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Abstract. Mahler functions are power series f(x) with complex coef-
ficients for which there exist a natural number n and an integer ` ≥ 2

such that f(x), f(x`), . . . , f(x`
n−1

), f(x`
n

) are linearly dependent over
C(x). The study of the transcendence of their values at algebraic points
was initiated by Mahler around the 30’s and then developed by many
authors. This paper is concerned with some arithmetic aspects of these
functions. In particular, if f(x) satisfies f(x) = p(x)f(x`) with p(x) a
polynomial with integer coefficients, we show how the behaviour of f(x)
mirrors on the polynomial p(x). We also prove some general results on
Mahler functions in analogy with G-functions and E-functions.

1. Introduction

Throughout this article, by Mahler function we will mean a solution f(x)
of an equation of the form

(1) an(x)f(x`
n
) + an−1(x)f(x`

n−1
) + . . .+ a0(x)f(x) = 0

where ` ≥ 2 is an integer, a0(x), . . . , an(x) ∈ C(x) are rational functions
and a0(x)an(x) 6= 0. These functions have been extensively studied, start-
ing with the seminal work of Mahler [Mah29], [Mah30a] and [Mah30b], in-
vestigating the algebraic relations between the values of these functions at
algebraic points. This new approach in transcendence theory, also known as
Mahler’s method, was further explored and developed by many authors, such
as Becker, Kubota, Loxton, van der Poorten, Masser, Nishioka, Töpfer (we
refer Nishioka’s book [Nis97] for an overview on the subject and a complete
list of references).

The first results of Mahler concerned functions of order n = 1: for in-
stance, he proved that the Thue-Morse number f(1/2) is transcendental,
where f(x) satisfies the equation f(x) = (1− x)f(x2).

In this paper we are also mainly interested in Mahler functions f(x) of
order 1 satisfying the following special case of equation (1)

(2) f(x) = p(x)f(x`)

where p(x) ∈ Z[x] is a polynomial such that p(0) = 1.
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Up to a multiplicative constant, equation (2) has a unique solution in
Q((x)), namely

f(x) =
∞∑
n=0

fnx
n =

∏
i≥0

p(x`
i
) ∈ Z[[x]].

This is the Taylor expansion at 0 of an analytic function over the unit disc
D(0, 1) ⊂ C.

One aim of this article is to study how the behaviour of a solution f(x)
of (2) and, in particular, of the sequence of its coefficients {fn}n, mirrors on
the polynomial p(x).

Duke and Nguyen [DN15] studied an aspect of this question in the case
where ` is a prime and p(x) = Φm(x) is the m-th cyclotomic polynomial.
For instance, the case ` = 2 and p(x) = Φ1(x) = −x + 1 corresponds to
the Thue-Morse sequence {fn}n where fn ∈ {0, 1} is the sum of the binary
digits of n modulo 2. Another classical example is obtained when ` = 2 and
p(x) = Φ3(x) = x2+x+1. The corresponding sequence is the Stern diatomic
sequence {fn}n, where fn counts the way of writing n as a sum of powers of 2
using each power of 2 at most twice (more details on the many properties of
this sequence can be found for instance in [SW10]). One of the main results
of [DN15] states that f(x) is rational if and only if ` divides m, in which

case f(x) = 1/Φd(x
`r−1

) where m = `rd, r ≥ 1 and ` - d, and that f(x)
has the unit circle as a natural boundary otherwise (see [DN15, Theorem
1]). The proof of their result partly bases on a modified version of Mahler’s
approach to the case m = 1, which consists in studying the behaviour of f(x)
as x approaches certain roots of unity. More precisely, they determine (see
[DN15, Theorem 2]) the asymptotic behaviour of f(x) as x tends radially
to a root of unity of order prime to `, by using the arithmetic properties of
the Dirichlet series attached to f(x). We mention that, in this setting, the
asymptotic of the coefficients of f(x)−1 was precisely described by Dumas
and Flajolet [DF96] for any integer ` ≥ 2 prime to m.

A first natural question is whether the above result can be generalized or,
more in general:

Question 1. If f(x) is a solution of (2) which is bounded as x tends radially
to “sufficiently many” roots of unity, what can be said about p(x) ?

In this respect, we obtain the following generalization of [DN15, Theorem
1].

Theorem 1.1. Let ` ≥ 2 be an integer, p(x) ∈ Z[x] a polynomial with
p(0) = 1 and let f(x) be a solution of f(x) = p(x)f(x`).

Suppose that p(x) is monic and that there exists infinitely many integers
m prime to ` such that f(x) is bounded as x tends radially to any m-th
primitive root of unity. Then p(x) is the product of cyclotomic polynomials.

Moreover, if ` is a prime, the following conditions are equivalent:

(1) p(x) is monic and, for almost all roots of unity ζ of order prime to
`, f(x) is bounded as x tends to ζ radially;

(2) p(x) is a product of cyclotomic polynomials of order divisible by `;

(3) f(x) is rational.
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The proof of Theorem 1.1, done in Section 3, relies on a simplified but
more general version of [DN15, Theorem 2] given in Proposition 2.1. This
describes the asymptotic behaviour of f(x) as x approaches radially a root
of unity ζ of order `n − 1 and shows, in particular, that this depends on

the value
∏n−1
k=0 p(ζ

`k). This description is then used to deduce some strong
bound for the absolute value of the norm of p(x) evaluated at roots of unity,
which implies that p(x) is a product of cyclotomic polynomials. The proof of
Proposition 2.1 is different in nature than the one of [DN15, Theorem 2]: we
first consider a certain functional equation (a q-difference equation) satisfied
by f(ζet), then we construct another suitable solution to this equation and
use it to study the behaviour of f(ζet) as t tends to 0.

In the last decades, the interest for Mahler functions was enhanced by
their link to the theory of automata. We briefly recall that, if S is a set,
a sequence {fn}n ∈ SN is called k-automatic if, for every n, fn can be
computed by a finite state machine (or automaton). This machine, starting
on a certain state, takes in input the expansion of n in base k and associates
each digit with a state transition. Each state comes with an associated
output value and the result of the computation is the output attached to
the last reached state. For more informations about the theory of automata,
we refer to [AS03].

The link to Mahler functions comes from the fact that if {fn}n is a k-
automatic sequence (or more generally a k-regular sequence) then its gen-
erating function f(x) =

∑∞
i=0 fnx

n satisfies some Mahler equation (see for
instance [Ran92], [Dum93] and [Bec94]). On the other hand, Becker [Bec94,
Theorem 2] proved that the coefficients of any solution of (1) with ai(x)
polynomials and a0(x) = 1 form a k-regular sequence and, from a classical
result of Allouche and Shallit [AS03, Theorem 16.1.5], a k-regular sequence
takes only finitely many values if and only if it is k-automatic.

The Thue-Morse sequence recalled above is one of the most classi-
cal and simplest examples of 2-automatic sequence, while the Stern di-
atomic sequence is an example of non automatic sequence (indeed the
sequence is unbounded since, for instance, it contains the Fibonacci se-
quence as a subsequence). Another example is the function f(x) intro-
duced by Dilcher and Stolarsky [DS09] which satisfies the order 2 equation
f(x) = (1 + x+ x2)f(x2)− x4f(x16) and is shown to have all coefficients in
{0, 1}.

A second natural problem to consider is how to characterize Mahler equa-
tions giving rise to automatic sequences, a problem which seems highly non
trivial even for simple equations of the form (2). We have the following:

Question 2. What constraints are imposed on p(x) by the fact that f(x)
is the generating function of a k-automatic sequence? Is it possible to clas-
sify the polynomials p(x) such that f(x) is the generating function of a k-
automatic sequence?

