
ON THE REDUCTION MODULO p OF MAHLER
EQUATIONS

JULIEN ROQUES

Abstract. The guiding thread of the present work is the following
result, in the vain of Grothendieck’s conjecture for differential equations :
if the reduction modulo almost all prime p of a given linear Mahler
equation with coefficients in Q(z) has a full set of algebraic solutions,
then this equation has a full set of rational solutions. The proof of this
result, given at the very end of the paper, relies on intermediate results
of independent interest about Mahler equations in characteristic zero as
well as in positive characteristic.
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1. Introduction

Fix ` ∈ Z≥2 and n ∈ Z≥1. This short paper is concerned with functional
equations of the form

(1) an(z)f(z
`n) + an−1(z)f(z

`n−1
) + · · ·+ a0(z)f(z) = 0

with coefficients a0(z), . . . , an(z) ∈ Q(z) such that a0(z)an(z) 6= 0. These
equations and the corresponding solutions are called Mahler equations and
functions, in reference to the work of Mahler [6, 7, 8] who investigated the
algebraic relations over Q between special values of Mahler functions. See
K. Nishioka’s book [9] for further informations and developments. Note that
Mahler equations appear naturally in the context of automatic sequences :
the generating series of any automatic sequence satisfies some Mahler equa-
tion.
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For almost all 1 prime numbers p, we can reduce the coefficients of equa-
tion (1) modulo p, and we obtain the equation

(2) an,p(z)f(z
`n) + an−1,p(z)f(z

`n−1
) + · · ·+ a0,p(z)f(z) = 0

with coefficients a0,p(z), . . . , an,p(z) ∈ Fp(z), where Fp is the field with p
elements.

In the present paper, we give some results about Mahler equations in
characteristic zero, such as (1), as well as Mahler equations in positive char-
acteristic, such as (2), and about their interplay. These results will allow us
to prove the following theorem, in the spirit of Grothendieck’s conjecture for
differential equations.

Theorem 1. Assume that, for almost all prime p, equation (2) has n Fp-
linearly independent solutions in Fp((z)) algebraic over Fp(z). Then, equa-
tion (1) has n Q-linearly independent solutions in Q(z).

We shall now give the structure of the proof of this theorem, which, as
mentioned above, relies on intermediate results of independent interest.

1st Step. The first step consists in proving that any solution in Fp((z))
algebraic over Fp(z) of equation (2) is actually rational. This is Theorem 2
in Section 3. This result extends to positive characteristic the rational-
transcendental dichotomy for Mahler functions over fields of characteristic
0; see [9, 2].

Let Q((z))b be the field made of the formal series f(z) ∈ Q((z)) whose
coefficients belong to some finitely generated Z-subalgebra of Q.

Assume temporarily that equation (1) has n Q-linearly independent so-
lutions f1(z), . . . , fn(z) in Q((z))b. Let K be a number field containing the
coefficients of f1(z), . . . , fn(z). For almost all prime p of K, whose residual
characteristic is denoted by p, the reduction modulo p of f1(z), . . . , fn(z)
are solutions of equation (2), and hence are rational according to the 1st
step. Adamczewski and Bell’s [1, Lemma 5.3] implies that f1(z), . . . , fn(z)
themselves are rational.

So, in order to conclude the proof, it is sufficient to prove that
f1(z), . . . , fn(z) exist. By the light of the arithmetic theory of differential or
q-difference equations (see [5, 3]), it would have been natural to prove the
existence of f1(z), . . . , fn(z) ∈ Q((z)) via some formal classification at 0 of
Mahler equations (i.e. some analogue of Levelt-Turrittin theorem). Unfor-
tunately, such a classification seems unknown (and, anyway, even if such a
classification was known, we would also need an avatar of the notion of p-
curvature). However, we show that Mahler operators have nice factorization
properties at 0. This leads us to the second step of the proof.

For any integer d ≥ 1, we set zd = z1/d and we denote by Q((zd))b the
field made of the formal series f(zd) ∈ Q((zd)) whose coefficients belong to
some finitely generated Z-subalgebra of Q. Let φ` be the operator acting on
f(zd) by φ`(f(zd)) = f(z`d). Equation (1) can be rewritten as

L(f(z)) = 0 with L = an(z)φ
n
` + an−1(z)φ

n−1
` + · · ·+ a0(z).

