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Abstract. In the present paper, we use Galois theory of difference equations to study the
nature of the generating series of (weighted) walks in the quarter plane with genus zero kernel.

Using this approach, we are able to prove that the generating series do not satisfy any nontrivial

nonlinear algebraic differential equation with rational coefficients.
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Introduction

The nature of the generating series of lattice walks in the quarter plane has garnered much
interest in recent years. In [DHRS17a] we introduced a new method that allowed us to determine,
in a large number of cases, which of these are differentially algebraic, that is, satisfy a nontrivial
polynomial differential equation with rational function coefficients, and which are differentially
transcendental, that is not differentially algebraic. The present paper is a continuation of this
research.

In [BMM10], Bousquet-Mélou and Mishna considered the 256 lattice walks in the quarter plane
whose step set is a subset of {−1, 0, 1}2\{(0, 0)} (see also [Mis09]). After taking symmetries into
consideration and eliminating those equivalent to walks on the half plane, they considered the
remaining 79 walks. Following [FIM99], the authors associated to each walk an algebraic curve
together with a group of birational automorphisms and classified the walks accordingly. They
found that 23 of these walks were associated with a finite group and showed that for all but
one of these, the generating series was holonomic; the remaining one was shown to have the
same property by Bostan, van Hoeij and Kauers in [BvHK10]. In their paper, Bousquet-Mélou
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and Mishna conjectured that the 56 walks whose associated group is infinite are not holonomic.
These 56 walks may be divided into 5 whose associated curve has genus zero and 51 whose
associated curve has genus one. In [MR09], Mishna and Reichnitzer showed that the generating
series for two of the genus zero walks are not holonomic and in [MM14] Melczer and Mishna
showed that this remained true for all 5 of the genus zero walks (see also [FR11]). In [KR12],
Kurkova and Raschel showed that the 51 genus one walks with infinite group have nonholonomic
generating series (see also [BRS14, Ras12]). Recently, Bernardi, Bousquet-Mélou and Raschel
[BBMR15, BBMR17] have shown that 9 of these 51 have differentially algebraic generating series
despite the fact that they are not holonomic.

In [DHRS17a], we introduced a new approach to these problems that allowed us to show that,
except for the 9 exceptional walks of [BBMR15, BBMR17], the generating series of genus one
walks with infinite groups are x- and y-differentially transcendental, that is, satisfy no polynomial
partial differential equation involving only x-derivatives or only y-derivatives with coefficients
that are rational functions of all the independent variables. This reproves and generalizes the
results of [KR12]. Furthermore our results allowed us to show that the 9 exceptional series
are not holonomic but are x- and y-differentially algebraic, recovering some of the results of
[BBMR15, BBMR17].

In the present paper we consider the 5 remaining walks corresponding to genus zero walks with
infinite group and we show that these are also x- and y-differentially transcendental, reproving
and generalizing the work of Melczer and Mishna, see Theorem 4.1. In fact, we consider in full
generality weighted walks for these 5 cases and show that this conclusion is true for these. These
walks arise from the following 5 sets of steps:

Our strategy of proof is to associate to each of the generating series of these walks a function
meromorphic on C. These associated functions satisfy first order difference equations of the form
y(qx) − y(x) = b(x) for a suitable q ∈ C and b(x) a rational function on C. The associated
functions are differentially transcendental if and only if the generating series are differentially
transcendental. We then use criteria that state that if these associated functions were differ-
entially algebraic then the b(x) must themselves satisfy b(x) = h(qx) − h(x) for some rational
functions h(x) on C. This latter condition puts severe limitations on the poles of the b(x) and, by
analyzing the b(x) that arise, we show that these restrictions are not met. Therefore the generat-
ing series are not differentially algebraic, see Theorem 4.1. Note that some models of unweighted
walks in dimension 3, happen to be, after projection, equivalent to models of 2D weighted walks
[BBMKM16, DHW16]. We apply our theorem in this setting as well. We note that finding the
difference equation y(qx) − y(x) = b(x) and the remaining calculations involve only algebraic
computations as is true in [DHRS17a]. The general approach followed in the present work is
inspired by [DHRS17a] but the details are quite different and justify an independent exposition.

The rest of the paper is organized as follows. In Section 1 we present basic notions concerning
generating series for walks, their associated curves and classify those walks whose associated
curves have genus zero. Curves of genus zero can be parameterized by birational maps from
P1(C). In Section 2 we present parameterizations suitable for our needs. The generating series
converge for small values and for these values can be restricted to the curve of the walk. Using our
parameterizations we can pull these back to analytic functions on an open set on C. In Section 3,
we show how these can be continued to meromorphic functions on C and show that they satisfy
simple q-difference equations of the form y(qx) − y(x) = b(x) in this domain. In addition we
present necessary conditions on the poles of b when these equations have differentially algebraic
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solutions. Finally in Section 4, we show that these necessary conditions do not hold for weighted
genus zero walks.

Acknowledgments The authors would like to thanks Kilian Raschel for pointing out many
references related to this work.

1. Genus zero and singularities

1.1. Weighted walks and their generating series. This paper is concerned with weighted
walks with small steps in the quarter plane Z2

≥0. More explicitly, we let (di,j)(i,j)∈{0,±1}2 be a

family of elements of Q ∩ [0, 1] such that
∑
i,j di,j = 1 and we consider the walk in the quarter

plane Z2
≥0 satisfying the following properties :

• it starts at (0, 0),

• it has steps in { , , , , , , , } – these steps will be identified with pairs (i, j) ∈
{0,±1}2\{(0, 0)},

• it goes to the direction (i, j) ∈ {0,±1}2\{(0, 0)} (resp. stays at the same position) with
probability di,j (resp. d0,0).

The di,j are called the weights of the walk. This walk is unweighted if d0,0 = 0 and if the nonzero
di,j all have the same value.

For any (i, j) ∈ Z2
≥0 and any k ∈ Z≥0, we let qi,j,k be the probability for the walk to be reach

the position (i, j) from the initial position (0, 0) after k steps. We introduce the corresponding
trivariate generating series∗

Q(x, y, t) :=
∑

i,j,k≥0

qi,j,kx
iyjtk.

It is easily seen that, for any k ∈ Z≥0, |qi,j,k| ≤
∑
i,j≥0 |qi,j,k| ≤ (

∑
i,j≥0 |di,j |)k = 1. From this,

one sees that Q(x, y, t) converges for all (x, y, t) ∈ C3 such that |x| < 1, |y| < 1 and |t| ≤ 1.

1.2. Kernel and functional equation. The Kernel of the walk is defined by

K(x, y, t) := xy(1− tS(x, y))

where

S(x, y) =
∑

(i,j)∈{0,±1}2 di,jx
iyj

= A−1(x) 1
y +A0(x) +A1(x)y

= B−1(y) 1
x +B0(y) +B1(y)x,

and Ai(x) ∈ x−1Q[x], Bi(y) ∈ y−1Q[y]. Similarly to [FIM99, Section 1], we may prove that the
generating series Q(x, y, t) satisfies the following functional equation:

(1.1) K(x, y, t)Q(x, y, t) = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t)

where

F 1(x, t) := K(x, 0, t)Q(x, 0, t), F 2(y, t) := K(0, y, t)Q(0, y, t).

∗In several papers as [BMM10], it is not assumed that
∑

i,j di,j = 1. But after a rescaling of the t variable,

we may always reduce to the case
∑

i,j di,j = 1.
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1.3. Nondegenerate walks. From now on, let us fix 0 < t < 1 with t /∈ Q†. The algebraic
curve K(x, y, t) = 0 will play a crucial role in this paper, and we need to discard some degenerate
cases. Following [FIM99], we have the following definition.

Definition 1.1. A walk is called degenerate if one of the following holds:

• K(x, y, t) is reducible as an element of the polynomial ring C[x, y],
• K(x, y, t) the has x-degree less than or equal to 1,
• K(x, y, t) the has y-degree less than or equal to 1.

The following lemma is the analog of [FIM99, Lemma 2.3.2] in our setting.

Proposition 1.2. A walk is degenerate if and only if at least one of the following holds:

(1) There exists i ∈ {−1, 1} such that di,−1 = di,0 = di,1 = 0. This corresponds to walks
with steps supported in one of the following configurations

(2) There exists j ∈ {−1, 1} such that d−1,j = d0,j = d1,j = 0. This corresponds to walks
with steps supported in one of the following configurations

(3) All the weights are 0 except maybe {d1,1, d0,0, d−1,−1} or {d−1,1, d0,0, d1,−1}. This corre-
sponds to walks with steps supported in one of the following configurations

Proof. This proof is organized as follows. We begin by showing that (1) (resp. (2)) corresponds
to K(x, y, t) having x-degree ≤ 1 or x-valuation ≥ 1 (resp. y-degree ≤ 1 or y-valuation ≥ 1).
In these cases, the walk is clearly degenerate. Assuming (1) and (2) do not hold, we then show
that (3) holds if and only if K(x, y, t) is reducible.

