
ON THE LOCAL STRUCTURE OF MAHLER SYSTEMS

JULIEN ROQUES

Abstract. This paper is a first step in the direction of a better under-
standing of the structure of the so-called Mahler systems : we classify
these systems over the field H of Hahn series over Q and with value
group Q. As an application of (a variant of) our main result, we give an
alternative proof of the following fact : if, for almost all primes p, the
reduction modulo p of a given Mahler equation with coefficients in Q(z)
has a full set of algebraic solutions over Fp(z), then the given equation

has a full set of solutions in Q(z) (this is analogous to Grothendieck’s
conjecture for differential equations).
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1. Introduction and main results

There is a fast growing literature on the theory of Mahler systems, i.e.,
on the functional systems of the form

(1) Y (z`) = A(z)Y (z)

with ` ∈ Z≥2 and A(z) ∈ GLn(Q(z)). This theory started in the late
1920s with celebrated papers by Mahler [Mah29, Mah30a, Mah30b] about
the arithmetic properties of the values taken by solutions of Mahler systems
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(usually called Mahler functions) at algebraic numbers. For instance, Mahler
considered the function

f(z) =
∑
k≥0

z2
k
,

which is easily seen to satisfy

F(z2) =

(
1 0
−z 1

)
F(z) with F(z) =

(
1

f(z)

)
,

and proved that f(α) is transcendental for any nonzero algebraic number α
such that |α| < 1. Since these pioneering works of Mahler, Mahler systems
and functions have attracted the attention of many authors, including Kub-
ota [Kub77], Loxton and van der Poorten [LvdP78], Masser [Mas82], Randé
[Ran92], Dumas [Dum93], Becker [Bec94], Nishioka [Nis96], Dumas and Fla-
jolet [DF96], Zannier [Zan98], Corvaja and Zannier [CZ02], Allouche and
Shallit [AS03], Pellarin [Pel09], Nguyen [Ngu11, Ngu12], Philipon [Phi15],
Shaëfke and Singer [SS16], Brent, Coons and Zudilin [BCZ16], Adamczewski
and Bell [AB17], Dreyfus, Hardouin and Roques [DHR18], Chyzak, Drey-
fus, Dumas and Mezzarobba [CDDM18], Bell, Chyzak, Coons and Dumas
[BCCD18], Adamczewski and Faverjon [AF17, AF18], Fernandes [Fer18],
to name just a few. Note that the abundance of recent papers devoted to
Mahler systems is partly due to their connections with automata theory :
if f(z) =

∑
k≥0 fkz

k is the generating series of an `-automatic sequence

(fk)k≥0 ∈ QZ≥0 , then the column vector
f(z)
f(z`)

...

f(z`
n−1

)


satisfies a Mahler system of the form (1) for suitable n ≥ 1 and A(z) ∈
GLn(Q(z)).

Despite this important activity around Mahler systems in the last decades,
very little is known about their structure. The present paper is a first step
in the direction of a better understanding of the local structure of these
systems at 0 : we give the complete classification of the Mahler systems
over the field H of Hahn series over Q and with value group Q (for the
definition of this field, see Section 2). Before stating our main result, we
recall the notion of H -equivalence for Mahler systems.

Definition 1. Two Mahler systems Y (z`) = A(z)Y (z) and Y (z`) =
B(z)Y (z) with A(z), B(z) ∈ GLn(H ) are H -equivalent if there exists
F (z) ∈ GLn(H ) such that

A(z)F (z) = F (z`)B(z).

In this context, such an F (z) is called a gauge transformation.

The raison d’être of this notion is the following : if A(z), B(z) and F (z)
are as in the previous definition, then U(z) is a column vector solution
of Y (z`) = B(z)Y (z) if and only if F (z)U(z) is a column vector solution
of Y (z`) = A(z)Y (z). It is easily seen that “being H -equivalent” is an
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equivalence relation. The classification of the Mahler systems over H aims
at describing the equivalence classes of Mahler systems for this equivalence
relation. This is achieved with our main result :

Theorem 2. Any Mahler system Y (z`) = A(z)Y (z) with A(z) ∈ GLn(H )
is H -equivalent to a Mahler system with constant coefficients, i.e., of the
form Y (z`) = A0Y (z) for some A0 ∈ GLn(Q). The matrix A0 ∈ GLn(Q) is
unique up to conjugation by an element of GLn(Q).

Remark 3. Using the change of variable z 7→ z−1, we can deduce from
Theorem 2 the classification of Mahler systems over the field of Hahn series
at ∞.