As remarked above, asking that f(x) is the generating function of a k-
automatic sequence is equivalent to asking for which polynomials p(x) the
set Sf of values taken by the coefficients of f(x) is finite.
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This is easily seen to be the case when p(x) is a product of certain cy-
clotomic polynomials of order divisible by ` (see Proposition 5.1), and the
question is whether there are other examples.

The second result of the paper answers Question 2 when ` > deg p(x) and
when ` ≤ 3 and p(x) is monic of degree at most 3.

Theorem 1.2. Let ` ≥ 2 be an integer and let f(x) =
∑∞

i=0 fnx
n be a

solution of the equation f(x) = p(x)f(x`), with p(x) ∈ Z[x] such that p(0) =
1. Then:

(i) If ` > deg p(x), the sequence {fn}n is automatic if and only if the
coefficients of p(x) are in {0,±1}.

(ii) If ` = 2 and p(x) = x2 + bx + 1, the sequence {fn}n is automatic if
and only if b ∈ {0,−1}.

(iii) If ` ≤ 3 and p(x) = x3 + bx2 + cx+ 1, the sequence {fn}n is automatic
if and only if:
— ` = 2 and b = c = 0;
— ` = 3 and (b, c) ∈ {(0, 0), (−1, 0), (0,−1)}.

Moreover, in all the above cases {fn}n can be generated by a 3-state automa-
ton.

This theorem is proved in Section 4. It is easy to deduce from (2) that
the coefficients of f(x) satisfy a divide-and-conquer type recurrence (see
[Dum93] for more details). When ` > deg p(x) the recurrence is particularly
simple and is enough to easily answer Question 2 (see Proposition 5.2). If
` ≤ deg p(x), things gets more involved and the result is proved using, in
addition, some norm estimates for the values of p(x) at roots of unity (see
Section 4.1) which are deduced again from Proposition 2.1. The criterion
we use is not subtle enough to treat the case deg p(x) ≥ 4 and ` ≤ deg p(x)
(see Remark 5.5) but it is strong enough to obtain the following information
(see Section 6.2, Proposition 6.6) on the vanishing of p(x) at 1.

Proposition 1.3. Assume that the set of coefficients of f(x) is bounded.
Then, for every integer α > 0 and every prime number `′ prime to `, if p(x)
has no root which is a primitive (`′)α-th root of unity, the order of 1 as a

root of p(x) is less than or equal to log`′(`
(`′)α−1(`′−1)).

A reason a parte to study Mahler functions with bounded coefficients
is given in Section 6 in relation to G-functions and E-functions, which
are power series satisfying a homogeoneous linear differential equation and
whose coefficients fulfill some special growth conditions. Being a G-function
or an E-function is a quite strong property. For instance, in the E-function
case, André [And00] proved that the minimal nonzero differential opera-
tor L annihilating an E-function has at most two non trivial singularities,
namely 0 and ∞, the former being regular singular, the latter being in gen-
eral irregular but the slopes of the Newton polygon attached to L at ∞
are included in {0, 1} (see Section 6.2 for the definition of these slopes). In
Proposition 6.4, we prove that the coefficients of any Mahler function sat-
isfy automatically the conditions defining the G-functions, except that they
are not solutions of linear homogeneous differential equations in general.
Actually, they even have some stronger properties characteristic of globally
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bounded functions, see Definition 6.3. It is therefore quite natural to seek
whether more restrictive assumptions on the coefficients of Mahler functions
give rise to interesting classes of functions. In particular, in view of the pre-
vious discussion, it is natural to wonder whether the fact that a Mahler
function f(x) has bounded integer coefficients implies some restrictions on
the Newton polygon attached at x = 1 to the minimal Mahler operator of
f(x). It turns out that when f(x) is a solution of (2), this Newton polygon
has only one slope given by the order of vanishing of p(x) at 1, so Proposi-
tion 1.3 can be interpreted as an evidence to an affirmative answer to this
question in the case of equation (2). Further evidences are given in Section
6.2.

2. The asymptotic behaviour of f(x) at roots of unity

Throughout this section we assume that f(x) is a Mahler function satis-
fying equation (2) i.e. f(x) = p(x)f(x`) with ` ≥ 2 an integer, p(x) ∈ Z[x]
and p(0) = 1. The aim of this section is to prove a general asymptotic for-
mula for f(x) as x approaches radially a root of unity ζ of order `n− 1. We

prove in particular that this behaviour depends on the integer
∏n−1
k=0 p(ζ

`k),
providing a generalization of [DN15, Theorem 2] (see Remark 2.2 below).
We use the standard symbol ∼ to denote asymptotic equivalence.

Proposition 2.1. Suppose that f(x) is a Mahler function satisfying equa-
tion (2). Let n be a positive integer and let ζ be an (`n− 1)-th complex root

of unity such that
∏n−1
k=0 p(ζ

`k) 6= 0. Then

f(ζet) ∼ mζ(t)t
−

log(
∏n−1
k=0

p(ζ`
k
))

log(`n) as t→ 0−

where mζ(t) is some non zero meromorphic function on the left half-plane
{t ∈ C | <(t) < 0} such that mζ(`

nt) = mζ(t).

Proof. Consider the function

g(z) = f(ζz) ∈ Q[[x]].

Then g(z) is analytic on the unit disc D(0, 1) and satisfies the functional
equation

g(z) = q(z)g(z`
n
) with q(z) =

n−1∏
k=0

p(ζ`
k
z`
k
).

Therefore, the function

h(t) = g(et) = f(ζet),

which is analytic on the left half-plane {t ∈ C | <(t) < 0}, satisfies the
functional equation

(3) h(t) = r(t)h(`nt) with r(t) = q(et).

We shall now construct another solution k(t) of equation (3) and use it
to study the behaviour of h(t) has t tends to 0−.

The infinite product

l(t) =
∏
j≥1

(r(0)−1r(`−njt))−1
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defines a meromorphic function over C (notice that r(0)−1r(q−njt) equals 1
at t = 0), is analytic at t = 0 with l(0) = 1, and satisfies

l(t) = r(0)−1r(t)l(`nt).

Let c = − log(r(0))
log(`n) = − log(

∏n−1
k=0 p(ζ

`k ))

log(`n) for some choice of log(r(0)), and con-

sider the function

k(t) = tcl(t).

Clearly k(t) also satisfies equation (3). It follows that the function m(t) =
h(t)/k(t) is meromorphic on {t ∈ C | <(t) < 0} (we fix a branch of tc on
this half-plane) and satisfies

m(`nt) = m(t).

Now, the result follows from the facts that h(t) = m(t)k(t) and that k(t) ∼ tc
as t→ 0−. �

Remark 2.2. Clearly [DN15, Theorem 2] follows from Proposition 2.1 by
noticing that if ζ is an m-th root of unity such that gcd(`,m) = 1 and if κ
is the order of ` in (Z/mZ)∗, then ζ is also an (`κ − 1)-th root of unity.

3. Radial asymptotic boundedness and rationality: proof of
Theorem 1.1

In this section we prove Theorem 1.1 from the Introduction. We assume
again that f(x) is a Mahler function satisfying (2). The proof is split in two
parts: in Proposition 3.2 we show that if p(x) is monic and f(x) is bounded
as x tends radially to ’many’ roots of unity, then p(x) must be a product of
cyclotomic polynomials. Then in Proposition 3.3 we show how, when ` is
prime, this ’radial boundedness’ condition is equivalent to the rationality of
f(x) and to the fact that p(x) is a product of cyclotomic polyomials of order
divisible by `. We start with a simple lemma on the norm of polynomials
evaluated at roots of unity (if K is a number field, we denote by NK/Q the
norm function from K to Q).

Lemma 3.1. Let ` ≥ 2 be an integer and p(x) ∈ Z[x] a polynomial. Let m
be an integer prime to ` and κ be the order of ` in (Z/mZ)×. Let ζ be a
primitive m-th root of unity. There exist some primitive m-th roots of unity
ζ1, . . . , ζr such that

NQ(ζ)/Q(p(ζ)) =

r∏
i=1

κ−1∏
k=0

p(ζ`
k

i ).