Cases (1) and (2). It is clear that K(x, y, t) has x-degree ≤ 1 if and only if

d1,−1 = d1,0 = d1,1 = 0. Similarly, K(x, y, t) has y-degree ≤ 1 if and only if d−1,1 = d0,1 =
d1,1 = 0. Furthermore, d−1,−1 = d−1,0 = d−1,1 = 0 if and only if K(x, y, t) has x-valuation ≥ 1.
Similarly, d−1,−1 = d0,−1 = d1,−1 = 0 if and only if K(x, y, t) has y-valuation ≥ 1. In these
cases, the walk is clearly degenerate.

Case (3).We now assume that cases (1) and (2) do not hold.

If the walk has steps supported in
{

,
}

(note that this implies that d1,1 6= 0), then the

kernel

K(x, y, t) = −d−1,−1t+ xy − d0,0txy − d1,1tx2y2 ∈ C[xy]

is a degree two polynomial in xy. Thus it may be factorized in the following form
K(x, y, t) = −d1,1t(xy − α)(xy − β) for some α, β ∈ C. If the walk has steps supported in{

,
}

, then

K(x, y, t) = −d−1,1ty2 + xy − d0,0txy − d1,−1tx2.
In this situation, K(x, y, t)y−2 ∈ C[x/y] may be factorized in the ring C[x/y], proving that
K(x, y, t) may be factorized in C[x, y] as well.

†In this paper, we have assumed that the di,j belong to Q, but everything stay true, if we assume that di,j
are positive real numbers and that t is transcendental over the field Q(di,j).
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Conversely, let us assume that the walk is degenerate. Remind that we have assumed that
cases (1) and (2) do not hold, so K(x, y, t) has x- and y-degree 2, x- and y-valuation 0, and is

reducible. We have to prove that the walk has step supported by
{

,
}

or
{

,
}

. Let us

write a factorization

K(x, y, t) = −f1(x, y)f2(x, y),

with f1(x, y), f2(x, y) ∈ C[x, y] not constant.
We claim that both f1(x, y) and f2(x, y) have bidegree (1, 1). Suppose to the contrary that
f1(x, y) or f2(x, y) does not have bidegree (1, 1). Since K is of bidegree at most (2, 2) then at
least one of the fi’s has degree 0 in x or y. Up to interchange of x and y and f1 and f2, we may
assume that f1(x, y) has y-degree 0 and we denote it by f1(x). Since K(x, y, t) = −f1(x)f2(x, y),
we find in particular that f1(x) is a common factor of the nonzero polynomials d−1,−1t +
d0,−1tx + d1,−1tx

2 and d−1,0t+ (d0,0t− 1)x+ d1,0tx
2 (these polynomials are non-zero because

we are not in Cases (1) and (2) of Proposition 1.2). Since t is transcendental and the di,j are
algebraic, we find that the roots of d−1,−1t+ d0,−1tx+ d1,−1tx

2 = 0 are algebraic, while the roots
of d−1,0t+ (d0,0t− 1)x+ d1,0tx

2 = 0 are transcendental. Therefore, they are polynomials with
no common roots, and must be relatively prime, showing that f1(x) has degree 0, i.e., f1(x) ∈ C.
This contradicts f1(x, y) not constant and shows the claim.
We claim that f1(x, y) and f2(x, y) are irreducible in the ring C[x, y]. If not, then we find
f1(x, y) = (ax− b)(cy − d) for some a, b, c, d ∈ C. Since f1(x, y) has bidegree (1, 1), we have
ac 6= 0. We then have that

0 = K(b/a, y, t) =
b

a
y − t(Ã−1(

b

a
) + Ã0(

b

a
)y + Ã1(

b

a
)y2)

where Ãi = xAi ∈ Q[x]. Equating the y2-terms we find that Ã1( ba ) = 0 so b
a ∈ Q (note that

Ã1(x) is nonzero because K(x, y, t) has bidegree (2, 2)). Equating the y-terms, we obtain that
b
a − tÃ0( ba ) = 0. Using t 6∈ Q and b

a ∈ Q we deduce b
a = 0. Therefore b = 0. This contradicts

the fact that K has x-valuation 0. A similar argument shows that f2(x, y) is irreducible.
Let f i(x, y) denote the polynomial whose coefficients are the complex conjugates of those

of fi(x, y). Unique factorization of polynomials implies that since f(x, y) = f1(x, y)f2(x, y) =
f1(x, y)f2(x, y), there exists λ ∈ C∗ such that

• either f1(x, y) = λf2(x, y) and f2(x, y) = λ−1f1(x, y);
• or f1(x, y) = λf1(x, y) and f2(x, y) = λ−1f2(x, y).

In the former case, we have f1(x, y) = λ f2(x, y) = λλ−1f1(x, y) and so λλ−1 = 1. This
implies that λ is real and replacing f1(x, y) by |λ|−1/2f1(x, y) and f2(x, y) by |λ|1/2f2(x, y), we
can assume that either f1(x, y) = f2(x, y) and f2(x, y) = f1(x, y) or f1(x, y) = −f2(x, y) and
f2(x, y) = −f1(x, y).

A similar computation in the latter case shows that |λ| = 1. Letting µ be a square root of λ
we have µ−1 = µ so λ = µ/µ. Replacing f1(x, y) by µf1(x, y) and f2(x, y) by µf2(x, y), we can
assume that f1(x, y) = f1(x, y) and f2(x, y) = f2(x, y).

To summarize, we have two possibilities:

• there exists ε ∈ {±1} such that f1(x, y) = εf2(x, y), or
• f1(x, y) = f1(x, y) ∈ R[x, y] and f2(x, y) = f2(x, y) ∈ R[x, y].

For i = 1, 2, let us write

fi(x, y) = (αi,4x+ αi,3)y + (αi,2x+ αi,1),
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with αi,j ∈ C. Equating the terms in xiyj with −1 ≤ i, j ≤ 1, in f1(x, y)f2(x, y) = −K(x, y, t),
we find (recall that di,j ∈ [0, 1], t ∈]0, 1[)

term coefficient in f1(x, y)f2(x, y) coefficient in −K(x, y, t)
1 α1,1α2,1 d−1,−1t ≥ 0
x α1,2α2,1 + α1,1α2,2 d0,−1t ≥ 0
x2 α1,2α2,2 d1,−1t ≥ 0
y α1,3α2,1 + α1,1α2,3 d−1,0t ≥ 0
xy α1,4α2,1 + α1,3α2,2 + α1,2α2,3 + α1,1α2,4 d0,0t− 1 < 0
x2y α1,4α2,2 + α1,2α2,4 d1,0t ≥ 0
y2 α1,3α2,3 d−1,1t ≥ 0
xy2 α1,4α2,3 + α1,3α2,4 d0,1t ≥ 0
x2y2 α1,4α2,4 d1,1t ≥ 0

Let us treat separately two cases.

Case 1: f1(x, y), f2(x, y) /∈ R[X,Y ]. So, in this case we have either f1(x, y) = f2(x, y) or
f1(x, y) = −f2(x, y) .

Let us first assume that f1(x, y) = f2(x, y). Then, evaluating the equality K(x, y, t) =
−f1(x, y)f2(x, y) at x = y = 1, we get the equality K(1, 1, t) = −f1(1, 1)f2(1, 1) = −|f1(1, 1)|2.
But this is impossible because the left-hand term K(1, 1, t) = 1 − t

∑
i,j∈{−1,0,1}2 di,j = 1 − t is

> 0 whereas the right-hand term −|f1(1, 1)|2 is ≤ 0.
Let us now assume that f1(x, y) = −f2(x, y). Equating the constant terms in the equality

f1(x, y)f2(x, y) = −K(x, y, t), we get −|α1,1|2 = d−1,−1t, so α1,1 = α2,1 = d−1,−1 = 0. Equating
the coefficients of x2 in the equality f1(x, y)f2(x, y) = −K(x, y, t), we get −|α1,2|2 = d1,−1t, so
α1,2 = α2,2 = d1,−1 = 0. It follows that the y-valuation of f1(x, y)f2(x, y) = −K(x, y, t) is ≥ 2,
whence a contradiction.

Case 2: f1(x, y), f2(x, y) ∈ R[X,Y ]. We first claim that, after possibly replacing f1(x, y) by
−f1(x, y) and f2(x, y) by −f2(x, y), we may assume that α1,4, α2,4, α1,3, α2,3 ≥ 0.