Remark 4. Besides 0 and∞, it is also natural to look for the local structure
of the Mahler systems at 1 (because 1 is a fixed point of the endomorphism
z 7→ z` of P1(Q), the other two fixed being 0 and ∞). Using the change
of variable z = eu, we see that this is equivalent to the study of the local
structure of q-difference equations (with q = `) at u = 0, which is well
understood; see the works of van der Put, Ramis, Reversat, Sauloy, Zhang
[RSZ13, Sau00, Sau04, vdPR07].

As an application of (a variant of) Theorem 2, we give, in the last sec-
tion of the present paper, a new proof of an analogue of the so-called
Grothendieck’s conjecture for Mahler systems, which was first proved in
[Roq17]. Let us recall the statement of this result. Consider a Mahler equa-
tion of the form

(2) an(z)y(z`
n
) + an−1(z)y(z`

n−1
) + · · ·+ a0(z)y(z) = 0

with coefficients a0(z), . . . , an(z) ∈ Q(z) such that a0(z)an(z) 6= 0. For
almost all (i.e., for all but finitely many) primes p, we can reduce the coef-
ficients of equation (2) modulo p, and we obtain the equation

(3) an,p(z)y(z`
n
) + an−1,p(z)y(z`

n−1
) + · · ·+ a0,p(z)y(z) = 0

with coefficients a0,p(z), . . . , an,p(z) ∈ Fp(z), where Fp is the field with p
elements. The analogue of Grothendieck’s conjecture proven in [Roq17,
Theorem 1] is :

Theorem 5. Assume that, for almost all primes p, the equation (3) has n
Fp-linearly independent solutions in Fp((z)) algebraic over Fp(z). Then, the

equation (2) has n Q-linearly independent solutions in Q(z).

Remark 6. The conclusion of Grothendieck’s original conjecture for linear
differential equations involes algebraic solutions, not rational solutions. In
the case of Mahler equations, there is no distinction between algebraic and
rational solutions : a solution f(z) ∈ Q((z)) of (2) is algebraic if and only
if it is rational, see [Nis96, Theorem 5.1.7]. Similarly, according to [Roq17,
Theorem 2], any solution in Fp((z)) algebraic over Fp(z) of (3) actually
belongs to Fp(z). The hypothesis of Theorem 5 is thus equivalent to the fact
that (3) has n Fp-linearly independent solutions in Fp(z). This fact will be
used in the proof of Theorem 5.

The proof of Theorem 5 given in Section 6 heavily relies on Theorem 2.
The first step of the proof consists in applying (a variant of) Theorem 2 to the
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Mahler system Y (z`) = A(z)Y (z) associated to the Mahler equation (2): we
obtain in this way A0 ∈ GLn(Q) and F (z) ∈ GLn(H ) such that A(z)F (z) =
F (z`)A0. We then show that the hypothesis of Theorem 5 implies that A0 =
In and that the first line of F (z) are n Q-linearly independent rational
solutions of (2). Note that, in the course of the proof, we have to reduce
the coefficients of F (z) modulo certain prime ideals; this is made possible
by Theorem 20, which is a variant of Theorem 2. We refer the reader to
Section 6 for details.

This paper is organized as follows. In Section 2, we recall the definition
of the field H of Hahn series. In Section 3, we recall the notion of Mahler
modules and its relationship with the notion of Mahler systems. In Section
4, we prove that any Mahler system is H -equivalent to an upper triangular
Mahler system with constant diagonal coefficients; this is a first step toward
the proof of Theorem 2. The end of the proof of Theorem 2 is given in
Section 5. In Section 6, we state a variant of Theorem 2 and outline a proof
of Theorem 5.

I thank the referees for their comments and careful reading.

2. The field H of Hahn series

We denote by

H = Q((zQ))

the field of Hahn series over Q and with value group Q. An element of H

is a sequence (fγ)γ∈Q ∈ QQ
whose support

supp((fγ)γ∈Q) = {γ ∈ Q | fγ 6= 0}

is well-ordered (i.e., any nonempty subset of supp(f) has a least element)
with respect to the restriction to supp((fγ)γ∈Q) of the usual order on Q. An
element (fγ)γ∈Q of H is usually (and will be) denoted by

f =
∑
γ∈Q

fγz
γ .

The sum and product of two elements f =
∑

γ∈Q fγz
γ and g =

∑
γ∈Q gγz

γ

of H are given by

f + g =
∑
γ∈Q

(fγ + gγ)zγ

and

fg =
∑
γ∈Q

 ∑
γ′+γ′′=γ

fγ′gγ′′

 zγ .