Proof. Let µ′m be the set of m-th primitive roots of unity. Since gcd(m, `) =
1, we have

µ′m =
⋃
ζ∈µ′m

{ζ`j | j ≥ 0}.

Assume that {ζ`j1 | j ≥ 0} ∩ {ζ`j2 | j ≥ 0} 6= ∅ for some ζ1, ζ2 ∈ µ′m. Then,

we have ζ`
i

1 = ζ`
j

2 for some i, j ≥ 0. Up to renumbering, we can assume

that j ≥ i. Then, (ζ−1
1 ζ`

j−i
2 )`

i
= 1. Since, ζ−1

1 ζ`
j−i

2 is a m-th root of

unity and gcd(m, `) = 1, we get ζ−1
1 ζ`

j−i
2 = 1 i.e. ζ1 = ζ`

j−i
2 and, hence,
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{ζ`j1 | j ≥ 0} ⊂ {ζ`j2 | j ≥ 0}. Therefore, one can find ζ1, . . . , ζr ∈ µ′m such

that µ′m is a disjoint union of the r sets {ζ`ji | j ≥ 0}. Therefore,

NQ(ζ)/Q(p(ζ)) =
∏
ξ∈µ′m

p(ξ) =
r∏
i=1

κ−1∏
k=0

p(ζ`
k

i ).

�

Proposition 3.2. Let f(x) be a Mahler function satisfying equation (2).
Suppose that p(x) is monic and that, for infinitely many integers m prime
to ` and for all primitive m-th roots of unity ζ, the function f(x) is bounded
as x tends to ζ radially. Then p(x) is a product of cyclotomic polynomials.

Proof. Let E be the infinite set of roots of unity mentioned in the hypotheses
of the proposition. We can assume that, for all ζ ∈ E, for all j ∈ Z,

p(ζ`
j
) 6= 0 (this condition excludes at most finitely many elements of E).

Fix ζ ∈ E. Let m be the order of ζ as a root of unity and let κ be
the order of ` in (Z/mZ)×. Then ζ is an (`κ − 1)-th root of unity and, by
Proposition 2.1, the behaviour of f(x) as x tends radially to ζ is given by

f(ζet) ∼t→0− mζ(t)t
−

log(
∏κ−1
k=0

p(ζ`
k
))

log(`κ)

where mζ(t) is some non identically zero meromorphic function on the left
half-plane {t ∈ C | <(t) < 0} such that mζ(`

κt) = mζ(t).
The fact that f(x) is bounded as x tends to ζ radially ensures that

<(− log(
∏κ−1
k=0 p(ζ

`k ))

log(`κ) ) ≥ 0 i.e. |
∏κ−1
k=0 p(ζ

`k)| ≤ 1. Using Lemma 3.1, we

get |NQ(ζ)/Q(p(ζ))| ≤ 1 and, hence (we remind that p(ζ) 6= 0),

|NQ(ζ)/Q(p(ζ))| = 1.

Hence, for infinitely many roots of unity ζ, we see that p(ζ) is a unit of
Z[ζ]. If p1(x), . . . , pr(x) denote the irreducible factors of p(x) in Z[x], we get
that, for infinitely many roots of unity ζ, p1(ζ), . . . , pr(ζ) are units of Z[ζ].
It follows from [Kam88, Theorem 2] that p1(x), . . . , pr(x) are cyclotomic
polynomials. �

We now conclude the proof of Theorem 1.1. In what follows, we will need
to compute NQ(ζ)/Q(Φn(ζ)) where Φn(x) is the n-th cyclotomic polynomial
and where ζ is some primitive q-th root of unity. We remind that (see for
instance Section 3.3.6 of [Pras04] or [Apo70]) we have

(4) NQ(ζ)/Q(Φn(ζ)) =

 pϕ(n) if q/n is in pZ
∗

for some prime p;
0 if n = q;
1 otherwise.

Proposition 3.3. Let f(x) be a Mahler function satisfying equation (2).
Assume that ` is a prime. Then the following conditions are equivalent:

(1) p(x) is monic and, for almost all roots of unity ζ of order prime to
`, f(x) is bounded as x tends to ζ radially;

(2) p(x) is a product of cyclotomic polynomials of order divisible by `;

(3) f(x) is rational.
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Proof. We first prove that condition (1) implies condition (2).
Proposition 3.2 ensures that p(x) is a product of cyclotomic polynomials.

Let Φ(x) = Φk(x) be a cyclotomic factor of p(x). Arguing as in the proof of
Proposition 3.2, we see that for all root of unity ζ of sufficiently large order
prime to `, we have |NQ(ζ)/Q(Φ(ζ))| = 1. Now, suppose that ` does not
divide k. Let p 6= ` be a prime and r ≥ 1 an integer. Then if ζ is a prk-th
root of unity, we have |NQ(ζ)/Q(Φ(ζ))| = p 6= 1, which is a contradiction.
So, k is a multiple of `.

Suppose that condition (2) holds. In order to prove that f(x) is rational,
it is sufficient to prove that this is true when p(x) = Φk(x) is the k-th
cyclotomic polynomial with k multiple of `. This is a direct consequence of

the fact that Φk(x) =
Φk′ (x

`v )

Φk′ (x
`v−1 )

where k = `vk′ with v ≥ 1 and k′ ≥ 1 prime

to `.
Finally, assume that condition (3) holds. We have f(x) = xv∞g(x) for

some relative integer v∞ and some rational function g(x) regular at ∞. It

follows that p(x) = f(x)
f(x`)

= xv∞(1−`) g(x)
g(x`)

. In particular, this implies that

p(x) is monic. Moreover, the radial boundedness property of condition (1)
is obviously satisfied when f(x) is rational. �

4. The case where the coefficients of f(x) are bounded

In this section we also focus on Mahler functions f(x) for which (2) holds.
In particular, we prove, under the assumption that f(x) has bounded coef-
ficients, some results on the norm estimates of the value of p(x) at roots of
unity and on the Mahler measure of p(x). These will be used in the proof
of Theorem 1.2.

4.1. Norms estimatates for the value of p(x) at roots of unity.

Proposition 4.1. Let f(x) be a Mahler function satisfying (2). Assume
that the set of coefficients of f(x) is bounded. Let n ≥ 1 be an integer and
let ζ be an (`n − 1)-th root of unity. Then∣∣∣∣∣

n−1∏
k=0

p(ζ`
k
)

∣∣∣∣∣ ≤ `n.
Proof. We can and will assume that

∏n−1
k=0 p(ζ

`k) 6= 0.
Since the coefficients of f(x) are bounded, there exists a constant C > 0

such that, for all t < 0,

|f(ζet)| ≤ C

1− et
.

So |tf(ζet)| is bounded as t tends to 0−.
On the other hand, according to Proposition 2.1, we have

f(ζet) ∼t→0− mζ(t)t
−

log(
∏n−1
k=0

p(ζ`
k
))

log(`n)

where mζ(t) is some non zero meromorphic function on the left half-plane
{t ∈ C | <(t) < 0} such that mζ(`

nt) = mζ(t).
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Therefore,

∣∣∣∣∣tmζ(t)t
−

log(
∏n−1
k=0

p(ζ`
k
))

log(`n)

∣∣∣∣∣ is bounded as t tends to 0−. So,

<
(

1− log(
∏n−1
k=0 p(ζ

`k ))

log(`n)

)
≥ 0. Whence the result. �

Corollary 4.2. Assume that f(x) satisfies (2) and that the set of coefficients
of f(x) is bounded. Let ζ be a complex root of unity of order prime to `.