Let us first assume that α1,4α2,4 6= 0. Since α1,4α2,4 = d1,1t ≥ 0, we find that α1,4, α2,4

belong simultaneously to R>0 or R<0. After possibly replacing f1(x, y) by −f1(x, y) and f2(x, y)
by −f2(x, y), we may assume that α1,4, α2,4 > 0. Since α1,3α2,3 = d−1,1t ≥ 0, we have that
α1,3, α2,3 belong simultaneously to R≥0 or R≤0. Then, the equality α1,4α2,3+α1,3α2,4 = d0,1t ≥ 0
implies that α1,3, α2,3 ≥ 0.

We can argue similarly in the case α1,3α2,3 6= 0.
It remains to consider the case α1,4α2,4 = α1,3α2,3 = 0. After possibly replacing f1(x, y) by

−f1(x, y) and f2(x, y) by −f2(x, y), we may assume that α1,4, α2,4 ≥ 0. The case α1,4 = α1,3 = 0
is impossible because, otherwise, we would have d1,1 = d−1,1 = d0,1 = 0, which is excluded.
Similarly, the case α2,4 = α2,3 = 0 is impossible. So, we are left with the cases α1,4 = α2,3 = 0
or α2,4 = α1,3 = 0. In both cases, the equality α1,4α2,3 + α1,3α2,4 = d0,1t ≥ 0 implies that
α1,4, α2,4, α1,3, α2,3 ≥ 0.

Arguing as above, we see that α1,2, α2,2, α1,1, α2,1 all belong to R≥0 or R≤0.
Using the equation of the xy-coefficients, we find that α1,2, α2,2, α1,1, α2,1 are all in R≤0.
Now, equating the coefficients of x2y in the equality f1(x, y)f2(x, y) = −K(x, y, t) we get
α1,4α2,2 + α1,2α2,4 = d1,0t. Using the fact that α1,4α2,2, α1,2α2,4 ≤ 0 and that d1,0t ≥ 0,
we get α1,4α2,2 = α1,2α2,4 = d1,0 = 0. Similarly, using the coefficients of y, we get
α1,3α2,1 = α1,1α2,3 = d−1,0 = 0.
So, we have

α1,4α2,2 = α1,2α2,4 = α1,3α2,1 = α1,1α2,3 = 0.



ON THE NATURE OF GENERATING SERIES 7

The fact that K(x, y, t) has x- and y-degree 2 and x- and y-valuation 0 implies that, for any
i ∈ {1, 2}, none of the vectors (αi,4, αi,3), (αi,2, αi,1), (αi,4, αi,2) and (αi,3, αi,1) is (0, 0). Since
α1,4α2,2 = 0, we have α1,4 = 0 or α2,2 = 0. If α1,4 = 0, from what precedes, we find

α1,4 = α2,4 = α2,1 = α1,1 = 0.

If α2,2 = 0 we obtain
α2,2 = α1,2 = α1,3 = α2,3 = 0.

In the first case, the walk has steps supported by
{

,
}

. In the second case, we find that the

walk has steps supported by
{

,
}

. This completes the proof. �

Remark 1.3. The “degenerate walks”are called “singular” by certain authors, e.g., in [FIM99].
Note also that, in [KR12], “singular walks” has a different meaning and refers to walks such that
the associated Kernel defines a genus zero curve.

In what follows, we always assume that the walk is not degenerate. This only discards one
dimensional problems and walks in the half-plane restricted to the quarter plane that are more
easy to study, as explained in [BMM10, Section 2.1].

1.4. The algebraic curve defined by the Kernel. The Kernel curve Et is defined as the
zero set in P1(C)× P1(C) of the following homogeneous polynomial

(1.2) K(x0, x1, y0, y1, t) = x0x1y0y1 − t
2∑

i,j=0

di−1,j−1x
i
0x

2−i
1 yj0y

2−j
1 = x21y

2
1K(

x0
x1
,
y0
y1
, t).

We will now study the Kernel curve.

For any [x0 : x1] and [y0 : y1] in P1(C), we denote by ∆x
[x0:x1]

and ∆y
[y0:y1]

the discriminants

of the degree 2 homogeneous polynomials given by y 7→ K(x0, x1, y, t) and x 7→ K(x, y0, y1, t)
respectively, i.e.,

∆x
[x0:x1]

= t2
(

(d−1,0x
2
1 −

1

t
x0x1 + d0,0x0x1 + d1,0x

2
0)2

− 4(d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0)(d−1,−1x

2
1 + d0,−1x0x1 + d1,−1x

2
0)
)

and

∆y
[y0:y1]

= t2
(

(d0,−1y
2
1 −

1

t
y0y1 + d0,0y0y1 + d0,1y

2
0)2

− 4(d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0)(d−1,−1y

2
1 + d−1,0y0y1 + d−1,1y

2
0)
)
.

Lemma 1.4. The following facts are equivalent:

(1) the curve Et is a genus zero curve;
(2) the curve Et has exactly one singularity Ω ∈ Et;
(3) there exists ([a : b], [c : d]) ∈ Et such that the discriminants ∆x

[x0:x1]
and ∆y

[y0:y1]
have a

root in [a : b] ∈ P1(C) and [c : d] ∈ P1(C) respectively;
(4) there exists ([a : b], [c : d]) ∈ Et such that the discriminants ∆x

[x0:x1]
and ∆y

[y0:y1]
have a

double root in [a : b] ∈ P1(C) and [c : d] ∈ P1(C) respectively.

If these properties are satisfied, then the singular point is Ω = ([a : b], [c : d]) where [a : b] ∈ P1(C)
is a double root of ∆x

[x0:x1]
and [c : d] ∈ P1(C) is a double root of ∆y

[y0:y1]
. If the previous properties

are not satisfied, then the curve Et is a genus one curve.
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Proof. The curve Et is of bidegree (2, 2) in P1(C)× P1(C), which we can identify with a nonsin-
gular quadric surface in P3(C). By [Har77, Exercise 5.6, Page 231-232 and Example 3.9.2, Page
393], the genus g(C) of any irreducible curve C ⊂ P1(C)× P1(C) of bidegree (d1, d2) is given by
the following formula

(1.3) g(C) = 1 + d1d2 − d1 − d2 −
∑

P∈Sing

∑
i

mi(P )(mi(P )− 1)

2
,

where mi(P ) stands for the multiplicities of the proper preimages at all infinitely near points of
a singular point P . Thus Et is smooth if and only if Et has genus one. Moreover (1.3) shows
that if the curve is singular there is exactly one singular point that is a double point, and the
curve has genus zero. This proves the equivalence between (1) and (2).

Let us fix ([a : b], [c : d]) ∈ Et and let us prove (3) ⇒ (2). Assume that the discriminant
∆x

[x0:x1]
(resp. ∆y

[y0:y1]
) has a simple root in [a : b] ∈ P1(C) (resp. [c : d] ∈ P1(C)). Let us write

K(x0, x1, y0, y1, t)
= e−1,1(dy0 − cy1)2 +e0,1(bx0 − ax1)(dy0 − cy1)2 +e1,1(bx0 − ax1)2(dy0 − cy1)2

+ e−1,0(dy0 − cy1) +e0,0(bx0 − ax1)(dy0 − cy1) +e1,0(bx0 − ax1)2(dy0 − cy1)
+e0,−1(bx0 − ax1) +e1,−1(bx0 − ax1)2.

Since ∆x
[x0:x1]

has a simple root in [a : b] ∈ P1(C) we obtain e−1,0 = 0. Similarly, ∆y
[y0:y1]

has a simple root in [c : d] ∈ P1(C) implies e0,−1 = 0. This shows that the derivative of

K(x0, x1, y0, y1, t) with respect to [y0 : y1] and [x0 : x1] at ([a : b], [c : d]) must vanish. This
proves that ([a : b], [c : d]) is the singular point of Et.

Let us prove (2)⇒ (4). If Ω = ([a : b], [c : d]) is the singular point of Et, then e−1,0 = e0,−1 = 0,
and the discriminants ∆x

[x0:x1]
and ∆y

[y0:y1]
have a double root in [a : b] ∈ P1(C) and [c : d] ∈ P1(C)

respectively. The proof of (4) ⇒ (3) is clear. �

Walks associated to genus one curve have already been studied, see [BMM10, KR12], and
from a Galoisian point of view, see [DHRS17a]. For this reason, we will focus in this paper on
the genus zero case. Using Lemma 1.4, we see that a first step in determining nondegenerate
walks of genus zero is to determine those walks whose Kernels have discriminants having double
roots. Towards this end, we have the following lemma.