(Note that there are only finitely many (γ′, γ′′) ∈ Q×Q such that γ′+γ′′ = γ
and fγ′gγ′′ 6= 0, so the sums

∑
γ′+γ′′=γ fγ′gγ′′ are meaningful.)
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3. Mahler systems and Mahler modules

It is sometimes useful to work with Mahler modules instead of Mahler
systems. For the convenience of the reader, we shall now recall what Mahler
modules are and explain their links with Mahler systems. It is also the
occasion to introduce some notation for later use.

We denote by φ the field automorphism of H defined by

φ(f) =
∑
γ∈Q

fγz
`γ

for any f =
∑

γ∈Q fγz
γ ∈H .

We denote by

DH = H 〈φ, φ−1〉
the Öre algebra of noncommutative Laurent polynomials with coefficients
in H such that

φf = φ(f)φ

for all f ∈ H . A left DH -module of finite length will be called a Mahler
module (over H , but we will omit this precision in this paper because we
will only consider Mahler modules over H ). Note that a left DH -module
has finite length if and only if the H -vector space obtained by restriction
of scalars has finite dimension; by definition, the rank of a Mahler module
is its dimension as an H -vector space.

There is a correspondence between Mahler systems and Mahler modules
that we shall now recall.

One can associate to any Mahler system

(4) φY = AY with A ∈ GLn(H )

a Mahler module MA as follows. We consider the map ΦA : H n → H n

defined by

ΦA(m) = Aφ(m)

(here φ acts component-wise on the elements of H n seen as column vectors).
The Mahler module MA is then defined as follows : the underlying abelian
group is H n (its elements being seen as column vectors) and the action of
L =

∑
aiφ

i ∈ DH on m ∈MA is given by

Lm = (
∑

aiφ
i)m =

∑
aiΦ

i
A(m).

Conversely, we can attach to any Mahler module M , a Mahler system via
the choice of a H -basis B = (e1, . . . , en) ofM : the Mahler system associated
to M with respect to B is φY = AY where A ∈ GLn(H ) represents the
action of φ on B (i.e., the jth column of A represents φ(ej) in the basis B).
We have M ∼= MA.

It is easily seen that two Mahler systems φY = AY and φY = BY with
A,B ∈ GLn(H ) are H -equivalent if and only if the corresponding Mahler
modules MA and MB are isomorphic.

Last, we will freely use the following classical result, known as the cyclic
vector lemma, ensuring that any Mahler module “comes form” an equation.

Proposition 7. For any Mahler module M , there exists L ∈ DH such that
M ∼= DH /DH L.
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For a proof, see for instance [HS99, Theorem B.2].

4. Triangularization of Mahler systems

The aim of this section is to prove the following result :

Theorem 8. Consider a Mahler system φY = AY with A ∈ GLn(H ).
(i) The system φY = AY is H -equivalent to φY = BY for some upper

triangular matrix

B =

 c1 ∗
. . .

0 cn

 ∈ GLn(H )

with constant diagonal coefficients (i.e., c1, . . . , cn ∈ Q×).
(ii) The list of diagonal coefficients of B does not depend, up to permu-

tation, on the chosen matrix B.

Strictly speaking, we will not prove this result directly, but we will prove
a reformulation of Theorem 8 in terms of Mahler modules.

4.1. Reformulation of Theorem 8 in terms of Mahler modules. The-
orem 8 can be reformulated in terms of Mahler modules as follows :

Theorem 9. Let M be a Mahler module of rank n ≥ 1.
(i) There exists a filtration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M

by Mahler sub-modules of M such, for all i ∈ {0, . . . , n− 1},

Mi+1/Mi
∼= DH /DH (φ− ci)

for some ci ∈ Q× .
(ii) The list c1, . . . , cn does not depend, up to permutation, on the chosen

filtration.

Let us explain why this result is equivalent to Theorem 8.
Let M be a Mahler module of rank n ≥ 1. As recalled in (and with the

notation of) Section 3, there exists A ∈ GLn(H ) such that M ∼= MA. If
Theorem 8 is true, then M ∼= MB for some upper triangular B ∈ GLn(H )

with constant diagonal coefficients c1, . . . , cn ∈ Q×. Of course, the existence
of a filtration of M as in Theorem 9 is equivalent to the existence of a similar
filtration for MB. It is clear that MB has such a filtration : if (e1, . . . , en) is
the canonical basis of H n then

{0} = N0 ⊂ N1 = H e1 ⊂ N2 = H e1 + H e2 ⊂
· · · ⊂ Nn = H e1 + · · ·+ H en = MB

is a filtration by submodules of MB such that

Ni+1/Ni
∼= DH /DH (φ− ci)

for all i ∈ {0, . . . , n− 1}.
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Conversely, let A ∈ GLn(H ) and consider the Mahler module MA. If
Theorem 9 is true then there exists a filtration

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nn = MA

by submodules of MA such that, for all i ∈ {0, . . . , n− 1},

Ni+1/Ni
∼= DH /DH (φ− ci).

