number of pairs of
consecutive 1 in the binary representation of n. It is the characterized by the
following recurrence relations:

a0 = 1, a2n = an, a2n+1 = (−1)nan.

Let fRS(z) =
∑
n≥0 anz

n be the corresponding generating series. The above recur-
sive equations show that

Y (z) =

(
fRS(z)
fRS(−z)

)
satisfies the following Mahler system:

(23) φ(Y ) = AY where A =
1

2

(
1 1
1
z − 1

z

)
∈ GL2(K).

We have used the following notations: p = 2, K = ∪j≥1C(z1/j) and φ is the field
automorphism of K such that φ(z) = z2.

Theorem 4.4. The parametrized difference Galois group of (23) over L is equal
to GL2(C̃). The series fRS(z), fRS(−z) and all their successive derivatives are
algebraically independent over C(z).

Proof. According to [Roq15, Theorem 54], the difference Galois group of (23) over
the φ-field K is equal to GL2(C). Now, the result is a direct consequence of Theo-
rem 4.1. �

4.4. Direct sum of the Baum-Sweet and of the Rudin Shapiro equations.
The aim of this section is to illustrate how one can use the results of this paper
in order to prove the hyperalgebraic independence of Mahler functions solutions of
distinct equations.

4.4.1. A differential group theoretic preliminary result. In what follows, we denote
by G◦ the neutral component of the linear algebraic group G, and by Gder its
derived subgroup. We recall that G◦ and Gder are Zariski-closed in G.

We denote by G◦δ the neutral component of the differential algebraic group
G (so, here, we consider Kolchin’s topology), and Gder its derived subgroup. In
general, Gder is not Kolchin-closed. We denote by Gderδ its Kolchin-closure in G.
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Theorem 4.5. Let k be a differentially closed δ-field. Let r ≥ 2 be an integer and,
for any i ∈ {1, . . . , r}, let Gi be an algebraic subgroup of GLni(k). We consider the
linear algebraic group G =

∏
i∈{1,...,r}Gi. We assume that, for any i ∈ {1, . . . , r},

G◦,deri is quasi-simple and that G◦,der =
∏
i∈{1,...,r}G

◦,der
i . Let H be a Zariski-dense

differential algebraic subgroup of G. Let Hi be the projection of H in Gi ⊂ G. Then,
(1) for all i ∈ {1, . . . , r}, H◦δ,derδi is Zariski-dense in G◦,deri ;
(2) we have:

H◦δ,derδ =
∏

i∈{1,...,r}

H◦δ,derδi ⊂
∏

i∈{1,...,r}

G◦,deri .

Proof. By hypothesis, H is Zariski-dense in G and, hence, Hi is Zariski-dense in
Gi (because the projection pi : G → Gi is continuous for the Zariski topology
and, hence, Gi = pi(G) = pi(H) ⊂ pi(H)). Therefore, H◦δ,derδ is Zariski-dense in
G◦,der =

∏
i∈{1,...,r}G

◦,der
i and H◦δ,derδi is Zariski-dense in G◦,deri . Recall that the

G◦,deri are quasi-simple by hypothesis. It follows from [Cas89, Theorem 15] that

H◦δ,derδ =
∏

i∈{1,...,r}

Ki

for some δ-closed subgroups Ki of G
◦,der
i . (With the terminologies of [Cas89, The-

orem 15], the simple components Ai of G◦,der are the {1}i−1 ×G◦,deri × {1}r−i−1).
We necessarily have Ki = H◦δ,derδi . �

4.4.2. Baum-Sweet and Rudin-Shapiro.

Theorem 4.6. The parametrized difference Galois group of the direct sum of the
systems (22) and (23) is equal to the direct product of the parametrized difference
Galois groups of the systems (22) and (23), namely µ4SL2(C̃) × GL2(C̃). The
series fBS(z), fBS(z2), fRS(z), fRS(z2) and all their successive derivatives are al-
gebraically independent over C(z).

Proof. We denote by MBS and MRS the φ-modules associated to the systems (22)
and (23).

It is proved in [Roq15, Section 9.3] that the difference Galois group over K of the
direct sum MBS ⊕MRS is the direct product of the difference Galois groups, i.e.
µ4SL(C)×GL2(C). If follows from Theorems 4.5, 4.3, and 4.4, that the parametrized
difference Galois group of MBS ⊕MRS contains SL2(C̃) × SL2(C̃). The fact that
the parametrized difference Galois group of MBS ⊕MRS is µ4SL2(C̃)×GL2(C̃) is
now clear.

The proof of the last assertion is similar to the proof of the last statement of
Theorem 4.2. �
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