Lemma 1.5. A walk whose discriminant ∆y
[y0:y1]

has a double zero is a walk whose steps are

supported in one of the following configurations

Proof. This is the result of a computation in maple, see [DHRS17b]. For a Kernel with inde-
terminate di,j , one calculates the discriminant of the discriminant ∆y

[y0:y1]
. This is a polynomial

of degree 12 with coefficients that are polynomials in the di,j . Since t is transcendental, we set
these polynomials equal to zero and solve. This yields 8 solutions corresponding to the above
configurations. �

Using Proposition 1.2, on sees that first, third, fifth and seventh configuration in Lemma 1.5
correspond to degenerate walks. As described in [BMM10, Section 2.1], if we consider walks
corresponding to the fourth and sixth configurations we are in the situation were one of the
quarter plane constraints implies the other. The walks corresponding to the eighth configuration
never enter the quarter-plane. Therefore the only walks that we will consider are those whose
steps are supported in the second configuration of Lemma 1.5. We state this as
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Assumption 1.6. We assume that the walks under consideration have steps supported in

and are nondegenerate. In particular, the associated curve Et has genus zero. After eliminating
duplications arising from trivial cases and the interchange of x and y, these walks arise from the
following 5 sets of steps:

From now on, we assume that Assumption 1.6 is satisfied.

We need additional information about the Kernel and the zeros of ∆x
[x0:x1]

and ∆y
[y0:y1]

. Note

that ∆x
[x0:x1]

(resp. ∆y
[y0:y1]

) is of degree 4 and so has four roots a1, a2, a3, a4 (resp. b1, b2, b3, b4)

in P1(C) (taking into consideration multiplicities). By Assumption 1.6, they both have a double
root. Up to renumbering, we assume that a1 = a2 and b1 = b2. The singular point of Et is
Ω = (a1, b1).

Lemma 1.7. The singular point of Et is Ω = ([0 : 1], [0 : 1]), that is, a1 = a2 = [0 : 1] (resp.
b1 = b2 = [0 : 1]) is a double root of ∆x

[x0:x1]
(resp. ∆y

[y0:y1]
). The other roots are distinct and

are given by

a3 a4

α4(t) 6= 0

[
−α3(t)−

√
α3(t)2−4α2(t)α4(t)

2α4(t)
: 1

] [
−α3(t)+

√
α3(t)2−4α2(t)α4(t)

2α4(t)
: 1

]
α4(t) = 0 [1 : 0] [−α2(t) : α3(t)]

b3 b4

β4(t) 6= 0

[
−β3(t)−

√
β3(t)2−4β2(t)β4(t)

2β4(t)
: 1

] [
−β3(t)+

√
β3(t)2−4β2(t)β4(t)

2β4(t)
: 1

]
β4(t) = 0 [1 : 0] [−β2(t) : β3(t)]

where

α2(t) = 1− 2td0,0 + t2d20,0 − 4t2d−1,1d1,−1 β2(t) = 1− 2td0,0 + t2d20,0 − 4t2d1,−1d−1,1
α3(t) = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1 β3(t) = 2t2d0,1d0,0 − 2td0,1 − 4t2d1,0d−1,1
α4(t) = t2(d21,0 − 4d1,1d1,−1) β4(t) = t2(d20,1 − 4d1,1d−1,1).

Proof. We shall prove the lemma for ∆y
[y0:y1]

, the proof for ∆x
[x0:x1]

being similar. Since the walk

satisfies Assumption 1.6, the discriminant ∆y
[y0:y1]

has a double root at ([0 : 1]) and we can write

∆y
[y:1] = β4(t)y4 + β3(t)y3 + β2(t)y2.

Since t is transcendental and the di,j are in Q, we see that the coefficient of y2 is nonzero.
Therefore [0 : 1] is precisely a double root of ∆y

[y0:y1]
. To see that b3 and b4 are distinct, we

calculate the discriminant of ∆y
[y:1]/y

2. This is a polynomial of degree 4 in t with the following
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•

•

•

•

•

P ι2(P )

ι1(P ) σ(P )

σ−1(P )
Et

Figure 1. The maps ι1, ι2 restricted to the kernel curve Et

coefficients

term coefficient

t4 −16(4d−1,1d1,−1d1,1 − d1,−1d21,0 − d20,0d1,1 + d0,0d0,1d1,0 − d20,1d1,−1)d−1,1
t3 −16(2d0,0d1,1 − d0,1d1,0)d−1,1
t2 16d−1,1d1,1
t 0

1 0

If ∆y
[y0:y1]

has a double root different to [0 : 1], all the above coefficients must be zero. From the

coefficient of t2 (recalling that d−1,1d1,−1 6= 0), we must have d1,1 = 0. From the coefficient of t3,
we have that d0,1 = 0 or d1,0 = 0. From the coefficient of t4, we get in both cases d0,1 = d1,0 = 0.
This implies that the walk would be degenerate, a contradiction. The formulas for b3 and b4
follow from the quadratic formula. �

Following [BMM10, Section 3] or [KY15, Section 3], we introduce the involutive birational
transformations of C2 given by

i1(x, y) =

(
x,
A−1(x)

A1(x)y

)
and i2(x, y) =

(
B−1(y)

B1(y)x
, y

)
.

They induce birational maps ι1, ι2 : Et 99K Et given by

ι1([x0 : x1], [y0 : y1]) =

(
[x0 : x1],

[
A−1(x0

x1
)

A1(x0

x1
)y0y1

: 1

])
,

and ι2([x0 : x1], [y0 : y1]) =

([
B−1(y0y1 )

B1(y0y1 )x0

x1

: 1

]
, [y0 : y1]

)
.

Note that ι1 and ι2 are nothing but the vertical and horizontal switches of Et, see Figure 1, i.e.,
for any P = (x, y) ∈ Et, we have

{P, ι1(P )} = Et ∩ ({x} × P1(C)) and {P, ι2(P )} = Et ∩ (P1(C)× {y}).

Proposition 1.8. The involutive birational maps ι1, ι2 : Et 99K Et are actually involutive auto-
morphisms of Et.

Proof. Any point of Et \ {Ω} is smooth, so ι1 and ι2 can be uniquely extended into morphisms
Et \ {Ω} → Et still denoted by ι1 and ι2 ([Har77, Proposition 6.8, p. 43]). It remains to study ι1
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and ι2 at Ω = ([0 : 1], [0 : 1]). For ([x : 1], [y : 1]) ∈ Et, the equation K(x, y, t) = 0 ensures that

(1.4)
A−1(x)

A1(x)y
=

1

tA1(x)
− A0(x)

A1(x)
− y =

x

tÃ1(x)
− Ã0(x)

Ã1(x)
− y

where Ã0(x) = xA0(x) = d−1,0 + d0,0x + d1,0x
2 and Ã1(x) = xA1(x) = d−1,1 + d0,1x + d1,1x

2.

Since d−1,1 6= 0, Ã1(x) does not vanish at x = 0. So, (1.4) shows that ι1 is regular at Ω and that
ι1(Ω) = Ω. The argument for ι2 is similar. �

Lemma 1.9. A point P = ([x0 : x1], [y0 : y1]) ∈ Et is fixed by ι1 (resp. ι2) if and only if
∆x

[x0:x1]
= 0 (resp. ∆y

[y0:y1]
= 0).

Proof. This is a straightforward consequence of the fact that ι1 and ι2 are the vertical and
horizontal switches of Et. �

We also consider the automorphism of Et defined by

σ = ι2 ◦ ι1.

Lemma 1.10. Let P ∈ Et. The following statements are equivalent:

(1) P is fixed by ι1 and ι2;
(2) P is the singular point of Et;
(3) P is fixed by σ = ι2 ◦ ι1.

Proof. Let P = ([a : b], [c : d]) ∈ Et. With Lemma 1.4, P is the singular point if and only if
∆x

[x0:x1]
and ∆y

[y0:y1]
vanish at [a : b] and [c : d] respectively. We conclude with Lemma 1.9, that

(1) is equivalent to (2).
Clearly, (1) implies (3). It remains to prove that (3) implies (1). Assume that P = (a1, b1)

is fixed by σ. Since ι1(P ) = (a1, b
′
1) and ι2(ι1(P )) = (a′1, b

′
1), it is clear that σ(P ) = P implies

successively ι1(P ) = P and ι2(P ) = P . �

2. Parameterization of the curve

We still assume that Assumption 1.6 holds. So, the walk is nondegenerate, and the results
proved in Section 1.4 ensure that the curve Et is irreducible, has genus zero and has a unique
singular point Ω = (a1, b1) = ([0 : 1], [0 : 1]). Moreover ∆x

[x0:x1]
has degree four with a double

root at a1 = [0 : 1] and the remaining two roots a3, a4 are distinct. We let S3 = (a3, ∗) and
S4 = (a4, ∗) be the points of Et with first coordinates a3 and a4 respectively. Similarly, ∆y

[y0:y1]

has degree four with a double root at b1 = [0 : 1] and the remaining two roots b3, b4 are distinct.
We let S′3 = (∗, b3) and S′4 = (∗, b4) be the points of Et with second coordinates b3 and b4
respectively.