Then |NQ(ζ)/Q(p(ζ))| ≤ `[Q(ζ):Q] and |NQ(p(ζ))/Q(p(ζ))| ≤ `[Q(p(ζ)):Q].

Proof. Let m be the order of ζ as a root of unity. Let κ be the order of ` in
(Z/mZ)×. According to Lemma 3.1, there exist some primitive m-th roots
of unity ζ1, . . . , ζr such that

NQ(ζ)/Q(p(ζ)) =
r∏
i=1

κ−1∏
k=0

p(ζ`
k

i ).

But, for any i ∈ {1, . . . , r}, ζi is an (`κ − 1)-th root of unity and by
Proposition 4.1, we have

|
κ−1∏
k=0

p(ζ`
k

i )| ≤ `κ.

Therefore,

|NQ(ζ)/Q(p(ζ))| = |
r∏
i=1

κ−1∏
k=0

p(ζ`
k

i )| ≤
r∏
i=1

`κ = `rκ = `ϕ(m) = `[Q(ζ):Q].

Whence the first estimate. The second one follows from the fact that
|NQ(ζ)/Q(p(ζ))| = |NQ(p(ζ))/Q(p(ζ))|[Q(ζ):Q(p(ζ))]. �

4.2. A bound for the Mahler measure of p(x). In addition to the con-
straints relying on p(x) proved in the previous sections, we have the following
bound for the Mahler measure of p(x).

Proposition 4.3. Let f(x) be a solution of (2) with p(x) = anx
n + . . . +

a1x+ 1 and assume that the set of coefficients of f(x) is bounded. Then the
Mahler measure M(p) of p(x) is bounded as

M(p) ≤ |an|`.

Proof. By definition

M(p) =
|an|

|α1 · · ·αm|
where α1, . . . , αm are the roots of p(x) in D(0, 1) counted with multiplicities.
We want to show that

|α1 · · ·αm| ≥ `−1.

Up to renumbering, we can assume that |α1| ≤ · · · ≤ |αm|. Applying
Jensen’s formula to f(x) in the disk D(0, r), we get

m∑
k=1

Jk,r∑
j=0

`j log

(
r

|αk|`−j
)

=
1

2π

∫ 2π

0
log |f(reiθ)|

where Jk,r = max{j ≥ 0 | |αk|`
−j ≤ r}.
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On the one hand, letting C be an upper bound for the absolute values of
the coefficients of f(x), we have

1

2π

∫ 2π

0
log |f(reiθ)| ≤ log

(
C

1− r

)
.

On the other hand, since Jm,r ⊂ · · · ⊂ J1,r, we have

m∑
k=1

Jm,r∑
j=0

`j log

(
r

|αk|`−j
)
≤

m∑
k=1

Jk,r∑
j=0

`j log

(
r

|αk|`−j
)
.

Now, for any positive integer N and for r = |αm|`
−N

, we have Jm,r = N ,
hence

m∑
k=1

N∑
j=0

`j log

(
|αm|`

−N

|αk|`−j

)
=

m∑
k=1

Jm,r∑
j=0

`j log

(
r

|αk|`−j
)
.

Since |αk|`
−N ≤ |αm|`

−N
, this gives

m∑
k=1

N∑
j=0

`j log

(
|αk|`

−N

|αk|`−j

)
≤

m∑
k=1

N∑
j=0

`j log

(
|αm|`

−N

|αk|`−j

)
.

Finally, we get

m∑
k=1

N∑
j=0

`j log

(
|αk|`

−N

|αk|`−j

)
≤ log

(
C

1− |αm|`−N
)
.

But
m∑
k=1

N∑
j=0

`j log

(
|αk|q

−N

|αk|`−j

)
=

m∑
k=1

N∑
j=0

`j(`−j − `−N ) log(|αk|−1)

=

m∑
k=1

(
N − `N+1 − 1

`− 1
`−N

)
log(|αk|−1)

which is equivalent to N log(|α1 · · ·αm|−1). Moreover, log
(

C

1−|αm|`−N

)
is

equivalent to N log(`). So log(|α1 · · ·αm|−1) ≤ log(`) i.e. |α1 · · ·αm| ≥ `−1,
as wanted. �

5. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2 from the Introduction.
Again, we suppose that f(x) =

∑
n≥0 fnx

n is a Mahler function satisfying

f(x) = p(x)f(x`), with p(x) ∈ Z[x] such that p(0) = 1, and we denote by
Sf the set of coefficients of f(x). We want to study for which polynomials
p(x) the set Sf is finite.

A first simple class of examples for which Sf is finite is the following.

Proposition 5.1. Let f(x) be a Mahler function satisfying (2). Assume
that ` is a prime number and that p(x) = Φn1(x) · · ·Φnr(x) is the product
of cyclotomic polynomials Φn1(x), . . . ,Φnr(x) of order divisible by `. We set
ni = n′i`

vi with gcd(n′i, `) = 1. If n′1, · · · , n′r are pairwise distinct, then Sf
is finite.
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Proof. It is sufficient to prove the result for f(x) =
∏
i≥0 p(x

`i). We have

Φni(x) =
Φn′

i
(x`

vi )

Φn′
i
(x`

vi−1
)
. It follows that f(x) = 1

Φn′1
(x`

v1−1
)···Φn′r (x`vr−1 )

. Since

the polynomials Φn′1
(x`

v1−1
), . . . ,Φn′r(x

`vr−1
) are pairwise coprime, we get

that f(x) is a Q[x]-linear combination of the 1

Φn′
i
(x`

vi−1
)
. So, it is sufficient

to prove that the Taylor expansion at 0 of 1

Φn′
i
(x`

vi−1
)

has finitely many

distinct coefficients. This follows immediately from the fact that Φn′i
(x`

vi−1
)

divides xni − 1. �

A natural question is whether there are any more examples and if it is
possible to classify them.

The situation is very clear when ` > deg p(x), indeed we have the follow-
ing:

Proposition 5.2. Let f(x) be a Mahler function satisfying (2) where p(x) =
anx

n + an−1x
n−1 + . . . + a1x + 1 with ai ∈ Z and ` > n. Then Sf is finite

if and only if |ai| ≤ 1 for all i, in which case Sf ⊆ {0, 1,−1}.

Proof. We remark that it is sufficient to prove the result for f(x) =∏
i≥0 p(x

`i). Equation f(x) = p(x)f(x`) implies that the coefficients {fi}i
satisfy the recurrence relation

f0 = 1,(5)

fm`+i = aifm for i = 0, 1, . . . , n,

fk = 0 otherwise.

So, fi is either 0 or it has the form
∏n
j=1 a

rj
j for some integers ri. In particular

we have that
fi(`k+···+`+1) = ak+1

i

which implies that Sf is finite if and only if |ai| ≤ 1 for all i, in which case
Sf ⊆ {0, 1,−1}. �

This result covers the case where deg p(x) = 1, as ` is supposed to be at
least 2. Thus we are left with the case 2 ≤ ` ≤ deg p(x).

The following result treats the case where p(x) is monic and deg p(x) = 2.

Proposition 5.3. Let f(x) be a Mahler function satisfying (2) where p(x) =
x2 +bx+1 with b ∈ Z and ` = 2. Then Sf is finite if and only if b ∈ {0,−1}.

Proof. It is sufficient to prove the result for f(x) =
∏
i≥0 p(x

`i). First notice

that the equation f(x) = (x2 +bx+1)f(x2) implies that the sequence {fn}n
of the coefficients of f(x) =

∑
i≥0 fnx

n satisfies the recurrence relation

(6) f0 = 1, f1 = b, f2n+1 = bfn, f2n = fn−1 + fn.

Suppose now that Sf is finite. Then by (6) b ∈ {−1, 0, 1}: indeed we have
f2n−1 = bn. This is true for n = 1 as f0 = 1. Suppose it true for n. Then,
by (6), f2n+1−1 = f2(2n−1)+1 = bf2n−1 = bn+1.