Let B = (e1, . . . , en) be a basis of M such that, for all i ∈ {1, . . . , n},
(e1, . . . , ei) is a basis of Ni satisfying

φ(ei) ∈ ciei +Ni−1.

Then, the Mahler system φY = BY associated to M with respect to
the basis B (see Section 3) is upper triangular with diagonal coefficients
c1, . . . , cn ∈ C×. Since the Mahler systems φY = AY and φY = BY are
H -equivalent, this yields the desired result.

This proves the equivalence between the existence statements (i) in
Theorem 8 and 9. The equivalence between the uniqueness properties
(ii) in these theorems can be seen similarly; the details are left to the reader.

The proof of Theorem 9, given in Section 4.4, will follow, via the cyclic
vector Lemma, from a factorization property of Mahler operators that we
shall now state and prove.

4.2. Factorization of Mahler operators. In this section, we consider

L =
n∑
i=0

aiφ
i ∈ DH

where n ≥ 1, a0, . . . , an ∈H and a0an 6= 0.
We shall now introduce some notation and terminologies. Let r 6= 0, a be

elements of some difference field extension of H such that φ(r) = ar. We

will denote by L[r] the operator defined by

L[r] := r−1Lr =
n∑
i=0

aφ(a) · · ·φi−1(a)aiφ
i,

so that L[r](f) = 0 if and only if L(rf) = 0. In particular :
— for any µ ∈ Q, we consider θµ such that φ(θµ) = zµθµ so that

L[θµ] =

n∑
i=0

z(1+`+···+`
i−1)µaiφ

i;

we can and will take

θµ = z
µ
`−1 ∈H ×;

— for any c ∈ Q×, we consider ec such that φ(ec) = cec so that

L[ec] =
n∑
i=0

ciaiφ
i.
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Definition 10. We define the Newton polygon N (L) of L as the convex hull
in R2 of

{(i, j) ∈ Z× R | j ≥ vz(an−i)}
where vz : H → Q ∪ {+∞} denotes the z-adic valuation. This polygon is
delimited by two vertical half lines and by k vectors (r1, d1), . . . , (rk, dk) ∈
N∗ × Q having pairwise distinct slopes, called the Newton-slopes of L. For
any i ∈ {1, . . . , k}, ri is called the multiplicity of the Newton-slope di

ri
.

Lemma 11. There exists a unique µ1 ∈ Q such that the greatest Newton-
slope of L[θµ1 ] is 0.

Proof. The fact that the greatest Newton-slope of L[θµ1 ] is 0 means that, for
all i ∈ {1, . . . , n},

vz(ai) + (1 + `+ · · ·+ `i−1)µ1 ≥ vz(a0)
and that this inequality is an equality for some i ∈ {1, . . . , n}. Obviously,
there exists a unique µ1 ∈ Q with these properties. �

Definition 12. The rational number µ1 given by Lemma 11 will be called
the first theta-slope of L. Setting L[θµ1 ] =

∑n
i=0 biφ

i, we define the
characteristic polynomial associated to the first theta-slope µ1 of L as∑n

i=0

(
biz
−vz(b0)

)
|z=0

Xi ∈ Q[X]; this is a polynomial of degree ≥ 1 with

nonzero constant coefficient.

In what follows, we will denote by H ≥0 the valuation ring of H with
respect to the z-adic valuation vz, i.e.,

H ≥0 = {f ∈H | vz(f) ≥ 0}.
It is a local domain with maximal ideal

H >0 = {f ∈H | vz(f) > 0}.

Lemma 13. Let µ1 be the first theta-slope of L and let c1 be a root of the
corresponding characteristic polynomial. Then, there exists f1 ∈ 1 + H >0

such that L(θµ1ec1f1) = 0.

Proof. We set µ = µ1, c = c1 and

L[θµ] =
n∑
i=0

biφ
i

with

bi = z(1+`+···+`
i−1)µai =

∑
j∈Q

bi,jz
j ∈H .

