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Abstract. In this note, we give an arithmetic criterion for the Lie-irreducibility of linear
differential equations based on p-curvatures.
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1 Introduction - Statement of the main result

A. Grothendieck conjectured that a linear differential equation with coefficients in Q(x) has
a full set of algebraic solutions if and only if its p-curvatures are zero for almost all prime p.
This conjecture was reformulated by N. Katz in [1] (Grothendieck-Katz’ conjecture).

In contrast with the original Grothendieck’s conjecture, this note is concerned with the non
vanishing of the p-curvatures. Our main result is :

Theorem 1. Let L be a linear differential operator with coefficients in Q(x), irreducible over
Q(x). Assume that the order n of L is a prime and that, for infinitely many prime p, the
reduction of L mod. p is nilpotent and has non zero p-curvature. Then L is Lie-irreducible.

We recall that an operator L as above is Lie-irreducible if the neutral component of its
differential Galois group over Q(x) acts irreducibly (on the solutions).

This note is inspired by J. F. Voloch’s paper [5] which is concerned with second order oper-
ators. Indeed, it is easily seen that, in the case that n = 2, Theorem 1 can be paraphrased as
follows : Let L be a linear differential operator of order 2 with coefficients in Q(x), irreducible
over Q(x). Assume that, for infinitely many prime p, the reduction of L mod. p is nilpotent
and has non zero p-curvature. Then the Galois group of L over Q(x) contains SL2(Q). This
result is proved in [5]. The starting point of this work was a question raised by N. Katz in
the introduction of [2]. It is interesting to note the similarity of Theorem 1 with N. Katz’
Proposition 2.7.2 in [3].

Acknowledgments. Je remercie L. Di Vizio et D. Bertrand.
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2 Differential equations, differential systems and p-curvatures

We will denote by Q(x)〈∂〉 be the usual non commutative algebra of differential operators
with coefficients in Q(x) (i.e. the non commutative algebra of non commutative polynomials
with coefficients in Q(x) satisfying to the relation ∂x = x∂ + 1).

Let us consider L = ∂n + an−1∂
n−1 + · · ·+ a0 ∈ Q(x)〈∂〉. The corresponding linear homo-

geneous differential equation is

∂ny + an−1∂
n−1y + · · ·+ a0y = 0. (1)

Setting Y = (y, ∂y, ..., ∂n−1y)t, this differential equation is equivalent to the differential system

∂Y = AY ; A =


0
... In−1
0
−a0 −a1 · · · −an−1

 ∈Mn(Q(x)). (2)

We define a sequence (Ak)k∈N∗ of elements of Mn(Q(x)) by A1 = A and, for all k ∈ N∗,
Ak+1 = ∂Ak + AkA (in other terms, for all k ∈ N∗, ∂kY = AkY ). For all k ∈ N, we will set :

Ak = (ak;i,j)1≤i,j≤n.

For almost all prime p, we define the p-curvature of L as Ap mod. p. Note if the first line of the
p-curvature is zero then the p-curvature itself is zero (immediate from the formula ∂pY = ApY ).

3 Proof of Theorem 1

We start with some preliminary results.

Lemma 1. Let L be an irreducible element of Q(x)〈∂〉 of order m ∈ N. Let y be a non zero ele-
ment of some differential field extension of (Q(x), ∂) such that Ly = 0. Then y, ∂y, ∂2y, ..., ∂m−1y
are linearly independent over Q(x).

Proof. This lemma means that if L′ ∈ Q(x)〈∂〉 is a differential operator of order < m such
that L′y = 0 then L′ = 0. This is a direct consequence of the fact that the left ideal {L′ ∈
Q(x)〈∂〉 | L′y = 0} of Q(x)〈∂〉 is generated by L (by the usual Euclidean division argument).

Lemma 2. Let n be a prime. Let G ⊂ GLn(Q) be a linear algebraic group which acts irreducibly
on Qn

. Then either G0 acts irreducibly on Qn
or there exists a line in Qn

invariant by the
action of G0.

Proof. Assume that G0 acts reducibly on Qn
. Let V 6= {0},Qn

be a non trivial subspace
of Qn

invariant for the action of G0 and minimal for this property. For all g ∈ G, gV is
invariant under the action of G0 because G0 is normalized by G. So, since G acts irreducibly
on Qn

, Qn
=
∑

g∈G gV . Let E be a finite subset of G such that Qn
=
∑

g∈E gV and minimal

for this property. For any h ∈ E, (
∑

g∈E\{h} gV ) ∩ hV is an invariant subspace for G0 so,
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by the minimality property of the (dimension of) V , either (
∑

g∈E\{h} gV ) ∩ hV = {0} or
(
∑

g∈E\{h} gV ) ∩ hV = hV . The case that (
∑

g∈E\{h} gV ) ∩ hV = hV is excluded by the

minimality property of E. Therefore Qn
=
⊕

g∈E gV . In particular, since n is prime, we get
dimV = 1.