Proposition 4.1 for n = 1 ensures that

(7) p(1) = b+ 2 ∈ {±2,±1, 0}
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so b ∈ {−4,−3,−2,−1, 0}.
Therefore, we have b ∈ {−1, 0}.
Viceversa, suppose that:
— b = 0 : then (6) implies that f2i+1 = 0 for all i ≥ 0 while the subse-

quence {f2i}i satisfies f4i = f2i and f4i+2 = f2i, which implies that Sf
is bounded.

— b = −1: then the sequence {fi}i satisfies the relation f2i+1 = −fi and
f2i = fi + fi−1. It is easy to see, by induction, that the sequence is
periodic and satisfies f3i = 1, f3i+1 = −1 and f3i+2 = 0. In particular
Sf is finite.

�

Next proposition considers the case where p(x) is monic and deg p(x) = 3,
completing the proof of Theorem 1.2.

Proposition 5.4. Let f(x) be a Mahler function satisfying (2) where p(x) =
x3 + bx2 + cx+ 1 with b, c ∈ Z.

If ` = 2 then Sf is finite if and only if b = c = 0, in which case Sf ⊆
{0, 1,−1}.

If ` = 3 then Sf is finite if and only if c = 0 and b ∈ {0,−1} or c = −1
and b = 0, in which case Sf ⊆ {0, 1,−1}.

Proof. We remark that it is sufficient to prove the result for f(x) =∏
i≥0 p(x

`i).
Let ` = 2. Suppose that Sf is finite.
Notice that the coefficients fn of f(x) satisfy the following recurrence

relation:

(8) f0 = 1, f1 = c, f2n = fn + bfn−1, f2n+1 = cfn + fn−1.

Proposition 4.1 for n = 1 gives |b+ c+ 2| ≤ 2, so that

(9) − 4 ≤ b+ c ≤ 0,

while Proposition 4.1 for n = 2 gives |p(j)|2 = 4− bc+ b2 + c2− 2(b+ c) ≤ 4
which implies

(10) bc ≥ −2(b+ c) + b2 + c2.

By (9) we must have b + c ≤ 0 and (10) gives bc ≥ b2 + c2 − 2(b + c) ≥ 0
so bc ≥ 0. In particular b and c are both ≤ 0, so −4 ≤ b, c ≤ 0. We have
several cases:

— If b = 0 then c = 0: indeed, by (10) we have c2 − c ≤ 0 (in the same
way, if c = 0 then b = 0).

— If b = −1, then (10) gives c ≥ c2 + 3 > 0 which cannot hold as c ≤ 0.
This also shows that c = −1 cannot occur.

— If b = −2 then (10) gives c2 + 8 ≤ 0, which is impossible. This also
shows that c = −2 cannot occur.

— If b ∈ {−3,−4} then c ∈ {0,−1}. The case c = −1 was discarded
already and we saw that c = 0 implies b = 0, a contradiction.

So the only possible case is b = c = 0. Let f(x) =
∑

i≥0 fnx
n be such

that f(x) = (x3 + 1)f(x2). Then, by (8) we have f0 = 1, f1 = 0, f2i+1 =
fi−1, f2i = fi, so Sf ⊆ {0, 1}.
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Assume now that ` = 3. Then, from the equation f(x) = p(x)f(x3) we
see that the coefficients of f satisfy the recurrence f0 = 1, f1 = c, f2 =
b, f3n+1 = cfn, f3n+2 = bfn and f3n = fn + fn−1. In particular f 3k−1

2

= ck

and f3k−1 = bk, which implies that |b|, |c| ≤ 1. Moreover, one can prove

by induction that f 3k+1−3
2

= 1 + c + · · · + ck. Indeed, for k = 1 we have

f3 = f1 + f0 = c+ 1 and, if it holds for k, then

f 3k+1−3
2

= f
3
(3k−1)

2

= f (3k−1)
2

+ f 3k−3
2

= ck + (1 + c+ · · ·+ ck−1).

So c equals either 0 or −1.
Let us first consider the case c = 0. Then, by induction we see that

f3k = 1 + b+ b2 + · · ·+ bk−1 for every k ≥ 2, which implies b = −1 or b = 0.
If b = 0 then it is clear that Sf is finite as fn ∈ {0, 1,−1} for all n (the

only possible non zero elements are the f3n = fn + fn−1 and at least one
among fn and fn−1 is zero).

Assume now b = −1. We are going to prove that Sf is finite by showing
that, for every n ≥ 3, the set {f0, . . . , fn} consists only of 0, 1 and −1.
This is true for n = 3. Assume it holds for n − 1 and consider the set
{f0, . . . , fn−1, fn}. If n is congruent to 1 modulo 3 then fn = 0. If n is
congruent to 2 modulo 3 then fn = −fm for some m ≤ n − 1, so fn ∈
{0, 1,−1}. Thus we may assume n = 3m, with m < n − 1: in this case
fn = fm + fm−1. In particular, if m is congruent to 1 or 2 modulo 3, then
fn equals either fm−1 or fm, which by assumption are in {0, 1,−1}. So the
only case left is when m = 3t for some t < m. In this case fn = f3t+f3t−1 =
f3t + f3(t−1)+2 = ft + ft−1 − ft−1 = ft, as wished.

We now consider the case c = −1. Then:
— if b = 0 the set Sf is finite. This follows from the fact that in this

case the corresponding polynomial is the reciprocal of the polynomial
associated with the choice c = 0, b = −1 for which the finiteness of Sf
is proved above.

— if b = 1 then the set Sf is not finite as, for instance, f3k = k − 1
for all k ≥ 1. This can be proved by induction: for k = 1 we have
f3 = f1 + f0 = 0 and, assuming it true for k, f3k+1 = f3k + f3k−1 =

(k − 1) + bk+1 = k.
— if b = −1 then Sf is not finite. Indeed one can prove by induction that

f2(3+33+...+32k+1) = (−2)k+1. This is true for k = 0 as f6 = f2 + f1 =
−2. Now assuming it true for k − 1, k ≥ 2, we have

f2(3+33+...+32k+1) = f3·2(1+32+...+32k) = f2+3·2(3+...+32k−1) + f1+3·2(3+...+32k−1)

= −f2(3+...+32k−1) − f2(3+...+32k−1) = (−2)k+1.

�

Remark 5.5. For polynomials of higher degree the criterium of Proposition
4.1 is not subtle enough to conclude as above, as the following example shows.

Let p(x) = x4 − x3 + 1 and let ζ be a 2n − 1 root of unity. Then

|
∏n−1
k=0 p(ζ

2k)| ≤ 2n.

Proof. We consider the functions

f1(t) = |p(e2iπt)|
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f2(t) = |p(e2iπt)p(e22iπt)|

f3(t) = |p(e2iπt)p(e22iπt)p(e23iπt)|.
We first prove that f1(t) ≤ 2 for t ∈ [0, 1] \ (I1 ∪ I2 ∪ I3) where I1 =
[0.185, 0.276], I2 = [0.418, 0.581] and I3 = [0.723, 0.815].

We can write

f1(t)2 =|e8iπt − e6iπt + 1| = (cos(8πt)− cos(6πt) + 1)2 + (sin(8πt) + sin(6πt))2 =

=3 + 2 cos(8πt)− 2 cos(6πt)− 2 cos(2πt).

Setting γ = cos(2πt) and using standard properties of the cosinus, we see
that f1(t)2 can be written as a polynomial r(γ) in γ, that is

f1(t)2 = 16γ4 − 8γ3 − 8γ2 + 4γ + 5 = r(γ).