Using the fact that the greatest Newton-slope of L[θµ] is 0, we see that, up to
left multiplication by some monomial in z, we can assume that b0, . . . , bn ∈
H ≥0 and b0,0 6= 0. The characteristic polynomial attached to the first

theta-slope µ of L is given, up to multiplication by some constant in Q×, by∑n
i=0 bi,0X

i. For f =
∑

γ∈Q≥0
fγz

γ ∈ 1 + H >0, we have

L(θµecf) = θµec
∑

i∈{0,...,n},j,γ∈Q≥0

bi,jc
ifγz

j+γ`i = 0
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if and only if, for all m ∈ Q≥0,

(5)
∑

i∈{0,...,n},j,γ∈Q≥0

j+γ`i=m

bi,jc
ifγ = 0.

This equation is automatically satisfied for m = 0 because∑
i∈{0,...,n},j,γ∈Q≥0

j+γ`i=0

bi,jc
ifγ =

(∑
i

bi,0c
i

)
f0

and
∑

i bi,0c
i = 0 because c is a root of the characteristic polynomial. For

m ∈ Q>0, the equation (5) can be rewritten as follows

(6)
∑

i∈{0,...,n},j∈∪i∈{0,...,n} supp(bi),γ∈Q≥0

γ<m,j+γ`i=m

bi,jc
ifγ = −b0,0fm.

Let us prove that this equation has a solution f ∈ 1 + H >0. Let

j0 = min∪i∈{0,...,n} supp(bi) \ {0} ∈ Q>0

(this minimum exists because the supports of the fi are well-ordered). Take
ε > 0 such that, for all r ∈ Z≥1,

m ∈ [0, j0 + rε]⇒ m− j0,m/` ∈]−∞, j0 + (r − 1)ε];

it follows that, for any m ∈]j0 + (r − 1)ε, j0 + rε] ∩ Q, i ∈ {0, . . . , n}, j ∈
∪i∈{0,...,n} supp(bi), γ ∈ Q≥0 , γ < m,

j + γ`i = m⇒ γ ∈]−∞, j0 + (r − 1)ε] ∩Q.
This choice of ε allows us to define a sequence (fγ)γ∈Q with support in

Q≥0 as follows:
— f0 = 1;
— for all m ∈]0, j0[∩Q, fm = 0;
— fj0 = −1

b0,0

∑
i∈{0,...,n} bi,j0c

i;

— for all r ≥ 1, for all m ∈]j0 + (r − 1)ε, j0 + rε] ∩Q ,

fm =
−1

b0,0

∑
i∈{0,...,n},j∈∪i∈{0,...,n} supp(bi),γ∈Q≥0

γ<m,j+γ`i=m

bi,jc
ifγ .

It is obvious that this sequence satisfies (6). We shall now prove that the
support of (fγ)γ∈Q is well-ordered. First note that, for all r ∈ Z≥1, we have

supp((fγ)γ∈Q)∩]−∞, j0 + rε]

⊂ ∪i∈{0,...,n}
(
supp(bi) + `i · supp((fγ)γ∈Q)∩]−∞, j0 + (r − 1)ε]

)
.

Therefore, if supp((fγ)γ∈Q)∩] − ∞, j0 + (r − 1)ε] is well-ordered then
supp((fγ)γ∈Q)∩]−∞, j0 + rε] is well-ordered as well. But, for r = 0,

supp((fγ)γ∈Q)∩]−∞, j0 + rε] = supp((fγ)γ∈Q)∩]−∞, j0] ⊂ {0, j0}
is well-ordered. It follows by an obvious induction argument that, for all
r ∈ Z≥1, supp((fγ)γ∈Q)∩] − ∞, j0 + rε] is well-ordered and, hence, that
supp((fγ)γ∈Q) is well-ordered. This concludes the proof of the Lemma. �
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Lemma 14. Maintaining the notation of Lemma 13, we can factorize L as
follows

L = L2(φ− c1)(f1θµ1)−1

for some L2 ∈ DH .

Proof. By euclidean division (see [Ore33, Section 2]) of L by the operator
(φ − c1)(f1θµ1)−1, we obtain L2 ∈ DH and h ∈ H such that L = L2(φ −
c1)(f1θµ1)−1 +h. Since both L and L2(φ− c1)(f1θµ1)−1 annihilate θµ1ec1f1,
we have h = 0. �

A repeated application of the previous lemma leads to the following result.

Theorem 15. The operator L admits a factorization of the form

L = anφ
n(f1θµ1) · · ·φ(fnθµn)(φ− cn)(fnθµn)−1 · · · (φ− c1)(f1θµ1)−1

where, for all i ∈ {1, . . . , n}, ci ∈ Q×, µi ∈ Q and fi ∈ 1 + H >0.