1. As usually, “for almost all” means “for all but finitely many”.
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2nd Step. The second step consists in proving that there exist an integer
d ≥ 1 and g1, . . . , gn ∈ Q((zd))b such that

L = an(φ` − gn) · · · (φ` − g1).
This is achieved in Theorem 6 of Section 4. Note that such a decomposition is
valid for an arbitrary L, without any assumption on its reductions modulo p.

3rd Step. The third step consists in proving the existence of
f1(z), . . . , fn(z) : we prove that if, for almost all prime p, equation (2) has
n Fp-linearly independent solutions in Fp((z)) then equation (1) has n Q-
linearly independent solutions f1(z), . . . , fn(z) in Q((zd))b. The basic idea is
to reduce the problem to non homogeneous Mahler equations of order 1 with
coefficients in Q((zd))b by using the 2nd step. We refer to Proposition 10 in
Section 5 for details.

I thank B. Adamczewski for bringing [1, Lemma 5.3] to my attention, and
for discussions on the present paper.

2. Notations

In the whole paper, ` ∈ Z≥2 and n ∈ Z≥1 are fixed.
The algebraic closure of Q will be denoted by Q.
The letter p will denote some prime number, Fp will be the field with p

elements and Fp its algebraic closure.
The linear equation

(3) an(z)f(z
`n) + an−1(z)f(z

`n−1
) + · · ·+ a0(z)f(z) = 0

with coefficients a0, . . . , an ∈ Q(z) can be rewritten as

L(f) = 0

where L = an(z)φ
n
` +an−1(z)φ

n−1
` + · · ·+a0(z) and where φ` acts on f(z) by

φ`(f(z)) = f(z`). Such an operator L has to be understood as an element of
the Öre algebra Q(z)〈φ`〉 of non commutative polynomials with coefficients
in Q(z) such that φ`a = φ`(a)φ` for all a ∈ Q(z). This can be extended to
various fields instead of Q(z), e.g. K(z), K((z)), etc, where K is a given
field.

3. 1st Step - Algebraic vs rational solutions in characteristic
p > 0

Theorem 2. Let f(z) ∈ Fp((z)) be such that

an(z)f(z
`n) + an−1(z)f(z

`n−1
) + · · ·+ a0(z)f(z) = 0

with a0(z), . . . , an(z) ∈ Fp(z) such that a0(z)an(z) 6= 0. Assume that
gcd(`, p) = 1. If f(z) is algebraic over Fp(z) then it actually belongs to
Fp(z).

The proof of this theorem will be given at the end of this section, as a
consequence of a more general statement (Proposition 4 below) concerning
the finite extensions of Fp(z) endowed with an extension of φ` : a(z) ∈
Fp(z) 7→ a(z`) ∈ Fp(z).

We start with a basic geometric result.
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Proposition 3. Let X be of smooth projective curve over Fp with genus
g ≥ 2. Then, any non constant separable endomorphism of X is an auto-
morphism and X has finitely many such endomorphisms.

Proof. Let ϕ : X → X be a non constant separable endomorphism of X.
Hurwitz’s formula (see [4, Corollary 2.4]) ensures that

−2(N − 1)(g − 1) =
∑
P

`P

where
– N ≥ 1 is the degree of ϕ;
– the sum is taken over the ramification points P of ϕ;
– `P is an integer ≥ eP − 1, where eP ≥ 1 is the ramification index of ϕ
at P .

The fact that the right hand side of the above equality is ≥ 0 implies that
N = 1 that is that ϕ has degree 1 and hence is an automorphism.

The fact that the group of automorphisms of X is finite is due to
Schmid [10]. �

Proposition 4. Let L be a finite extension of Fp(z). Assume that gcd(`, p) =
1 and that the endomorphism φ` of Fp(z) defined by φ`(f(z)) = f(z`) extends
to a field endomorphism of L. Then, there exists N ∈ Z≥1 and zN ∈ L such
that :

(i) zNN = z;
(ii) L is a purely inseparable extension of Fp(zN ).

