A note on p-curvatures

Julien Roques

Abstract. In this note, we give an arithmetic criterion for the Lie-irreducibility of linear
differential equations based on p-curvatures.
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1 Introduction - Statement of the main result

A. Grothendieck conjectured that a linear differential equation with coefficients in Q(x) has
a full set of algebraic solutions if and only if its p-curvatures are zero for almost all prime p.
This conjecture was reformulated by N. Katz in [1] (Grothendieck-Katz’ conjecture).

In contrast with the original Grothendieck’s conjecture, this note is concerned with the non
vanishing of the p-curvatures. Our main result is :

Theorem 1. Let L be a linear differential operator with coefficients in Q(x), irreducible over
Q(z). Assume that the order n of L is a prime and that, for infinitely many prime p, the
reduction of L mod. p is nilpotent and has non zero p-curvature. Then L is Lie-irreducible.

We recall that an operator L as above is Lie-irreducible if the neutral component of its
differential Galois group over Q(z) acts irreducibly (on the solutions).

This note is inspired by J. F. Voloch’s paper [5] which is concerned with second order oper-
ators. Indeed, it is easily seen that, in the case that n = 2, Theorem 1 can be paraphrased as
follows : Let L be a linear differential operator of order 2 with coefficients in Q(x), irreducible
over Q(x). Assume that, for infinitely many prime p, the reduction of L mod. p is nilpotent
and has non zero p-curvature. Then the Galois group of L over Q(x) contains SL2(Q). This
result is proved in [5]. The starting point of this work was a question raised by N. Katz in
the introduction of [2]. It is interesting to note the similarity of Theorem 1 with N. Katz’
Proposition 2.7.2 in [3].

Acknowledgments. Je remercie L. Di Vizio et D. Bertrand.



2 Differential equations, differential systems and p-curvatures

We will denote by Q(z)(9) be the usual non commutative algebra of differential operators
with coefficients in Q(x) (i.e. the non commutative algebra of non commutative polynomials
with coefficients in Q(z) satisfying to the relation dx = z0 + 1).

Let us consider L = 9" + a,, 10" ' 4+ --- +ag € Q(x)(d). The corresponding linear homo-
geneous differential equation is

Oy + ap_10" "y + -+ agy = 0. (1)
Setting Y = (y, dy, ..., 0" 1y)!, this differential equation is equivalent to the differential system
0

oy = AY; A= o I e M, (Q(x)). 2)

—ay —ar -+ —0p-1

We define a sequence (Ag)gen+ of elements of M, (Q(z)) by Ay = A and, for all & € N*,
Apy1 = OAp + ArA (in other terms, for all k € N*, 9*Y = A,Y). For all k € N, we will set :

Ag = (agij)1<ij<n-

For almost all prime p, we define the p-curvature of L as A, mod. p. Note if the first line of the
p-curvature is zero then the p-curvature itself is zero (immediate from the formula OPY = A,Y).

3 Proof of Theorem 1

We start with some preliminary results.

Lemma 1. Let L be an irreducible element of Q(x)(0) of order m € N. Let y be a non zero ele-
ment of some differential field extension of (Q(x),d) such that Ly = 0. Theny, 0y, 0%y, ...,0™ 1y
are linearly independent over Q(x).

Proof. This lemma means that if L' € Q(x)(9) is a differential operator of order < m such
that L'y = 0 then L' = 0. This is a direct consequence of the fact that the left ideal {L’ €
Q()(9) | L'y = 0} of Q(x)(0) is generated by L (by the usual Euclidean division argument). [

Lemma 2. Let n be a prime. Let G C GL,(Q) be a linear algebraic group which acts irreducibly
on Q". Then either G° acts irreducibly on Q" or there exists a line in Q" invariant by the
action of G.

Proof. Assume that G° acts reducibly on Q". Let V # {0},Q@" be a non trivial subspace
of Q" invariant for the action of G° and minimal for this property. For all g € G, gV is
invariant under the action of G® because G° is normalized by G. So, since G acts irreducibly
on Q", Q" = dea gV. Let E be a finite subset of G such that Q" = EgeE gV and minimal

for this property. For any h € E, (> geE\{h} gV) N AV is an invariant subspace for G° so,



by the minimality property of the (dimension of) V, either (3 cp\ (ny9V) N AV = {0} or
(Xgemqny 9V) NAV = hV. The case that (3 cp ny 9V) NAV = RV is excluded by the

minimality property of E. Therefore Q" = &b ger 9V In particular, since n is prime, we get
dimV = 1. O

Notations. In what follows, we will use the Picard-Vessiot approach for differential Galois
theory ([4]). For any L € Q(z)(d), we will denote by K some Picard-Vessiot extension for
L over Q(z) and by S = {y € K1, | Ly = 0} the corresponding Q-vector space of solutions
(whose dimension is the order of L).