4.3. Mahler modules of rank 1. We shall first study the Mahler modules
of rank one. For any α ∈H ×, we denote by Iα the Mahler module of rank
one defined by

Iα = DH /DH (φ− α).

In what follows, we will denote by cld(α) the coefficient of the term of

lowest z-adic valuation of α ∈ H ×. Note that cld : H × → Q× is a group
morphism.

Proposition 16. (i) For any α, β ∈H ×, the Mahler modules Iα and Iβ
are isomorphic if and only if cld(α) = cld(β).

(ii) For any α ∈H ×, the Mahler modules Iα and Icld(α) are isomorphic.

(iii) For any Mahler module M of rank 1, there exists a unique c ∈ Q×

such that M is isomorphic to Ic.

Proof. It is easily seen that the set of DH -modules morphisms from Iα to
Iβ is given by

Hom(Iα, Iβ) = {ϕu | u ∈H , αu = φ(u)β}

where ϕu : Iα → Iβ is defined by ϕu(P ) = Pu and that ϕu is an isomorphism
if and only if u ∈H ×. Therefore, Iα ∼= Iβ if and only if there exists u ∈H ×

such that αu = φ(u)β. But

{φ(u)/u | u ∈H ×} = ker(cld : H × → Q×)

(indeed, the direct inclusion is obvious; for the converse inclusion, note that
any a ∈ H × such that cld(a) = 1 can be decomposed as a = zµf for
some µ ∈ Q and some f ∈ 1 + H >0, so u = θµ

∏
j≥0 φ

j(f−1) ∈ H ×

satisfies a = φ(u)/u, whence the desired result). So Iα ∼= Iβ if and only if
cld(α) = cld(β). This proves (i). The remaining assertions follow easily. �
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4.4. Proof of Theorem 9. According to the cyclic vector lemma (Propo-
sition 7), there exists L ∈ DH such that M ∼= DH /DH L. Theorem 15
ensures that

L = c(φ− cn)g−1n · · · (φ− c1)g−11

for some c ∈H ×, ci ∈ Q× and gi ∈H ×. We deduce from this factorization
a filtration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M

by Mahler sub-modules of M such that, for all i ∈ {0, . . . , n−1}, Mi+1/Mi
∼=

DH /DH (φ − ci)g−1i . Indeed, this follows immediately from the following
classical result.

Lemma 17. Let P,Q,R ∈ DH such that P = QR. Then, we have a natural
exact sequence

0→ DH /DH Q→ DH /DH P → DH /DH R→ 0.

Proof. We haveDH P ⊂ DH R, whence a surjective morphismDH /DH P →
DH /DH R. Its kernel is DH R/DH P . The map DH → DH R, F 7→ FR
induces an isomorphism DH /DH Q→ DH R/DH P . �

Now, it follows from Proposition 16 that DH /DH (φ − ci)g−1i ∼= Ici and
this concludes the proof of the assertion (i) of Theorem 9.

It remains to prove the assertion (ii) of Theorem 9. By the Jordan-Hölder
theorem, if

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nm = M

is another filtration of M such that, for all i ∈ {0, . . . ,m−1}, Ni+1/Ni
∼= Idi

for some di ∈ Q×, then m = n and there exists a permutation σ of {1, . . . , n}
such that Mσ(i)+1/Mσ(i)

∼= Ni+1/Ni. Proposition 16 ensures that cσ(i) = di,
whence (ii).

5. Proof of Theorem 2

5.1. Inhomogeneous equations of order 1 with constant coefficients.

Lemma 18. For any subset E of Q, we set

Sat`(E) = {`−kx | x ∈ E ∩Q≤0, k ≥ 0} ∪ {`kx | x ∈ E ∩Q≥0, k ≥ 0}.
If E is a well-ordered subset of Q, then Sat`(E) is a well-ordered subset of
Q.

Proof. Let F be a subset of Sat`(E).
Assume that F ∩Q<0 6= ∅ and consider γ ∈ F ∩Q<0. Since E is bounded

from below, there exists M such that, for all k ≥M , for all x ∈ E, γ < `−kx.
Therefore, in order to prove that F has a least element, it is sufficient to
prove that

{`−kx | x ∈ E ∩Q≤0, k ∈ {0, . . . ,M − 1}} ∩ F
has a least element. This follows from the facts that the latter set can
be rewritten has the finite union ∪M−1k=0 (`−kE ∩ Q≤0) ∩ F and that each

(`−kE ∩ Q≤0) ∩ F has a least element (because E and, hence, `−kE ∩ Q≤0
are well-ordered).