Proof. The extension of φ` to L is still denoted by φ`.
Let E be the separable closure of Fp(z) in L. This is the unique subex-

tension of L/Fp(z) such that E/Fp(z) is separable and L/E is purely insep-
arable. We have to prove that E = Fp(z).

We claim that φ` induces a field endomorphism of E. Indeed, if x ∈ E
then P (x) = 0 for some non zero separable polynomial P =

∑
ai(z)X

i ∈
Fp(z)[X]. Then P φ`(φ`(x)) = 0 with P φ` =

∑
φ`(ai(z))X

i ∈ Fp(z)[X] and
P φ` is separable (because the discriminant of P φ` is the image by φ` of the
discriminant of P and hence is non zero). So φ`(x) is separable over Fp(z)
and hence belongs to E.

Now, consider a morphism of smooth projective curves ϕ : X → P1(Fp)
whose induced morphism of function fields is the inclusion Fp(z) ⊂ E. What
precedes shows that φ` induces an endomorphism f of X such that the
following diagram is commutative :

X
f //

ϕ
��

X

ϕ
��

P1(Fp)
z 7→z`

// P1(Fp)

.

Observe that
– f is a separable morphism. Indeed, this is equivalent to the fact
that E/φ`(E) is separable. It is therefore sufficient to prove that
E/φ`(Fp(z)) is separable and this property holds true because E/Fp(z)
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and Fp(z)/φ`(Fp(z)) are separable (the latter is separable because
gcd(`, p) = 1).

– X has genus g ∈ {0, 1} (follows from Proposition 3 since f has infinite
order).

– f has degree ` (take degrees in the above commutative diagram).
– f−1(ϕ−1(0)) = ϕ−1(0), f−1(ϕ−1(∞)) = ϕ−1(∞), and f is totally ram-
ified above any point of Z = ϕ−1(0) ∪ ϕ−1(∞). Indeed, the inclusion
f−1(ϕ−1(0)) ⊂ ϕ−1(0) follows immediately from the above commutative
diagram. Since f is not constant, it is surjective. Now, for cardinal-
ity reasons, this implies that the inclusion f−1(ϕ−1(0)) ⊂ ϕ−1(0) is an
equality and that the fiber of f above any element of ϕ−1(0) has exactly
one element. The arguments for ϕ−1(∞) are similar.

Assume that g = 0, so that we can replaceX by P1(Fp). Hurwitz’s formula
for the separable morphism f (cf. [4, Corollary 2.4]) ensures that

2(`− 1) =
∑
P

`P

where
– the sum is taken over the ramification points P of f ;
– `P is an integer ≥ eP − 1, where eP ≥ 1 is the ramification index of f
at P .

Note that
∑

P∈Z `P ≥
∑

P∈Z(eP − 1) = ]Z(`− 1). Since ]Z ≥ 2, we deduce
that ]Z = 2 i.e. that ]ϕ−1(0) = ]ϕ−1(∞) = 1 and that f is unramified
outside Z.

Let c be an automorphism of P1(Fp) such that c(ϕ−1(0)) = 0 and
c(ϕ−1(∞)) = ∞. Then, cfc−1 is totally ramified at 0 and ∞, unrami-
fied elsewhere, of degree p, and fixes 0 and ∞, so cfc−1(z) = z`. It follows
from the commutative diagram

P1(Fp)
cfc−1

//

ϕc−1

��

P1(Fp)

ϕc−1

��
P1(Fp)

z 7→z`
// P1(Fp)

that ϕc−1(z) = zN for someN ∈ Z≥1. That is ϕ = cN and f(z) = c−1(c(z)`).
Therefore, there exists zN ∈ E such that zNN = z and E = Fp(zN ), as
expected.

Assume that g = 1. Then f is unramified (immediate from Hurwitz’s
formula) of degree `. Considering cardinals in the inclusion f−1(ϕ−1(0)) ⊂
ϕ−1(0), we get that the degree of f is equal to 1, so ` = 1, which is excluded.

�

We have the following immediate consequence of Proposition 4.