Since Et has genus zero, we can find a parameterization of Et [Har77, Example 1.3.5 page
297], i.e., there exists a birational map

φ = (x, y) : P1(C) 99K Et.

This φ is actually a surjective morphism of curves (as any non constant rational map from a
smooth projective curve to a projective curve), which is injective on a Zariski-dense open subset
of P1(C). More precisely, since Ω is the unique singular point of Et, φ induces a bijection between
P1(C)\φ−1(Ω) and Et \{Ω}. The maps x, y : P1(C)→ P1(C) are surjective morphisms of curves
as well.

We let s3, s4 ∈ P1(C) (resp. s′3, s
′
4 ∈ P1(C)) be such that S3 = φ(s3) and S4 = φ(s4) (resp.

S′3 = φ(s′3) and S′4 = φ(s′4)).

Lemma 2.1. The morphisms x, y : P1(C)→ P1(C) have degree 2.
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Proof. This is a consequence of the fact that Et is a biquadratic curve. Indeed, let us consider
V = P1(C) \ {a1}. Note that the fiber of φ above any element of Et of the form (a, ∗) with
a ∈ V has one element (simply because φ induces a bijection between P1(C) \ φ−1(Ω) and
Et \ {Ω}). Let U be the set of a ∈ P1(C) such that the intersection of {a} × P1(C) with Et has
exactly two elements. This is also the set of a ∈ P1(C) such that ∆x

a 6= 0 and, hence, U is a
Zariski-dense open subset of P1(C). Then, for any a ∈ U ∩ V , x−1(a) has exactly two elements
(indeed, we have x−1(a) = φ−1(({a} × P1(C)) ∩ Et), moreover the fact that a belongs to U
ensures that ({a} × P1(C)) ∩Et has two elements and the fact that a belongs to V ensures that
φ−1(({a} × P1(C)) ∩ Et) has two elements as well). So, x has degree 2. The argument for y is
similar. �

We will now follow the ideas contained in [FIM99] to produce an explicit “automorphic pa-
rameterization” of Et.

The involutive automorphisms ι1, ι2 of Et induce involutive automorphisms ι̃1, ι̃2 of P1(C) via
φ. Similarly, σ induces an automorphism σ̃ of P1(C). So, we have the commutative diagrams

Et
ιk // Et

P1(C)

φ

OO

ι̃k

// P1(C)

φ

OO and Et
σ // Et

P1(C)

φ

OO

σ̃
// P1(C)

φ

OO

We summarize some remarks in the following lemmas.

Lemma 2.2. We have x = x ◦ ι̃1 and y = y ◦ ι̃2.

Proof. We obtain x = x◦ ι̃1 by equating the first coordinates in the equality φ◦ ι̃1 = ι1◦φ = (x, ∗)
and we obtain y = y◦ι̃2 by equating the second coordinates in the equality φ ◦ ι̃2 = ι2 ◦ φ = (∗, y).

�

Lemma 2.3. Let P = φ(s) ∈ Et and let k ∈ {1, 2}. We have :

• if ι̃k(s) = s then ιk(P ) = P ;
• if P 6= Ω and ιk(P ) = P then ι̃k(s) = s.

Proof. We have ιk(P ) = ιk(φ(s)) = φ(ι̃k(s)). The first assertion is now clear, and the second
one follows from the fact that φ is injective on Et \ φ−1(Ω). �

Lemma 2.4. The fiber of φ above Ω has two elements: φ−1(Ω) = {s1, s2} with s1 6= s2.

Proof. We know that x, y : P1(C)→ P1(C) have degree 2, so φ−1(Ω) has 1 or 2 elements. Suppose
to the contrary that φ−1(Ω) = {s1} has 1 element. Since φ(ι̃1(s1)) = ι1(φ(s1)) = ι1(Ω) = Ω, we
have ι̃1(s1) = s1. Moreover, since S3, S4 6= Ω are fixed by ι1, Lemma 2.3 ensures that s3 and s4
are fixed by ι̃1. Therefore, ι̃1 is an automorphism of P1(C), i.e., an homography, with at least 3
fixed points, so ι̃1 is the identity. This is a contradiction. �

Lemma 2.5. The map ι̃1 (resp. ι̃2) has exactly two fixed points, namely s3 and s4 (resp. s′3 and
s′4), and interchanges s1 and s2. The map σ̃ has exactly two distinct fixed points, s1 and s2.

Proof. Let s ∈ P1(C) be a fixed point of ι̃1. Lemma 2.3 ensures that φ(s) is fixed by ι1. So,
φ(s) = Ω, S3 or S4. If φ(s) 6= Ω, then s = s3 or s4 (recall that φ induces a bijection between
P1(C)\φ−1(Ω) and Et\{Ω}) and s3 and s4 are indeed fixed by ι̃1. Moreover, we have φ(s) = Ω if
and only if s = s1 or s2 and the equality ι1(φ(s)) = φ(ι̃1(s)) shows that ι̃1 induces a permutation
of φ−1(Ω) = {s1, s2}. If s1 and s2 were fixed by ι̃1, then ι̃1 would be an automorphism of P1(C),
i.e., an homography, with at least 4 fixed points (s1, s2, s3, s4) and, hence, would be the identity.
This is a contradiction. So, ι̃1 interchanges s1 and s2.
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The proof for ι̃2 is similar.
As any homography which is not the identity, σ̃ has at most two fixed points in P1(C). It only

remains to prove that s1 and s2 are fixed by σ̃, and this is indeed the case because σ̃ = ι̃2 ◦ ι̃1
and ι̃1, ι̃2 interchange s1 and s2. �

Proposition 2.6. An explicit parameterization φ : P1(C) → Et such that ι̃1(s) = 1
s and

ι̃2(s) = λ2

s = q
s for a certain λ ∈ C∗ is given by

φ(s) =

(
4α2(t)√

α3(t)2 − 4α2(t)α4(t)(s+ 1
s )− 2α3(t)

,
4β2(t)√

β3(t)2 − 4β2(t)β4(t)( sλ + λ
s )− 2β3(t)

)
.

Moreover, we have

x(0) = x(∞) = a1, x(1) = a3, x(−1) = a4,
y(0) = y(∞) = b1, y(λ) = b3, y(−λ) = b4.

Proof. According to Lemma 2.5, ι̃1 is an involutive homography with fixed points s3 and s4, so
there exists an homography h such that h(s3) = 1, h(s4) = −1 and h ◦ ι̃1 ◦ h−1(s) = 1/s. Up to
replacing φ by φ ◦ h, we can assume that s3 = 1, s4 = −1 and ι̃1(s) = 1

s . Since s1 6= s2, we can
assume up to renumbering that s1 6= ∞. Moreover, up to replacing φ by φ ◦ k where k is the
homography given by k(s) = s−s1

−s1s+1 , we can also assume that s1 = 0 and s2 = ∞ (note that k

commutes with ι̃1, so changing φ by φ ◦ k does not affect ι̃1). Lemma 2.1 and Lemma 2.2 ensure
that the morphism x : P1(C)→ P1(C) has degree 2 and satisfies x(s) = x(1/s) for all s ∈ P1(C).
It follows that

x(s) =
a(s+ 1/s) + b

c(s+ 1/s) + d

for some a, b, c, d ∈ C. We have x(s1) = x(0) = a1 = 0, x(s2) = x(∞) = a1 = 0,
x(s3) = x(1) = a3 and x(s4) = x(−1) = a4. The equality x(∞) = 0 implies a = 0. The
equalities x(1) = a3 and x(−1) = a4 imply

x(s) =
4a3a4

(a4 − a3)(s+ 1
s ) + 2(a3 + a4)

.

The known expressions for a3 and a4 given in Lemma 1.7 lead to the expected expression for
x(s).

According to Lemma 2.5, ι̃2 is an homography interchanging 0 and ∞, so ι̃2(s) = λ2

s for some
λ ∈ C∗. Up to renumbering, we have s′3 = λ and s′4 = −λ. Using the fact that the morphism
y : P1(C)→ P1(C) has degree 2 and is invariant by ι̃2, and arguing as we did above for x, we see
that there exist α, β, γ, η ∈ C such that

y(s) =
α( sλ + λ

s ) + β

γ( sλ + λ
s ) + η

.

The equality y(∞) = 0 implies α = 0. Using the equalities y(s′3) = y(λ) = b3 and
y(s′4) = y(−λ) = b4, and arguing as we did above for x, we obtain the expected expression for
y(s). �

We now need to give more information of q. The following lemma determines q up to its
inverse.