The case F ∩Q<0 = ∅ is similar. �
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Proposition 19. For all c, d ∈ Q×, for all g =
∑

γ∈Q gγz
γ ∈ H with

g0 = 0, there exists f ∈H such that g = (cφ− d)f .
Moreover, if c 6= d, then, for all g =

∑
γ∈Q gγz

γ ∈H , there exists f ∈H
such that g = (cφ− d)f .

Proof. Dividing by c, it is clearly sufficient to consider the case c = 1.
We first assume that g0 = 0. We set g− =

∑
γ∈Q<0

gγz
γ ∈ H and

g+ =
∑

γ∈Q>0
gγz

γ ∈ H , so that g = g− + g+. We are going to prove that

there exist f± ∈H such that g± = (φ− d)f±. This will imply the desired
result because f = f− + f+ ∈H satisfies g = (φ− d)f .

For all γ ∈ Q<0 such that `Zγ∩supp(g) 6= ∅, we set γ− = min `Zγ∩supp(g)
(it exists because supp(g) is well-ordered). We let (f−γ )γ∈Q<0 be the unique

element of QQ<0 such that, for all γ ∈ Q<0 such that `Zγ ∩ supp(g) 6= ∅,{
f−
γ−/`i+1 = df−

γ−/`i
+ gγ−/`i for i ≥ 0,

f−
γ−/`i+1 = 0 for i ≤ −1

and, for all γ ∈ Q<0 such that `Zγ ∩ supp(g) = ∅,
f−γ = 0.

Then, f− =
∑

γ∈Q<0
f−γ z

γ ∈ H satisfies (φ − d)f− = g−. The fact

that f− belongs to H is a consequence of Lemma 18 because supp(f) ⊂
Sat`(supp(g)).

The construction of f+ is similar.
We now assume that c = 1 6= d. We set g− =

∑
γ∈Q<0

gγz
γ ∈ H and

g+ =
∑

γ∈Q>0
gγz

γ ∈H , so that g = g−+ g0 + g+. We have already proved

that there exist f± ∈ H such that g± = (φ − d)f±. Moreover, f0 = g0
1−d

satisfies g0 = (φ−d)f0. So, f = f−+f0+f+ ∈H satisfies g = (φ−d)f . �

5.2. Proof of Theorem 2. Using Theorem 8, it is clear that the first (and
main) statement of Theorem 2 will be proven if we manage to prove that,
for any upper triangular

A(z) =

 c1 ∗
. . .

0 cn

 ∈ GLn(H )

with diagonal coefficients c1, . . . , cn ∈ Q×, the system φY = AY is H -
equivalent to φY = A0Y for some

A0 =

 c1 ∗
. . .

0 cn

 ∈ GLn(Q).

We shall now prove this property by induction on n.
The case n = 1 is true as a direct consequence of Theorem 8.
Assume that our claim is true for some n ≥ 1 and consider

A(z) =

 c1 ∗
. . .

0 cn+1

 ∈ GLn+1(H )
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with diagonal coefficients c1, . . . , cn+1 ∈ Q×. We write

A(z) =

(
B(z) ∗

0 cn+1

)
with

B(z) =

 c1 ∗
. . .

0 cn

 ∈ GLn(H ).

The induction hypothesis ensures that

B(z)F (z) = F (z`)B0

for some F (z) ∈ GLn(H ) and some

B0 =

 c1 ∗
. . .

0 cn

 ∈ GLn(Q).

We then have
A(z)G(z) = G(z`)C0

with

G(z) =

(
F (z) 0

0 1

)
∈ GLn+1(H ) and C0 =

(
B0 ∗
0 cn+1

)
∈ GLn+1(H ).

So, the system φY = AY we started with is H -equivalent to φY = C0Y .
We will now eliminate the (a priori) non-constant coefficients of C0. In
what follows, we denote by Ei,j the matrix in Mn+1(Q) differing from the
zero matrix by its (i, j)-coefficient which is equal to 1.

According to Proposition 19, there exists f1 ∈ H and δ1 ∈ C such that
cn+1φ(f1)− c1f1 = −(C0)1,n+1 + δ1. Setting F1 = In+1 + f1E1,n+1, we have

D1 := F1(z
`)C0F1(z)

−1 =

(
B0 V1
0 cn+1

)
with

V1 =


δ1
∗
...
∗

 ∈H n.