Corollary 5. Let L be a finite extension of Fp(z) in Fp((z)). Assume
that gcd(`, p) = 1 and that the endomorphism φ` of Fp((z)) defined by
φ`(f(z)) = f(z`) induces an endomorphism of L. Then L is a purely in-
separable extension of Fp(z).

We are now in position to prove Theorem 2.
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Proof of Theorem 2. Let L be the finite extension of Fp(z) generated by
f(z), f(z`), . . . , f(z`

n−1
). The Mahler equation satisfied by f(z) ensures that

φ` induces a field endomorphism of L. Corollary 5 implies that L is a purely
inseparable extension of Fp(z). So f(z)p

m belongs to Fp(z) for somem ∈ Z≥0.
We deduce from this and from the equality f(z)pm = f(zp

m
) that f(z) itself

belongs to Fp(z). �

4. 2nd Step - Factorization of Mahler operators

We denote by Q((z))b the field made of the formal series f(z) =∑
k∈Z fkz

k ∈ Q((z)) whose coefficients belong to some finitely generated
Z-subalgebra of Q. We set Q[[z]]b = Q((z))b ∩Q[[z]].

More generally, consider the field of Puiseux series ∪d≥1Q((zd)) where
zdd = z. We denote by Q((zd))b the field made of the formal series f(zd) =∑

k∈Z fkz
k
d ∈ Q((zd)) whose coefficients belong to some finitely generated

Z-subalgebra of Q. We set Q[[zd]]b = Q((zd))b ∩Q[[zd]].
In this section, we denote by

L = an(z)φ
n
` + an−1(z)φ

n−1
` + · · ·+ a0(z)

the operator associated to the equation

an(z)f(z
`n) + an−1(z)f(z

`n−1
) + · · ·+ a0(z)f(z) = 0

with a0(z), . . . , an(z) ∈ Q((z))b and a0(z)an(z) 6= 0 (see Section 2). In order
to simplify the notations, we will assume that an(z) = 1.

The aim of this section is to prove the following result.

Theorem 6. The operator L admits a factorization of the form

L = (φ` − gn) · · · (φ` − g1)

with g1, . . . , gn ∈ Q((zd))b for some integer d ≥ 1.

This result will be proved at the very end of this section, after some
lemmas. We first introduce some notations and terminologies.

Let a, r, with r 6= 0, be elements of some difference field extension of
(Q((z)), φ`) such that φ`(r) = ar. We will denote by L[r] the operator
defined by

L[r] := r−1Lr =

n∑
i=0

aφ`(a) · · ·φi−1` (a)aiφ
i
`,

so that L[r](f) = 0 if and only if L(rf) = 0. For instance :
– for any µ ∈ Q, we consider θµ = z

µ
`−1 so that φ`(θµ) = zµθµ and

L[θµ] =

n∑
i=0

z(1+`+···+`
i−1)µaiφ

i
`;

– for any c ∈ C×, we consider ec such that φ`(ec) = cec so that

L[ec] =
n∑
i=0

ciaiφ
i
`.
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We define the Newton polygon N (L) of L as the convex hull in R2 of

{(i, j) ∈ Z× R | j ≥ vz(an−i)}

where vz : ∪d≥1Q((zd))→ Q∪{+∞} denotes the z-adic valuation. This poly-
gon is made of two vertical half lines and of k vectors (r1, d1), . . . , (rk, dk) ∈
N∗ ×Q having pairwise distinct slopes, called the Newton-slopes of L.

Lemma 7. There exists an unique µ1 ∈ Q such that the greatest Newton-
slope of L[θµ1 ] is 0.

Proof. The fact that the greatest Newton-slope of L[θµ1 ] is 0 means that, for
all i ∈ {1, . . . , n},

vz(ai) + (1 + `+ · · ·+ `i−1)µ1 ≥ vz(a0)

and that this inequality is an equality for some i ∈ {1, . . . , n}. It is easily
seen that there exists an unique µ1 ∈ Q with these properties. �

Set L[θµ1 ] =
∑n

i=0 biφ
i
` with b0, . . . , bn ∈ Q((zd))b. Let c1 ∈ Q× be a root

of the polynomial
∑n

i=0

(
biz
−vz(b0)

)
|z=0

Xi ∈ Q[X] (which has degree ≥ 1

and non zero constant coefficient). Let d1 ∈ Z≥1 be a denominator of µ1.