Proposition 2.7. One of the two complex numbers q or q−1 is equal to

−1 + d0,0t−
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
.



14 T. DREYFUS, C. HARDOUIN, J. ROQUES, M.F. SINGER

Proof. Using the explicit formulas for x(s) and y(s) given in Proposition 2.6, we get

lim
s→0

x(s)

y(s)
=
λα2(t)

√
β3(t)2 − 4β2(t)β4(t)

β2(t)
√
α3(t)2 − 4α2(t)α4(t)

and lim
s→0

x(1/s)

y(1/s)
=

α2(t)
√
β3(t)2 − 4β2(t)β4(t)

λβ2(t)
√
α3(t)2 − 4α2(t)α4(t)

.

But, Proposition 2.6 ensures that x(1/s)
y(1/s) = x(s)

y(ι̃1(s))
. So, the above two limits imply the following :

lim
s→0

y(ι̃1(s))

y(s)
= q.

Now, let us note that y(s), y(ι̃1(s)) equals to

−x+ d0,0xt+ d1,0x
2t±

√
(x− d0,0xt− d1,0x2t)2 − 4d1,−1x2t2(d−1,1 + d0,1x+ d1,1x2)

−2d−1,1t− 2d0,1xt− 2d1,1x2t
,

with the shorthand notation x = x(s). Since x(s) tends to 0 when s goes to 0, we obtain the
result. �

Corollary 2.8. We have q ∈ R \ {±1}.

Proof. We first claim that (1 − d0,0t)
2 − 4d1,−1d−1,1t

2 > 0. We know that the di,j are
≥ 0, that the sum of the di,j is equal to 1 and that the support of the walk is not in-
cluded in {(0, 0), (1,−1), (−1, 1)} (because the walk is not degenerate). Therefore, we have
1 > d0,0 + d1,−1 + d−1,1, i.e., 1−d0,0 > d1,−1 +d−1,1. Since t ∈]0, 1[, we have 1−d0,0t > 1−d0,0.
Thus, (1− d0,0t)2 > (1− d0,0)2 > (d1,−1 + d−1,1)2 and, hence,

(1− d0,0t)2 − 4d1,−1d−1,1t
2 > (d1,−1 + d−1,1)2 − 4d1,−1d−1,1t

2

≥ (d1,−1 + d−1,1)2 − 4d1,−1d−1,1 = (d1,−1 − d−1,1)2 ≥ 0.

This proves our claim.
Now Proposition 2.7 implies that q is a real number 6= 1. Moreover, it also shows that q = −1

if and only if −1 + d0,0t = 0. But this is excluded because 1 > d0,0t. �

In particular, this implies that the birational maps σ and σ̃ have infinite order (see also [FR11])
and that the group associated with these walks has infinite order.

3. Analytic continuation

3.1. Functional equation. We still assume that Assumption 1.6 is satisfied and 0 < t < 1 is
transcendental. We let φ = (x, y) : P1(C)→ Et be a parameterization of Et as in Proposition 2.6,
so we have :

• φ(0) = φ(∞) = ([0 : 1], [0 : 1]);
• ι̃1(s) = 1

s and ι̃2(s) = q
s for some q ∈ R \ {±1};

• σ̃(s) = qs.

Recall the functional equation (1.1):

K(x, y, t)Q(x, y, t) = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t).

This equation is a formal identity but for |x| < 1 and |y| < 1, the series Q(x, y, t), F 1(x, t) and
F 2(y, t) are convergent. Using our parameterization of Et, we will show how we can pull back
these convergent series and analytically continue them to meromorphic functions on C so that
these latter functions satisfy simple q-difference equations.

The set V = {([x : 1], [y : 1]) ∈ Et | |x|, |y| < 1} is an open neighborhood of ([0 : 1], [0 : 1]) in
Et for the analytic topology, and, for all (x, y) ∈ V , we have

(3.1) 0 = xy − F 1(x, t)− F 2(y, t) + td−1,−1Q(0, 0, t).
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Since φ(0) = φ(∞) = ([0 : 1], [0 : 1]), there exists U ⊂ P1(C) which is the union of two small
open discs centered at 0 and ∞ such that φ(U) ⊂ V .

For any s ∈ U , we set F̆ 1(s) = F 1(x(s), t) and F̆ 2(s) = F 2(y(s), t). Then, F̆ 1 and F̆ 2 are
meromorphic functions over U and (3.1) yields, for all s ∈ U ,

(3.2) 0 = x(s)y(s)− F̆ 1(s)− F̆ 2(s) + td−1,−1Q(0, 0, t).

Replacing s by ι̃2(s) in (3.2), we obtain, for all s close to 0 or ∞, (in what follows, we use

x(ι̃1(s)) = x(s), y(ι̃2(s)) = y(s), F̆ 1(ι̃1(s)) = F̆ 1(s) and F̆ 2(ι̃2(s)) = F̆ 2(s))

0 = x(ι̃2(s))y(ι̃2(s))− F̆ 1(ι̃2(s))− F̆ 2(ι̃2(s)) + td−1,−1Q(0, 0, t)

= x(ι̃1(ι̃2(s)))y(s)− F̆ 1(ι̃1(ι̃2(s)))− F̆ 2(s) + td−1,−1Q(0, 0, t)

= x(q−1s)y(s)− F̆ 1(q−1s)− F̆ 2(s) + td−1,−1Q(0, 0, t).(3.3)

Subtracting (3.2) from (3.3), and then replacing s by qs, we obtain, for all s close to 0 or ∞,

F̆ 1(qs)− F̆ 1(s) = (x(qs)− x(s))y(qs).(3.4)

Similarly, replacing s by ι̃1(s) in (3.2), we obtain, for all s close to 0 or ∞,

0 = x(ι̃1(s))y(ι̃1(s))− F̆ 1(ι̃1(s))− F̆ 2(ι̃1(s)) + td−1,−1Q(0, 0, t)

= x(s)y(ι̃2(ι̃1(s)))− F̆ 1(s)− F̆ 2(ι̃2(ι̃1(s))) + td−1,−1Q(0, 0, t)

= x(s)y(qs)− F̆ 1(s)− F̆ 2(qs) + td−1,−1Q(0, 0, t).(3.5)

Subtracting (3.2) from (3.5), we obtain, for all s close to 0 or ∞,

F̆ 2(qs)− F̆ 2(s) = x(s)(y(qs)− y(s)).(3.6)

We let F̃ 1 and F̃ 2 be the restrictions of F̆ 1 and F̆ 2 to a small disc around 0. They satisfy

the functional equations (3.4) and (3.6) for s close to 0. This implies that F̃ 1and F̃ 2 can be
continued to a meromorphic function on C with (3.4) satisfied for all s ∈ C. Note that there is

a priori no reason why, in the neighborhood of ∞, these functions should coincide with F̆ 1 and
F̆ 2.

3.2. Application to differential transcendence. In this subsection, we derive differential
transcendency criteria for x 7→ Q(x, 0, t) and y 7→ Q(0, y, t). It is based on the fact that the

related functions F̃ 1 and F̃ 2 satisfy difference equations.

Definition 3.1. Let (E, δ) ⊂ (F, δ) be differential fields. We say that f ∈ F is differentially
algebraic over E if it satisfies a non trivial algebraic differential equation with coefficients in E,
i.e., if for some m there exists a nonzero polynomial P (y0, . . . , ym) ∈ E[y0, . . . , ym] such that

P (f, δ(f), . . . , δm(f)) = 0.

We say that f is holonomic over E if in addition, the equation is linear. We say that f is
differentially transcendental over E if it is not differentially algebraic.

Other terms have been used for the above concepts: hypotranscendental or hyperalgebraic or δ-
algebraic for differentially algebraic and hypertranscendental or transcendentally transcendental
for differentially transcendental.

Proposition 3.2. The series x 7→ Q(x, 0, t) is differentially algebraic over C(x) if and only if

F̃ 1 is differentially algebraic over C(s). The series y 7→ Q(0, y, t) is differentially algebraic over

C(y) if and only if F̃ 2 is differentially algebraic over C(s).

Proof. This follows from Lemmas 6.3 and 6.4 of [DHRS17a]. �
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Consequently, we only need to study F̃ 1 and F̃ 2. Recall that they belong toMer(C) the field
of meromorphic functions on C.

Using a result due to Ishizaki [Ish98, Theorem 1.2] (see also [HS08, Proposition 3.5], where a
Galoisian proof of Ishizaki’s result is given), we get, for any i ∈ {1, 2}, the following dichotomy‡ :

• either F̃ i ∈ C(s), or

• F̃ i is differentially transcendental.