Similarly, according to Proposition 19, there exists f2 ∈ H and δ2 ∈ C
such that cn+1φ(f2) − c2f2 = −(D1)2,n+1 + δ2. Then, setting F2 = In+1 +
f2E2,n+1, we have

D2 := F2(z
`)C0F2(z)

−1 =

(
B0 V2
0 cn+1

)
with

V2 =


δ1
δ2
∗
...
∗

 ∈H n.
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Iterating this process, we end up with a matrix Dn ∈ GLn(Q) such that
φY = DnY is H -equivalent to φY = C0Y . This concludes the proof of the
first statement of Theorem 2 (with A0 = Dn).

In order to prove the second statement of Theorem 2, we have to prove
that, if φY = AY and φY = BY with A,B ∈ GLn(Q) are H -equivalent,
then A and B are conjugate by an element of GLn(Q). Consider two such
matrices A,B ∈ GLn(Q) and let F =

∑
γ∈Q Fγz

γ ∈ GLn(H ) be such that

AF (z) = F (z`)B. We have, for all γ ∈ Q, AFγ = Fγ/`B. So, for all γ ∈ Q
and all k ∈ Z, AkFγ = Fγ/`kB

k. If γ ∈ Q>0, then Fγ/`k = 0 for k large

enough (because the support of F is well-ordered), so Fγ = 0. Similarly,

Fγ = 0 for all γ ∈ Q<0. So, F = F0 ∈ GLn(Q) and this yields the desired
result.

6. A variant of Theorem 2 and proof of Theorem 5

6.1. A variant of Theorem 2. We let Hb be the subfield of H made of
the f =

∑
γ∈Q fγz

γ ∈H whose coefficients (fγ)γ∈Q belong to some finitely

generated Z-subalgebra of Q.
One can easily check that, in all the previous results of the present paper,

the field H can be replaced by Hb. In particular, the following variant of
our main result holds true.

Theorem 20. Any Mahler system Y (z`) = A(z)Y (z) with A(z) ∈ GLn(Hb)
is Hb-equivalent to a Mahler system with constant coefficients, i.e., of the
form Y (z`) = A0Y (z) for some A0 ∈ GLn(Q). The matrix A0 ∈ GLn(Q) is
unique up to conjugation by an element of GLn(Q).

6.2. An application : proof of Theorem 5. We shall now indicate briefly
how one can use Theorem 20 in order to give a variant of the proof of
Theorem 5 below which was first proved in [Roq17].

We consider the difference system associated to the equation (2) :

(7) φ(Y ) = AY, with A =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
− a0
an
− a1
an
· · · · · · −an−1

an

 .

According to Section 6.1, there exist F ∈ GLn(Hb) and A0 ∈ GLn(Q)
such that

(8) AF = φ(F )A0.

Let K be a number field containing the entries of A0 and of the coefficients
of F and of A. We have, for almost all primes p of K,

ApFp = φ(Fp)A0,p,

where the subscript p means that we have reduced the coefficients modulo
p. Hence, the entries of A0,p belong to the residue field κp of K at p and Ap

and Fp are Hahn series with coefficients in Mn(κp) and value group Q.
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On the other hand, according to [Roq17, Theorem 2], our hypotheses
imply that, for almost all primes p, the equation (3) has n Fp-linearly in-
dependent solutions in Fp(z). So, for almost all primes p of K, there exists
Gp ∈ GLn(κp(z)) such that

ApGp = φ(Gp).

Therefore, Hp = G−1p Fp satisfies

Hp = φ(Hp)A0,p.

Setting Hp =
∑

γ∈QHp,γz
γ with Hp,γ ∈ Mn(κp), we get Hp,`γ = Hp,γA0,p,

for all γ ∈ Q. The fact that the support of Hp is well-ordered implies that
Hp,γ = 0 for all γ ∈ Q× (provided that A0,p is invertible, which is true for
almost all primes p of K). So, Hp = Hp,0 and A0,p = In.

It follows that A0 = In. It follows also that, for almost all primes p of K,
Fp = GpHp = GpHp,0 has entries in κp(z). But, the first line of F is made

of n Q-linearly independent solutions (f1, . . . , fn) in Hb of the equation (2).
These fi actually belong to K((z)) because, for almost all primes p of K,
the reductions modulo p of the fi are elements of κp(z) ⊂ κp((z)). Then,

[AB17, Lemma 5.3] ensures that the fi actually belong to Q(z).
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et le gradué associé. Ann. Inst. Fourier (Grenoble), 54(1):181–210, 2004.
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