Lemma 8. There exists f1 ∈ 1 + zd1Q[[zd1 ]]b such that L(θµ1ec1f1) = 0.

Proof. We set µ = µ1, c = c1, d = d1 and L[θµ] =
∑n

i=0 biφ
i
` with bi =∑

j bi,jz
j
d ∈ Q((zd))b. Using the fact that the greatest Newton-slope of L is

0, we see that, up to left multiplication of L by some element of Q((zd))
×
b ,

we can assume that b0, . . . , bn ∈ Q[[zd]]b and b0,0 6= 0. For f =
∑

k≥0 fkz
k
d ∈

1 + zdQ[[zd]], we have

L(θµecf) = θµec
∑
i,j,k≥0

bi,jc
ifkz

j+k`i

d = 0

if and only if, for all m ∈ Z≥0,

(4)
∑
i,j,k≥0

j+k`i=m

bi,jc
ifk = 0.

This equation is automatically satisfied for m = 0 because∑
i,j,k≥0

j+k`i=0

bi,jc
ifk =

(∑
i

bi,0c
i

)
f0

and
∑

i bi,0c
i = 0 by definition of c. Form > 0, equation (4) can be rewritten

as follows ∑
i,j,k≥0

k<m, j+k`i=m

bi,jc
ifk = −b0,0fm

so that the coefficients of f are (uniquely) recursively determined, and belong
to the finitely generated Z-algebra R[c, b−10,0] where R is a finitely generated
Z-algebra containing the bi,j . �
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Lemma 9. We have
L = L2(φ` − g1)

for some g1 ∈ Q((zd1))b and some operator L2 ∈ Q((zd1))b〈φ`〉.

Proof. The operators L and φ`(f1)(φ` − zµ1c1)f−11 = φ` − zµ1c1φ`(f1)f−11
annihilate θµ1ec1f1. The result follows by euclidean division of the former
by the later. �

Proof of Theorem 6. Follows from a repeated application of the previous
lemma. �

5. 3rd Step - Formal triviality : from characteristic p > 0 to
characteristic 0

In this section, we denote by

L = an(z)φ
n
` + an−1(z)φ

n−1
` + · · ·+ a0(z)

the operator associated to the equation

(5) an(z)f(z
`n) + an−1(z)f(z

`n−1
) + · · ·+ a0(z)f(z) = 0

with a0(z), . . . , an(z) ∈ Q(z) and a0(z)an(z) 6= 0 (see Section 2).
We can reduce the coefficients a0, . . . , an modulo almost all prime numbers

p. These reductions, denoted a0,p, . . . , an,p, belong to Fp(z). We denote by
Lp the reduction of L modulo p :

Lp = an,p(z)φ
n
` + an−1,p(z)φ

n−1
` + · · ·+ a0,p(z),

which is associated to the equation

(6) an,p(z)f(z
`n) + an−1,p(z)f(z

`n−1
) + · · ·+ a0,p(z)f(z) = 0.

Proposition 10. Assume that, for almost all prime p, the equation (6) has
n linearly independent solutions in ∪d≥1Fp((zd)). Then, equation (5) has n
linearly independent solutions in ∪d≥1Q((zd))b.

Proof. We can assume that an(z) = 1. We know from Theorem 6 that
L = (φ` − fn) · · · (φ` − f1) with f1, . . . , fn ∈ ∪d≥1Q((zd))

×
b . Let K be a

number field and R be a finitely generated Z-subalgebra of K such that
f1, . . . , fn ∈ ∪d≥1R[[zd]][z−1d ]. For almost all prime p of K, R is contained
in the valuation subring of K at p, and hence we can reduce the coefficients
of f1, . . . , fn modulo p. These reductions, denoted f1,p, . . . , fn,p, belong to
∪d≥1κp((zd)) where κp is the residue field ofK at p, which is a finite extension
of the prime field Fp of κp.