Proposition 1. Let n be a prime. Let L be an element of Q(x)(0) of order n, irreducible over

Q(x). Then either L is Lie-irreducible or there exists y # 0 in Sy, such that, for all k € N, %
is algebraic over Q(x).

Proof. Let G C GL(SL) be the differential Galois group of L over Q(z). Since L is irreducible

over Q(z), G acts irreducibly on Sy. Assume that L is Lie-reducible. Lemma 2 ensures that
there exists y € S;, which spans a Q-line invariant by the action of G°; in particular, for any

k
keN, g%y = % does not depend on g € G°. So, we can set (without ambiguity), for any

7€ G/GO, §% = g%. It is clear that any symmetric polynomial with coefficients in Q(z)
in (ﬁ% | 7 € G/GY) is fixed by the action of G and hence belongs to Q(z). Therefore, % is
algebraic over Q(z) of degree at most [G : GY]. O

We now prove our main result.

Proof of Theorem 1. Assume that L is Lie-reducible. Proposition 1 ensures that there exists
k
y # 0 in Sy, such that, for all k£ € N, % is algebraic over Q(x). For the sake of conciseness, we

set, for all k € N, u, = % and K = Q(x)(u1,...,un—1) C Kr. Then K is a finite differential
extension of Q(z).

Let T be an indeterminate over Q(z) and let F(T') = >_7_, fxT* be a unitary irreducible el-
ement of Q(z)[T] such that K can be identified with Q(z)[T']/(F(T')); we denote by t the class of
T in Q(z)[T)/(F(T)). With this identification 9 is given by 9t = —(>_}_, a(fk)tk)(%F(t))_l.

Let r € Z[z] be some multiple of denominators of the coefficients of F(T) and of L such
that the image R of Z[z][r!][T] in K = Q(z)[T]/(F(T)) contains (%F(t})_1 and wuq, ..., Up—1.
It is clear that R is a subring of K stable by 0. Moreover, for all kK € N, u; € R as it is easily
seen from the relation Ly = 0.

In what follows by “mod. p” we will mean “in R/pR”.

Let us consider k € [0,n — 1]. Using Leibniz formula, we get up;y = oty _ ordty

y oy
Fluny) ?:0 (;)8j(uk)up,j = ugu, + OPuy mod. p, for almost all prime p. But, since wy

Y
is algebraic over Q(z), dPup = 0 mod. p, for almost all prime p. Thus, we are lead to the

k
fact that, for almost all prime p, u,r = uru, mod. p i.e. 8p;; ¥ — uk% mod. p and hence

Apik1,1 F Qpik12U1 + - + Qg1 nUn-1 = Uk(ap1,1 + ap1 Ut + -+ + ap;1 ntn—1) mod. p (we
use the notations of section 2 for the p-curvatures).
Therefore, for almost all prime p, the vector (1,u1,...,u,—1)" mod. p is an eigenvector

with coefficients in R/pR for the p-curvature A, mod. p associated to the eigenvalue a1 +




Ap;1,2U1 + -+ + ap1pUn—1 mod. p. Since A, mod. p is nilpotent and non zero for infinitely
many prime p and since the first coordinate of the above eigenvector is equal to 1, we get
that ap1.1 + api2u1 + -+ + ap1ntn—1 mod. p is a nilpotent element of R/pR for infinitely
many prime p (the fact that the first coordinate is equal to 1 is used because R/pR need not
be entire). Since R/pR is a reduced ring for almost all prime p, we get a non trivial linear
relation ap.1,1 + ap.12u1 + -+ + ap1pUn—1 = 0 mod. p for infinitely many prime p in the
Z[z)[r~1/pZ[z][r~!]-module R/pR..

So 1 mod. p, u; mod. p,..., u,—1 mod. p are linearly dependent in the Z[x]|[r~]/pZ[x][r—1]-
module R/pR, for infinitely many prime p. Using the fact that R is a free Z[z][r~!]-module of
finite type, we get that 1,uq, ..., u,—1 are linearly dependent over Q(z) : this is a contradiction
in virtue of Lemma 1. O
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