So, we need to understand when F̃ i ∈ C(s). We set

b̃1(s) = y(qs)(x(qs)− x(s)) and b̃2(s) = x(s)(y(qs)− y(s)),

so that the functional equations (3.4) and (3.6) can be restated as

(3.7) F̃ 1(qs)− F̃ 1(s) = b̃1(s) and F̃ 2(qs)− F̃ 2(s) = b̃2(s)

for s ∈ C.

Lemma 3.3. For any i ∈ {1, 2}, the following facts are equivalent:

• F̃ i ∈ C(s);

• there exists fi ∈ C(s) such that b̃i(s) = fi(qs)− fi(s).

Proof. If F̃ i ∈ C(s) then (3.7) shows that b̃i(s) = fi(qs)−fi(s) with fi = F̃ i ∈ C(s). Conversely,

assume that there exists fi ∈ C(s) such that b̃i(s) = fi(qs) − fi(s). Using (3.7) again, we find

that (F̃ i − fi)(s) = (F̃ i − fi)(qs). Therefore, since the function F̃ i − fi is meromorphic over C,

its Taylor expansion yields that it is necessarily constant, and this ensures that F̃ i ∈ C(s). �

Lemma 3.4. The following properties are equivalent:

• F̃ 1 ∈ C(s);

• F̃ 2 ∈ C(s).

Proof. Assume that F̃ 1 ∈ C(s). With Lemma 3.3, there exists f1 ∈ C(s) such that

b̃1(s) = f1(qs)− f1(s). Note that b̃1(s) + b̃2(s) = (xy)(qs) − (xy)(s), so that we have b̃2(s) =

f2(qs)− f2(s), with xy(s)− f1(s) = f2(s) ∈ C(s). With Lemma 3.3, we obtain F̃ 2 ∈ C(s). The
converse may be proved in the same way. �

Theorem 3.5. The following properties are equivalent:

(1) The function x 7→ Q(x, 0, t) is differentially algebraic over C(x).
(2) The function x 7→ Q(x, 0, t) is algebraic over C(x).
(3) The function y 7→ Q(0, y, t) is differentially algebraic over C(y).
(4) The function y 7→ Q(0, y, t) is algebraic over C(y).

(5) There exists f1 ∈ C(s) such that b̃1(s) = f1(qs)− f1(s).

(6) There exists f2 ∈ C(s) such that b̃2(s) = f2(qs)− f2(s).

Proof. Assume that (1) holds true. Proposition 3.2 implies that F̃ 1 is differentially algebraic

over C(s). Ishizaki’s Theorem ensures that F̃ 1 ∈ C(s). But x : P1(C)→ P1(C) is locally (for the
analytic topology) invertible at all but finitely many points of P1(C) and the corresponding local
inverses are algebraic over C(x). It follows that F 1(·, t) can be expressed as a rational expression,
with coefficients in C, of an algebraic function, and, hence, is algebraic over C(x). Hence (2) is
satisfied.

The fact that (2) implies (1) is obvious.

‡A slightly weaker result, in the spirit of the considerations of [DHRS17a], would suffice to establish this
dichotomy, see [HS08, Corollary 3.2, Proposition 6.4] or [Har08].
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The fact that (3) is equivalent to (4) can be shown similarly.
The fact that (1) to (4) are equivalent now follows from Lemma 3.4 combined with [Ish98,

Theorem 1.2].
The remaining equivalences follow from Lemma 3.3. �

So, to decide whether Q(x, 0, t), Q(0, y, t) are differentially transcendental, we are led to the
following problem:

Given b ∈ C(s), decide whether there exists f ∈ C(s) such that b(s) = f(qs)− f(s).

Such a problem is known as a q-summation problem and has been solved by Abramov
[Abr95]. This procedure was recast in [CS12] in terms of the so-called q-residues of b (see [CS12,
Definition 2.7]) and depends on the criteria given in [CS12, Lemma 2.10]:

A function b ∈ C(s) is q-summable, i.e., there exists f ∈ C(s) such that b(s) = f(qs)− f(s) if
and only if the q-residues of b at non zero poles are zero and the partial fraction decomposition
of b has no constant term.

Roughly, the q-residues are weighted sums of coefficients appearing in the principal part of
the power series expansion of a rational function b(s) at a pole s0 and at poles that appear
in the q-orbit qZ

∗
s0 of s0. We will not describe this concept in detail but only note that

if s0 is a pole of order N ≥ 1 of b and if b has no other pole of order ≥ N in qZ
∗
s0, then

some q-residue is not zero. Using this fact, we may deduce the following from [CS12, Lemma 2.10]:

Lemma 3.6. If s0 ∈ C∗ is a pole of b ∈ C(x) of order N ≥ 1 if b has no other pole of order ≥ N
in qZ

∗
s0 then b(s) is not q-summable, that is there is no f(s) ∈ C(s) such that b(s) = f(qs)−f(s).

Using the parameterization φ : P1(C) → Et, we can translate this to give a criterion for the
differential transcendence of x 7→ Q(x, 0, t), y 7→ Q(0, y, t) over C(x) and C(y) respectively. We
set (see Section 1 for notations)

b1 = ι1(y)(ι2(x)− x) and b2 = x(ι1(y)− y),

so that we have

b̃1 = b1 ◦ φ and b̃2 = b2 ◦ φ.

Proposition 3.7. We suppose that Assumption 1.6 holds true and recall that |q| 6= 1. Let
b ∈ C(x, y) represent a rational function on Et. Assume that P ∈ Et \ {Ω} is a pole of b of order
m ≥ 1 such that none of the σi(P ) with i ∈ Z\{0} is a pole of b of order ≥ m, then

b = σ(g)− g

has no solution g ∈ C(x, y) which restricts to a rational function on Et.
In particular, if b2 = x(ι1(y) − y) satisfies this condition, then x 7→ Q(x, 0, t), (resp.

y 7→ Q(0, y, t)) is differentially transcendental over C(x) (resp. differentially transcendental
over C(y)).

Proof. We know that the parameterization φ = (x, y) : P1(C) → Et that we have constructed
induces an isomorphism between P1(C)\{0,∞} and Et \{Ω}. If s0 ∈ P1(C)\{0,∞} is such that
φ(s0) = P , then s0 is a pole of order m ≥ 1 of b ◦ φ such that none of the σ̃i(s0) with i ∈ Z\{0}
is a pole of b ◦ φ of order ≥ m. If g ∈ C(x, y) restricts to a rational function on Et and satisfies
b = σ(g)− g, then f = g ◦ φ would satisfy b(s) = f(qs)− f(s) contradicting Lemma 3.6.
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If b2 = x(ι1(y) − y) satisfies the condition of the Proposition, then b2 = σ(g) − g has no
solution g that is a rational function on Et. Pulling this back to P1(C), we see that for

b̃2(s) = b2 ◦ φ(s) = x(s)(y(1/s)− y(s)), the equation b̃2(s) = f(qs) − f(s) has no solution in
C(s). Theorem 3.5 yields our conclusion. �

As we will see in Theorem 4.1, the criteria given by Proposition 3.7 is strong enough to ensure
that x 7→ Q(x, 0, t) (resp. y 7→ Q(0, y, t)) is differentially transcendental over C(x) (resp. over
C(y)).

4. Differential transcendence for genus zero walks

In this section, we will prove the main result of this paper :

Theorem 4.1. We suppose that Assumption 1.6 is satisfied. Then, the functions x 7→ Q(x, 0, t)
and y 7→ Q(0, y, t) are differentially transcendental over C(x) and C(y) respectively.

Remark 4.2. Walks in 3 dimension in the octant have been recently studied. In [BBMKM16,
DHW16], the authors study unweighted such walks having at most 6 steps. Among the non trivial
35548 models, 527 are equivalent to weighted walks in the quarter plane, and more precisely,
Assumption 1.6 is satisfied for 69 such models, see [DHW16, Section 3].

The proof of the above theorem will be given at the very end of this section. Our strategy
will be to use Proposition 3.7. So, we begin by collecting information on the polar divisor of
b2 = x(ι1(y)− y).

4.1. Preliminary results on the polar divisor of b2. We write

b2 = x(ι1(y)− y)

in the projective coordinates with x = x0

x1
and y = y0

y1
. We note that Ω = ([0 : 1], [0 : 1]) is not

a pole of b2. Let us focus our attention on the points ([x0 : x1], [y0 : y1]) of Et corresponding to
the equation x1y1 = 0, namely:

P1 = ([1 : 0], [β0 : β1]), P2 = ι1(P1) = ([1 : 0], [β′0 : β′1]),

Q1 = ([α0 : α1], [1 : 0]), Q2 = ι2(Q1) = ([α′0 : α′1], [1 : 0]).