We will denote by Lp the reduction of L modulo p i.e. Lp = Lp.
By hypothesis, for almost all prime p of K, the equation Lpy = 0

has n Fp−linearly independent solutions in ∪d≥1Fp((zd)) and hence in
∪d≥1κp((zd)), so

(1p) (φ` − fn,p)y = 0 has a solution y1,1 ∈ ∪d≥1κp((zd))×;
(2p) y1,1 = (φ` − fn−1,p)y has a solution y2,1 ∈ ∪d≥1κp((zd)) and (φ` −
fn−1,p)y = 0 has a solution y2,2 ∈ ∪d≥1κp((zd))×;
· · · · · · · · ·
(np) for all i ∈ {1, . . . , n − 1}, yi,n−1 = (φ` − f1,p)y has a solution yi,n ∈
∪d≥1κp((zd)) and (φ` − f1,p)y = 0 has a solution y1,n ∈ ∪d≥1κp((zd))×.
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In order to prove that Ly = 0 has n Q-linearly independent solutions in
∪d≥1Q((zd)), we have to prove that L satisfies the properties similar to (1p)–
(np) above obtained by replacing Lp by L and κp((zd)) by Q((zd))b. This
follows clearly from the following lemmas. In what follows, we denote by
cld(f) the coefficient of the term of the lowest degree of f ∈ ∪d≥1Q((zd))

×,
so that f = cld(f)zvz(f)f̃ where f̃ ∈ ∪d≥1(1 + zdQ[[zd]]) and where vz(f)
is the z-adic valuation of f . We use a similar notation for the elements of
∪d≥1κp((zd)).

Lemma 11. We have cld(f1) = · · · = cld(fn) = 1.

Proof. According to properties (1p)–(np), for almost all prime p ofK, we have
(φ` − fi,p)yi,p = 0 for some yi,p ∈ ∪d≥1κp((zd))×. So fi,p = φ`(yi,p)/yi,p and
hence cld(fi,p) =

cld(φ`(yi,p))
cld(yi,p)

= 1. But, for almost all prime p of K, cld(fi,p)
is equal to the reduction of cld(fi) modulo p. Hence cld(fi) = 1. �

Lemma 12. Consider f ∈ ∪d≥1R[[zd]][z−1d ] with f 6= 0 and cld(f) = 1.
Then, the equation 0 = (φ`−f)y has a non zero solution in ∪d≥1R[[zd]][z−1d ].

Proof. Let ν = vz(f) so that f = zν f̃ with f̃ ∈ ∪d≥1(1 + zdR[[zd]]). Then
r = z

ν
`−1
∏
j≥0 φ

j
`(f̃)

−1 ∈ zQ∪d≥1 (1+ zdR[[zd]]) is such that φ`(r) = fr. �

Lemma 13. Consider f, g ∈ ∪d≥1R[[zd]][z−1d ] with f 6= 0 and cld(f) = 1.
For almost all prime p of K, we denote by fp and gp the reductions of f and
g modulo p. Assume that, for almost all prime p of K, the equation gp =
(φ` − fp)y has a solution in ∪d≥1κp((zd)). Then, the equation g = (φ` − f)y
has a solution in ∪d≥1R[[zd]][z−1d ].

Proof. Let ν = vz(f) so that f = zν f̃ with f̃ ∈ ∪d≥1(1 + zdR[[zd]]). Then
r = z

ν
`−1
∏
j≥0 φ

j
`(f̃)

−1 ∈ zQ ∪d≥1 (1 + zdR[[zd]]) is such that φ`(r) = fr.
Using the change of unknown function rỹ = y, we see that
– g = (φ` − f)y has solution y ∈ ∪d≥1R[[zd]][z−1d ] if and only if g̃ =

(φ` − 1)ỹ has solution in ∪d≥1R[[zd]][z−1d ], where g̃ = g/(rf);
– for almost all prime p of K, gp = (φ` − fp)y has a solution y ∈
∪d≥1κp((zd)) if and only if g̃p = (φ` − 1)y has a solution ỹ ∈
∪d≥1κp((zd)), where g̃p is the reduction modulo p of g̃ = g/(rf).