The polynomial 4−r(γ) has only 3 real roots γ1, γ2, γ3 for γ ∈ [−1, 1], which
correspond 6 values of t, 0 < t1 < t2 < . . . < t6 < 1 such that f1(t) = 2.
As 2 − f1(0) and 2 − f1(1) are both positive, this shows that f1(t) ≤ 2 for
t ∈ [0, 1]\([t1, t2]∪ [t2, t3]∪ [t5, t6]) Notice that the function 4−r(cos(2πt)) is
positive at all the boundary points of I1, I2, I3 and negative at at least one
point inside each interval Ik (e.g. at the points t = 0.2, t = 0.5 and t = 0.8).
This shows that [t2k−1, t2k] ⊆ Ik for all k = 1, 2, 3, proving the claim.

We want now to show that f2(t) ≤ 4 for t ∈ [0, 1] \ (J1 ∪ J2) where
J1 = [0.2, 0.287] and J2 = [0.713, 0.795].

Keeping the previous notation, by the duplication formula for the cosinus,
we have that f2(t)2 = r(γ)r(2γ2−1). By Sturm’s algorithm (and performing
the computations with PARI/GP [PARI]) the polynomial 16−r(γ)r(2γ2−1)
has only 2 real roots for γ ∈ [−1, 1], which correspond to 4 values of t,
0 < t1 < t2 < t3 < t4 < 1. Since the function 4 − f2(t) is positive at
t = 0, 1, it means that f2(t) ≤ 4 for t ∈ [0, 1] \ ([t1, t2] ∪ [t3, t4]). As before,
since the function 4− f2(t) is positive all the boundary points of J1 and J2,
and negative at at least on point inside each interval Jk (e.g. at the points
t = 0.22 and t = 0.73), then [t1, t2] ⊆ J1 and [t3, t4] ⊆ J2, proving the claim.

Finally, we have that

(11) f3(t) ≤ 8

for all t ∈ [0, 1]. Indeed, using again the duplication formula for the cosinus,
we can write f3(t)2 = r(γ)r(2γ−1)r(8γ4−8γ2+1) and by Sturm’s algorithm
one sees that the polynomial 64− r(γ)r(2γ − 1)r(8γ4− 8γ2 + 1) has no real
roots for γ ∈ [−1, 1].

Now, let n be a nonzero integer and let ζ be an (2n − 1)-th complex root
of unity.

Assume that n is a multiple of 3. Then the inequality |
∏n−1
k=0 p(ζ

2k)| ≤ 2n

is a direct consequence of (11).
We are going to prove that there exists an index 0 ≤ j0 ≤ n− 1 such that

2j0 6∈ I1 ∪ I2 ∪ I3. Assuming the contrary, we have three cases:

(1) If 2j0 ∈ I1. Then 2j0+1 ∈ [0.37, 0.552]. So 2j0+1 ∈ [0.418, 0.552]. So
2j0+2 ∈ [0.836, 1] ∪ [0, 0.104] 6∈ I1 ∪ I2 ∪ I3, giving a contradiction.

(2) Assume that 2j0 ∈ I2. Then 2j0+1 ∈ [0.836, 1] ∪ [0, 0.104], giving a
contradiction as before.
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(3) Assume that 2j0 ∈ I3. Then 2j0+1 ∈ [0.446, 0.63]. So 2j0+1 ∈ I2 and
we are reduced to a previous case.

Moreover, we cannot have 2j ∈ J1 ∪ J2 for all j because if 2j ∈ J1 ∪ J2 then
2j+1 6∈ J1 ∪ J2.

Now assume that n ≡ 1 mod 3. Since there exists 0 ≤ j0 ≤ n − 1 such

that 2j0 6∈ I1 ∪ I2 ∪ I3, by (11) we see that |
∏n−1
k=0 p(ζ

2k)| ≤ 2n.
Finally, assume that n ≡ 2 mod 3. Let j0 be such that 2j0 6∈ I1 ∪ I2 ∪ I3.

We are going to prove that either 2j0−1 or 2j0+1 is not in J1 ∪ J2, which,
together with (11), concludes the proof.

— If 2j0 ∈ [0, 0.185[ then 2j0−1 ∈ [0, 0.0925] 6∈ J1 ∪ J2.
— If 2j0 ∈]0.276, 0.418[ then 2j0−1 ∈]0.138, 0.209[. If 2j0−1 ∈ J1 ∪J2 then

2j0−1 ∈ [0.2, 0.209[, so 2j0+1 ∈ [0.8, 0.836[6∈ J1 ∪ J2.
— If 2j0 ∈]0.581, 0.723[ then 2j0−1 ∈]0.2905, 0.3615[ 6∈ J1 ∪ J2.
— If 2j0 ∈]0.815, 1] then 2j0−1 ∈]0.4075, 0.5] 6∈ J1 ∪ J2.

�

Although we have been unable to prove it, we believe that for p(x) =

x4 − x3 + 1 the set Sf is not finite. Indeed, set f(x) =
∏
i≥0 p(x

2i) and let

{fn}n be the sequence of the coefficients of f(x). If {fn}n were bounded, then
the sequence {dn}n with dn = fn + fn+2 should be also bounded. However,
this does not seem to be the case.

n 19 107 359 843 1703 5815 6799 10983
dn -2 3 -4 5 -6 7 -8 9

Table 1. Some values of the sequence {dn}n

6. Analogies with E-functions and G-functions

In [Sie29] Siegel introduced an important class of functions, which goes
nowadays under the name of E-functions. They can be seen as a sort of
extensions of the exponential series and were indeed introduced to generalize
the Lindemann-Weierstrass theorem.

Formally, an E-function is a power series f(z) =
∑

n≥0
an
n! z

n which sat-
isfies a nonzero homogeneous linear differential equation with coefficients in
Q(z) and such that {an}n is a sequence of algebraic numbers with the fol-
lowing special ’growth’ properties: namely, there exists an absolute constant
C > 0 such that for all n:

(1) the maximum of the moduli of the conjugates of an is at most Cn;

(2) the common denominator of a0, . . . , an is bounded by Cn (this means
that there exists dn ∈ Z such that |dn| ≤ Cn and dnai is an algebraic
integer for all i ≤ n).

As recalled above, Siegel’s original motivation was to obtain a Lindemann-
Weierstrass type theorem for a more general class of functions. To this aim
he initiated a method to study the transcendence and algebraic dependence
of values of E-functions at algebraic points, which was later successfully
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developed by many authors, such as André, Beukers, Nesterenko, Shidlovsky,
etc.

In [Sie29] Siegel also introduced another class of functions, which this
time play the role of generalizations of geometric series, namely G-functions.
Similarly to the preceeding definition, a G-funtion is a a power series f(z) =∑

n≥0 anz
n which satisfies a homogeneous linear differential equation with

coefficients in Q(z) and such that {an}n is a sequence of algebraic numbers
satisfying conditions (1) and (2) above. However, while the nature of the
values of E-functions at algebraic points is well described by Siegel’s method,
very little is known for those of G-functions.

This section aims to describe some analogies between Mahler functions
and E- and G-functions in two respects.

First, we show (see Proposition 6.4) that the coefficients of Mahler func-
tions satisfy automatically the two conditions (1) and (2), and even the
stronger condition of being globally bounded (see Definition 6.3). This global
boundedness property is deduced from a general index theorem for Mahler
operators (see Theorem 6.1).

Secondly, in the last section, we study the Newton polygon at 1 of certain
Mahler operators. This is motivated by the properties of the Newton poly-
gons of the E- and G-operators recalled at the end of the Introduction. In
particular, we show that for Mahler operators whose solutions satisfy equa-
tion (2) with ` = 2 and have bounded coefficients, the Newton polygon is
pure isoclinic of slope 0 and 1, a behaviour which is reminiscent of a property
of the E-functions recalled at the end of the Introduction.

These analogies constitute an additional motivation for our study in Sec-
tions 4 and 5 of Mahler functions with bounded coefficients.