Notations. In what follows, we will use the Picard-Vessiot approach for differential Galois
theory ([4]). For any L ∈ Q(x)〈∂〉, we will denote by KL some Picard-Vessiot extension for
L over Q(x) and by SL = {y ∈ KL | Ly = 0} the corresponding Q-vector space of solutions
(whose dimension is the order of L).

Proposition 1. Let n be a prime. Let L be an element of Q(x)〈∂〉 of order n, irreducible over

Q(x). Then either L is Lie-irreducible or there exists y 6= 0 in SL such that, for all k ∈ N, ∂ky
y

is algebraic over Q(x).

Proof. Let G ⊂ GL(SL) be the differential Galois group of L over Q(x). Since L is irreducible
over Q(x), G acts irreducibly on SL. Assume that L is Lie-reducible. Lemma 2 ensures that
there exists y ∈ SL which spans a Q-line invariant by the action of G0; in particular, for any

k ∈ N, g ∂ky
y = ∂k(gy)

gy does not depend on g ∈ G0. So, we can set (without ambiguity), for any

g ∈ G/G0, g ∂ky
y = g ∂ky

y . It is clear that any symmetric polynomial with coefficients in Q(x)

in (g ∂ky
y | g ∈ G/G0) is fixed by the action of G and hence belongs to Q(x). Therefore, ∂ky

y is

algebraic over Q(x) of degree at most [G : G0].

We now prove our main result.

Proof of Theorem 1. Assume that L is Lie-reducible. Proposition 1 ensures that there exists

y 6= 0 in SL such that, for all k ∈ N, ∂ky
y is algebraic over Q(x). For the sake of conciseness, we

set, for all k ∈ N, uk = ∂ky
y and K = Q(x)(u1, ..., un−1) ⊂ KL. Then K is a finite differential

extension of Q(x).
Let T be an indeterminate over Q(x) and let F (T ) =

∑n
k=0 fkT

k be a unitary irreducible el-
ement of Q(x)[T ] such that K can be identified with Q(x)[T ]/(F (T )); we denote by t the class of
T in Q(x)[T ]/(F (T )). With this identification ∂ is given by ∂t = −(

∑n
k=0 ∂(fk)tk)( d

dT F (t))−1.
Let r ∈ Z[x] be some multiple of denominators of the coefficients of F (T ) and of L such

that the image R of Z[x][r−1][T ] in K = Q(x)[T ]/(F (T )) contains ( d
dT F (t))−1 and u1, ..., un−1.

It is clear that R is a subring of K stable by ∂. Moreover, for all k ∈ N, uk ∈ R as it is easily
seen from the relation Ly = 0.

In what follows by “mod. p” we will mean “in R/pR”.

Let us consider k ∈ J0, n − 1K. Using Leibniz formula, we get up+k = ∂p+ky
y = ∂p∂ky

y =
∂p(uky)

y =
∑p

j=0

(
j
p

)
∂j(uk)up−j = ukup + ∂puk mod. p, for almost all prime p. But, since uk

is algebraic over Q(x), ∂puk = 0 mod. p, for almost all prime p. Thus, we are lead to the

fact that, for almost all prime p, up+k = ukup mod. p i.e. ∂p+ky
y = uk

∂py
y mod. p and hence

ap;k+1,1 + ap;k+1,2u1 + · · · + ap;k+1,nun−1 = uk(ap;1,1 + ap;1,2u1 + · · · + ap;1,nun−1) mod. p (we
use the notations of section 2 for the p-curvatures).

Therefore, for almost all prime p, the vector (1, u1, ..., un−1)
t mod. p is an eigenvector

with coefficients in R/pR for the p-curvature Ap mod. p associated to the eigenvalue ap;1,1 +
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ap;1,2u1 + · · · + ap;1,nun−1 mod. p. Since Ap mod. p is nilpotent and non zero for infinitely
many prime p and since the first coordinate of the above eigenvector is equal to 1, we get
that ap;1,1 + ap;1,2u1 + · · · + ap;1,nun−1 mod. p is a nilpotent element of R/pR for infinitely
many prime p (the fact that the first coordinate is equal to 1 is used because R/pR need not
be entire). Since R/pR is a reduced ring for almost all prime p, we get a non trivial linear
relation ap;1,1 + ap;1,2u1 + · · · + ap;1,nun−1 = 0 mod. p for infinitely many prime p in the
Z[x][r−1]/pZ[x][r−1]-module R/pR..

So 1 mod. p, u1 mod. p,..., un−1 mod. p are linearly dependent in the Z[x][r−1]/pZ[x][r−1]-
module R/pR, for infinitely many prime p. Using the fact that R is a free Z[x][r−1]-module of
finite type, we get that 1, u1, ..., un−1 are linearly dependent over Q(x) : this is a contradiction
in virtue of Lemma 1.
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