Therefore, we can assume that f = 1.
So, we suppose that, for almost all prime p of K, gp = (φ` − 1)y has

a solution in ∪d≥1κp((zd)). It follows that gp has no constant term and
that

∑
j≥0 φ

j
`(gp), which is a priori an element of ∪d≥1κp[[zd, z−1d ]], belongs

to ∪d≥1κp[[zd]][z−1d ] = ∪d≥1κp((zd)). What precedes implies that g has no
constant term. Moreover, the set {ai | i ∈ Z<0} of coefficients of the terms
of negative degree of

∑
j≥0 φ

j
`(g) =:

∑
i∈Z aiz

i
d′ (for some d′ ∈ Z>0) is easily

seen to be finite. But, as noticed above, for almost all prime p of K, aj =
0 modulo p provided that j << 0. Therefore, aj = 0 for j << 0 and
hence

∑
j≥0 φ

j
`(g) belongs to R[[zd′ ]][z

−1
d′ ]. We conclude by noticing that∑

j≥0 φ
j
`(g) is a solution of g = (φ` − 1)y. �

�
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6. Conclusion - Proof of Theorem 1

According to Proposition 10, equation (1) has n Q-linearly independent
solutions y1, . . . , yn ∈ ∪d≥1Q((zd))b. Let K be a number field and R be a
finitely generated Z-subalgebra of K such that y1, . . . , yn ∈ ∪d≥1R[[zd]][z−1d ].
For almost all prime p of K, we can reduce the coefficients of y1, . . . , yn
modulo p. These reductions, denoted y1,p, . . . , yn,p, belong to ∪d≥1κp((zd))
where κp is the residue field of K at p and are n Fp-linearly independent
solutions of equation (2), for almost all prime p of K.

On the other hand, by hypothesis, for almost all prime p, equation (2) has
n Fp-linearly independent solutions in Fp((z)) algebraic over Fp(z). Theo-
rem 2 ensures that, for almost all prime p, equation (2) has n Fp-linearly
independent solutions in Fp(z).

Therefore, for almost all prime p of K, y1,p, . . . , yn,p belong to Fp(z). Now,
Adamczewski and Bell’s [1, Lemma 5.3] ensures that y1, . . . , yn ∈ Q(z). This
concludes the proof.

References

[1] B. Adamczewski and J. P. Bell, A problem around Mahler functions. 2013.
[2] J. P. Bell, M. Coons and E. Rowland, The rational-transcendental dichotomy

of Mahler functions. J. Integer Seq. 16 (2013), no. 2, Article 13.2.10, 11 pp.
[3] L. Di Vizio, Arithmetic theory of q-difference equations: the q-analogue of

Grothendieck-Katz’s conjecture on p-curvatures. Invent. Math. 150 (2002), no. 3,
517–578.

[4] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathematics, No. 52.
Springer-Verlag, New York-Heidelberg, 1977.

[5] N. M. Katz, Nilpotent connections and the monodromy theorem: Applications of a
result of Turrittin. Inst. Hautes Études Sci. Publ. Math. No. 39 (1970), 175–232.

[6] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktion-
algleichungen. Math. Ann. 103 (1930), no. 1, 532.

[7] K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendente
funktionen. Math. Z. 32 (1930), no. 1, 545–585.

[8] K. Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in
speziellen Punktfolgen. Math. Ann. 103 (1930), no. 1, 573–587.

[9] K. Nishioka, Mahler functions and transcendence, volume 1631 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1996.

[10] H. L. Schmid, Über die automorphismen eines algebraischen Funktionenkörpers von
Primzahlcharakteristik. J. Reine Angew. Math. 179 (1938), 5–15.

Institut Fourier, Université Grenoble 1, CNRS UMR 5582, 100 rue des
Maths, BP 74, 38402 St Martin d’Hères

E-mail address: Julien.Roques@ujf-grenoble.fr


	1. Introduction
	2. Notations
	3. 1st Step - Algebraic vs rational solutions in characteristic p>0
	4. 2nd Step - Factorization of Mahler operators
	5. 3rd Step - Formal triviality : from characteristic p>0 to characteristic 0
	6. Conclusion - Proof of Theorem 1
	References