6.1. Mahler functions, G-functions and global boundedness.

6.1.1. Index theorems. Let E and F be vector spaces over a field K. We
recall that a linear map u : E → F has an index if ker(u) and coker(u) are
both finite dimensional K-vector spaces. In this case, the index χ(u) of u
(also denoted χ(u,E, F ) or χ(u,E) if E = F ) is defined as

χ(u) = dimK ker(u)− dimK coker(u).

In cohomological terms, u : E → F has an index if and only if the complex

0→ E
u−→ F → 0

has finite dimensional cohomology spaces and, when this happens, χ(u) is
the Euler characteristic of the complex, where E is placed in degree 0.

Let K be either C or an algebraically closed field of characteristic 0,
complete with respect to an ultrametric norm | · |.

For K = C, we let K{x} = C{x} be the C-algebra of germs of analytic
functions at 0 ∈ C while, for K 6= C, we consider the K-algebra

K{x} =

∑
n≥0

anx
n ∈ K[[x]] | ∃r > 0, lim

n→+∞
|an|rn = 0

 .
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In both cases, one can see K{x} as the inductive limit as r tends to 0+ of
K〈x〉r where

K〈x〉r =

∑
n≥0

anx
n ∈ K[[x]] | lim

n→+∞
|an|rn <∞


if K = C and

K〈x〉r =

∑
n≥0

anx
n ∈ K[[x]] | lim

n→+∞
|an|rn = 0


otherwise.

Let ` ≥ 2 be an integer and denote by φ` the operator acting on a function
y(x) as follows :

φ`(y(x)) = y(x`).

For any r ∈]0, 1[, we consider an operator

(12) L = an(x)φn` + an−1(x)φn−1
` + · · ·+ a0(x)

with a0(x), ..., an(x) ∈ K〈x〉r and a0(x)an(x) 6= 0.
In the following result, we study the index of the K-linear map

L : E → E(13)

f 7→ L(f) = an(x)f(x`
n
) + an−1(x)f(x`

n−1
) + · · ·+ a0(x)f(x)

induced by L on various K-vector spaces E, namely E = K[[x]], K{x} and
K[[x]]/K{x}.

We will denote by v0 : K[[x]]→ N ∪ {+∞} the x-adic valuation.

Theorem 6.1. The map L has an index in E in all the following cases:

(1) If E = K[[x]] then χ(L,K[[x]]) = −v0(a0) (this holds for every field
K and for L with coefficients in E = K[[x]]).

(2) If E = K{x}, then χ(L,K{x}) = −v0(a0).

(3) If E = K[[x]]/K{x} then χ(L,K[[x]]/K{x}) = 0. Actually, we have

(i) coker(L : K[[x]]/K{x} → K[[x]]/K{x}) = 0;

(ii) ker(L : K[[x]]/K{x} → K[[x]]/K{x}) = 0.

Proof. The proofs of these properties rely on classical “pertubative methods”
in the framework of Banach or ultrametric Banach algebras (see Ramis’s
[Ram84] and Serre’s [Ser62]), and are variants of proofs of similar results by
Malgrange [Mal71], Ramis [Ram84], Bézivin [Bez92a, Bez92b], etc, concern-
ing differential and q-difference equations. For this reason, we will only give
a skeleton of the proofs, except for (1) that we shall now prove in details.

We let d be an integer such that, for k ≥ d and j ∈ {1, . . . , n}, v0(a0)+k <
v0(aj) + k`j . Then, for all k ≥ d,

L(xk) = a0,v0(a0)x
v0(a0)+k︸ ︷︷ ︸

6=0

+ terms of higher valuation

where
a0(x) = a0,v0(a0)x

v0(a0) + terms of higher valuation.
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It follows that, for all g ∈ K[[x]] with v0(g) ≥ v0(a0) + d, there exists a
unique f ∈ K[[x]] such that v0(f) ≥ d and L(f) = g. In other words, the
map

L : xdK[[x]]→ xv0(a0)+dK[[x]]

is an isomorphism, and, hence, has an index, which is equal to 0. Note that
this implies that L : K[[x]] → K[[x]] has an index. We now consider the
map

(14) K[[x]]
xd−→ K[[x]]

L−→ K[[x]]

which is equal to

(15) K[[x]]
xd−→ xdK[[x]]

L−→ xv0(a0)+dK[[x]] ↪→ K[[x]].

Equating the indices of (14) and (15), which are easily computed using the
additivity of the index, we find χ(L,K[[x]])−d = −(v0(a0)+d). This proves
(1). The proof of (2) in the ultrametric case is akin to the proofs of [Bez92b,
Propositions 3.1 and 3.2]. We give a sketch of it in this case, the complex
case being similar (see also [Bez92a]).

The idea is to consider first theK-algebraK〈x〉r. The Gauss norm defined
by

||
∑
n≥0

anx
n||r = max

n≥0
|an|rn

endows K〈x〉r with a structure of ultrametric Banach algebra over K. A
simple modification of the proof of [Bez92b, Proposition 3.1] shows that, for
r > 0 small enough, L has an index in K〈x〉r which is equal to −v0(a0).
In order to conclude the proof, we note that K{x} is the inductive limit
as r tends to 0+ of the K〈x〉r and we argue as in the proof of [Bez92b,
Proposition 3.2].

We shall now prove (3i) i.e. that, for all g ∈ K[[x]], there exist h ∈ K{x}
and f ∈ K[[x]] such that L(f) = g−h. To this aim, it is sufficient to choose
h as the truncation of g up to the order v0(g) ≥ v0(a0) + d for some integer
d such that, for k ≥ d and j ∈ {1, . . . , n}, v0(a0) + k < v0(aj) + k`j , and
then argue as in the proof of (1).

Now (3ii) follows from the previous results and from a general algebraic
argument. Indeed, we have the following exact sequence of complexes (the
complexes are in column)

0

��

// 0 //

��

0

��

// 0

��

// 0

��
0

��

// K{x}

L
��

� � // K[[x]]

L
��

// // K[[x]]/K{x}

L
��

// 0

��
0 //

��

K{x}

��

� � // K[[x]]

��

// // K[[x]]/K{x}

��

// 0

��
0 // 0 // 0 // 0 // 0

.

Since the first and second complexes have finite dimensional cohomol-
ogy, the third complex has finite dimensional cohomology as well i.e.
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L : K[[x]]/K{x} → K[[x]]/K{x} has an index. Moreover, by the additivity
of the Euler characteristic, χ(L,K[[x]]/K{x}) = χ(L,K[[x]])−χ(L,K{x}),
which is equal to 0 in virtue of (1) and (2). Since coker(L : K[[x]]/K{x} →
K[[x]]/K{x}) = 0, we get ker(L : K[[x]]/K{x} → K[[x]]/K{x}) = 0. �

An immediate corollary of Theorem 6.1(3ii), which will be useful in the
next section, is the following:

Corollary 6.2. Consider g ∈ K{x}. Any f ∈ K[[x]] such that L(f) = g
actually belongs to K{x}. In particular, any solution in K[[x]] of L(f) = 0
actually belongs to K{x}.

6.1.2. Application to equations with coefficients in Q(x). In this section, we
will show how Theorem 6.1 implies that the coefficients of Mahler series au-
tomatically satisfy some nice properties, which are typical of a certain class
of G-functions. According to Christol’s terminology, we have the following
definition:

Definition 6.3. A power series f(x) =
∑

n≥−N anx
n ∈ Q((x)) is globally

bounded if:
— f(x) defines an analytic function near 0 ∈ C;
— there exists a non zero integer C such that the coefficients of f(Cx)

are algebraic integers.

Every globally bounded function f(x) ∈ Q[[x]] which satisfies a homo-
geneous linear differential equation is a G-function, but the converse does
not hold in general. The following result shows that global boundedness is
automatic for Mahler functions. We consider an operator

(16) L = an(x)φn` + an−1(x)φn−1
` + · · ·+ a0(x)

with a0(x), . . . , an(x) ∈ Q(x) and a0(x)an(x) 6= 0.

Proposition 6.4. Any solution f(x) ∈ Q((x)) of L(f) = 0 is globally
bounded.

Proof. By [AB, Lemma 5.1], the coefficients of f(x) belong to a finitely
generated Z-algebra and so they all belong to a number field F . In order to
conclude the proof, it is sufficient to show that, for any place v of F , there
exist Av, Bv > 0 such that |an|v ≤ AvB

n
v . This is a direct consequence of

Corollary 6.2. �

6.2. Mahler operators, E-operators and Newton polygons. In
[And00] André defined and studied, amongst others, the structure of E-
operators, which are the Fourier-Laplace transforms of G-operators.

We recall that an element Φ ∈ Q[x, ddx ] is called a G-operator if it satisfies
the so-called Galochkin condition (see [And00], p.718 for a precise defini-
tion). In particular, by a result of Chudnovsky [CC85], this condition is
automatic if Φf(x) = 0 for some G-function f(x) and such that the equa-
tion is minimal for f(x).

A differential operator Ψ ∈ Q[x, ddx ] is an E-operator if it is obtained by

a G-operator via the formal changes x→ d
dx and d

dx → −x.
André investigated, in particular, the singularities of E-operators and

proved that there can be only two of them, namely 0 and ∞ and that the
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only slopes of the Newton polygon of an E-operator at∞ are 0 and 1, while
0 is a regular singular point. Let us briefly recall the definition of the slopes
of Ψ at ∞. If Ψ =

∑
ai,jx

i(x d
dx)j , the Newton polygon N (L) of L at ∞ is

the convex hull of the set

{(x, y) ∈ R2 | x ≤ j, y ≤ i, ai,j 6= 0}.
This N (L) has finitely many extremal points {(n1,m1), . . . , (nr+1,mr+1)}
with 0 ≤ n1 < n2 < · · · < nr+1 = n. The positive slopes of L are k1 < · · · <
kr with ki = mi+1−mi

ni+1−ni . If n1 > 0, then one adds a slope k0 = 0. The set

of slopes of L at ∞ is either {k1, . . . , kr+1} or {k0, . . . , kr+1} depending on
whether n1 = 0 or not.

In this section we show that a similar result can be obtained for Mahler
operators of the form L = p(x)φ2 − 1, where p(x) ∈ Z[x], assuming that
the Mahler function f(x) =

∑
n≥0 fnx

n ∈ Z[[x]] solution of Lf(x) = 0 has

bounded coefficients and under some conditions on p(x).
We recall the definition of Newton polygon in our context:

Definition 6.5. The Newton polygon N (L) of

L = an(x)φn` + an−1(x)φn−1
` + · · ·+ a0(x)

with ai(x) ∈ C(x) is the convex hull in R2 of {(i, j) | i ∈ Z and j ≥ vx−1(ai)}
where vx−1 denotes the (x−1)-adic valuation on C(x). This polygon is made
of two vertical half lines and of k vectors (r1, d1), ..., (rk, dk) ∈ N∗×Z having
pairwise distinct slopes, called the slopes L. For any i ∈ {1, ..., k}, ri is called

the multiplicity of the slope di
ri

.

For instance, the Newton polygon of p(x)φ`−1 is the convex subset of R2

delimited by the vertical half lines {0}×R+ and {1}× [vx−1(p),+∞[ and by
the segment from (0, 0) to (1, vx−1(p)). So p(x)φ` − 1 is pure isoclinic (i.e.
its Newton polygon has only one slope) with slope vx−1(p). We now prove
Proposition 1.3 from the Introduction, which we recall here for clarity.

Proposition 6.6. Let f(x) be a Mahler function satisfying (2). Assume
that the set of coefficients of f(x) is bounded. Let r be the order of 1 as a
root of p(x). For all power (`′)α of a prime number `′ prime to ` and such
that p(x) has no root which is a primitive (`′)α-th root of unity, we have

(`′)r ≤ `(`′)α−1(`′−1).

In particular, all the slopes of the operators p(x)φ` − 1 are bounded by

log`′(`
(`′)α−1(`′−1)).

Proof. Let q(x) ∈ Z[x] be such that p(x) = q(x)(x − 1)r. Let m ≥ 1 be an
integer such that gcd(m, `) = 1. Let ζ be a primitive m-th root of unity.
According to Corollary 4.2, we have

|NQ(ζ)/Q(p(ζ))| ≤ `[Q(ζ):Q]

i.e.
|NQ(ζ)/Q(q(ζ))||NQ(ζ)/Q(ζ − 1)|r ≤ `[Q(ζ):Q].

This gives the expected inequality because, by formula (4), |NQ(ζ)/Q(ζ−1)| =
|NQ(ζ)/Q(Φ1(ζ))| = `′ if m = (`′)α is the α-th power of a prime `′ prime to
`. �
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For ` = 2 we have the following:

Corollary 6.7. Let f(x) be a Mahler function satisfying (2). Assume that
` = 2, that the set of coefficients of f(x) is bounded and that one of the
following conditions hold:

(1) p(j) 6= 0;

(2) p(ζ5) 6= 0, where ζ5 is a primitive 5-th root of unity;

(3) p(ζ9) 6= 0, where ζ9 is a primitive 9-th root of unity.

Then, p(x)φ2 − 1 is pure isoclinic with slope 0 or 1.

Proof. Let r be the order of 1 as a root of p(x). We have to prove that under
the above hypothesis r = 0 or 1.

In cases (1) and (2) we apply Proposition 6.6 with `′ = 3 and `′ = 5
respectively. We obtain 3r ≤ 4 and 5r ≤ 16 respectively. Whence the result.

To prove case (3), we may assume that j is a root of order r3 ≥ 1 of p(x),
so that p(x) = q(x)(x − 1)rΦ3(x)r3 for some q(x) ∈ Z[x]. By Proposition
4.2, we have

|NQ(ζ9)/Q(p(ζ9))| ≤ 2[Q(ζ9):Q]

i.e.

|NQ(ζ9)/Q(q(ζ9))||NQ(ζ9)/Q(ζ9 − 1)|r|NQ(ζ9)/QΦ3(ζ9)|r3 ≤ 2[Q(ζ9):Q].

But, by (4), we have |NQ(ζ9)/Q(ζ9 − 1)| = |NQ(ζ9)/Q(Φ1(ζ9))| = 3 and
|NQ(ζ9)/Q(Φ3(ζ9))| = 9. So we get

3r+2r3 ≤ 26.

It follows that, if r ≥ 2, then r3 = 0 (because 34 > 26) and this is a
contradiction. Therefore, r is equal to 0 or 1. �

Remark 6.8. All cases in the previous corollary occur :
— if p(x) = 1, the slope is equal to 0 and f(x) = 1.
— if p(x) = 1 − x, the slope is equal to 1 and f(x) has coefficients in
{0,±1}.

More generally, if ζ`′k+1 is not a root of p(x), but all the ζ`′j , for j ≤ k are,
then combining Proposition 4.2 and (4) we have

`′
r+(`′k−1) ≤ ``′k(`′−1).

As we saw, for ` = 2, if `′ = 3 and k ≤ 2 this implies r ≤ 1, but already for
k = 3 it only implies r ≤ 3.

It is natural to wonder whether Corollary 6.7 remains true without any
hypothesis, whence the following question.

Question 3. Is it true that, if ` = 2 and if the set of coefficients of f(x)
is bounded, then p(x)φ2 − 1 is pure isoclinic with slope 0 or 1 ? More
generally, does there exist C` ∈ Z≥0, depending only on `, such that, if the
set of coefficients of f(x) is bounded, then p(x)φ2 − 1 is pure isoclinic with
slope ≤ C` ?
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