Since P1, P2 ∈ Et, to compute [β0 : β1] and [β′0 : β′1], we have to solve K(1, 0, y0, y1, t) = 0. Then
we find that [β0 : β1] and [β′0 : β′1] are the roots in P1(C) of the homogeneous polynomial in y0
and y1 given by

d1,−1y
2
1 + d1,0y0y1 + d1,1y

2
0 = 0.

Similarly, the x-coordinates [α0 : α1] and [α′0 : α′1] of Q1 and Q2 are the roots in P1(C) of the
homogeneous polynomial in x0 and x1 given by

d−1,1x
2
1 + d0,1x0x1 + d1,1x

2
0 = 0.

The following Lemma already appears in [DHRS17a, Lemma 4.11], we give its proof to be self
contain.

Lemma 4.3. The set of poles of b1 = ι1(y) (σ(x)− x) in Et is contained in

S1 = {ι1(Q1), ι1(Q2), P1, P2, σ
−1(P1), σ−1(P2)}.

Similarly, the set of poles of b2 = x(ι1(y)− y) in Et is contained in

S2 = {P1, P2, Q1, Q2, ι1(Q1), ι1(Q2)} = {P1, P2, Q1, Q2, σ
−1(Q1), σ−1(Q2)}.
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Moreover, we have

(4.1) (b2)2 =
x20∆x

[x0:x1]

x21(
∑2
i=0 x

i
0x

2−i
1 tdi−1,1)2

.

Proof. The proofs of the assertions about the location of the poles of b1 and b2 are straightforward.
Let us prove (4.1). By definition, ι1(y0y1 ) and y0

y1
are the two roots of the polynomial y 7→

K(x0, x1, y, t). The square of their difference equals to the discriminant divided by the square of
the leading term. Then, we have(

ι1(
y0
y1

)− y0
y1

)2

=
∆x

[x0:x1]

(
∑
i x

i
0x

2−i
1 tdi−1,1)2

.

Therefore, we find

b2

(
x0
x1
,
y0
y1

)2

=
x20∆x

[x0:x1]

x21(
∑
i x

i
0x

2−i
1 tdi−1,1)2

.

�

To apply Proposition 3.7 we now need to separate the orbits. Let us begin by P1 and P2 (resp.
Q1 and Q2).

Proposition 4.4. If P1 6= P2, then one of the following properties holds true :

• P1 6∼ P2;
• d0,1 = d1,1 = 0.

If Q1 6= Q2, then one of the following properties holds true :

• Q1 6∼ Q2;
• d1,0 = d1,1 = 0.

Proof. We only prove the statement for the Pi, the proof for the Qj is similar. Let p1, p2 ∈ C∗
be such that φ(p1) = P1 and φ(p2) = P2. Recall that Lemma 1.7 ensures that

α2 = 1− 2td0,0 + t2d20,0 − 4t2d−1,1d1,−1
α3 = 2t2d1,0d0,0 − 2td1,0 − 4t2d0,1d1,−1
α4 = t2(d21,0 − 4d1,1d1,−1).

and that, according to Proposition 2.7, one of the two complex numbers q or q−1 is equal to

−1 + d0,0t−
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2
.

The explicit formula for φ given in Proposition 2.6 shows that p1 and p2 are the roots of

−
√
α2
3 − 4α2α4X

2 + 2α3X −
√
α2
3 − 4α2α4 = 0.

So, we have (for suitable choices of the square roots)

p1 =
−α3 − 2

√
α2α4

−
√
α2
3 − 4α2α4

and p2 =
−α3 + 2

√
α2α4

−
√
α2
3 − 4α2α4

.

Assume that P1 ∼ P2. Then, there exists ` ∈ Z∗ such that p1
p2

= q` (` 6= 0 because P1 6= P2).

Using the above formulas for p1,p2 and q and replacing ` by −` if necessary, this can be rewritten
as :

(4.2)
−α3 − 2

√
α2α4

−α3 + 2
√
α2α4

=

(
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

)`
.
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Recall that t is transcendental. We shall treat t as a variable and both sides of (4.2) as functions
of the variable t, algebraic over Q(t). Formula (4.2) shows that these algebraic functions coincide
at some transcendental number, therefore they are equal.

We now consider these algebraic functions near 0 (we choose an arbitrary branch) and will
derive a contradiction by proving that they have different behaviors at 0.

If d1,1 6= 0, then, considering the Taylor expansions at 0 in (4.2), we obtain, up to replacing `
by −` if necessary:

d1,0 −∆1

d1,0 + ∆1
+O(t) =

(
1

t2

(
1

d1,−1d−1,1
+ O(1/t)

))`
where ∆1 is some square root of d21,0− 4d1,1d1,−1, and d1,0−∆1 and d1,0 + ∆1 are not 0 because
d1,1 6= 0 (note that, by Assumption 1.6, we have d1,−1d−1,1 6= 0). This equality is impossible.

If d1,1 = 0, then (4.2) gives

t
d0,1d1,−1
d1,0

+O(t2) =

(
1

t2

(
1

d1,−1d−1,1
+ O(1/t)

))`
(note that we have d1,0 6= 0 because P1 6= P2). This implies d0,1 = 0 and conclude the proof. �

Proposition 4.5. Assume that d1,1 6= 0. Then, for any i, j ∈ {1, 2}, we have Pi 6∼ Qj.

Proof. Let pi, qj ∈ C∗ be such that φ(pi) = Pi and φ(qj) = Qj . As seen at the beginning of the
proof of Proposition 4.4, we have (for suitable choices of the square roots)

pi =
−α3 − 2

√
α2α4

−
√
α2
3 − 4α2α4

.

Similarly, we have (for suitable choices of the square roots)

qj = λ
−β3 − 2

√
β2β4

−
√
β2
3 − 4β2β4

.

Suppose to the contrary that Pi ∼ Qj . The condition d1,1 6= 0 yields that Pi 6= Qj . Then, there
exists ` ∈ Z∗ such that pi

qj
= q` . Using the above formulas for pi and qj , using Proposition 2.7

and replacing ` by −` if necessary, this can be rewritten as:

(4.3)
α3 + 2

√
α2α4√

α2
3 − 4α2α4

√
β2
3 − 4β2β4

β3 + 2
√
β2β4

=

(
−1 + d0,0t−

√
(1− d0,0t)2 − 4d1,−1d−1,1t2

−1 + d0,0t+
√

(1− d0,0t)2 − 4d1,−1d−1,1t2

)`+ 1
2

.

As in the the proof of Proposition 4.4, on can treat t as a variable and both sides of (4.3) as
functions of the variable t algebraic over Q(t), the above equality shows that they coincide,
and we shall now consider these algebraic functions near 0 (we choose an arbitrary branch).
Considering the Taylor expansions at 0 in (4.3), we obtain :

−d1,0 −∆1√
d21,0 −∆1

2

√
d20,1 −∆2

2

−d0,1 −∆2
+O(t) =

(
1

t2

(
1

d1,−1d−1,1
+ O(t)

))`+ 1
2

where ∆1 and ∆2 are suitable square roots of d21,0− 4d1,1d1,−1 and d20,1− 4d1,1d−1,1 respectively,

and none of the numbers −d1,0 − ∆1,
√
d21,0 −∆1

2,
√
d20,1 −∆2

2,−d0,1 − ∆2
2 is zero because

d1,1 6= 0. This equality is impossible. �
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4.2. Proof of Theorem 4.1. First we note that (4.1) and the fact that ∆x
[x0:x1]

seen as a

function on P1(C) has at most a simple zero at P1 and P2 (see Lemma 1.7) imply that P1 and
P2 are poles of b2.

If d1,1 = d1,0 = 0 (and d0,1 6= 0 by Assumption 1.6), then a direct calculation shows that the

polar divisor of b2 on Et is 3P1 +Q2 + ι1(Q2) where

• P1 = P2 = Q1 = ([1 : 0], [1 : 0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1− td0,0)]) 6= Q2.

The result is now a direct consequence of Proposition 3.7 because P1 is a pole of order 3 of b2,
and all the other poles of b2 have order 1.

The case d1,1 = d0,1 = 0 is similar.
Assume that d1,1 = 0 and d1,0d0,1 6= 0. In this case, we have

• P1 = Q1 = ([1 : 0], [1 : 0]),
• P2 = ι1(Q1) = ([1 : 0], [−d1,−1 : d1,0]),
• Q2 = ([−d−1,1 : d0,1], [1 : 0]),
• ι1(Q2) = ([−d−1,1 : d0,1], [−td1,−1d−1,1 : d0,1(1− td0,0) + td1,0d−1,1])

Note that these four points are two by two distinct (since d0,1 6= 0 and t 6∈ Q, the quantity
d0,1(1− td0,0) + td1,0d−1,1 does not vanish).

A direct computation shows that the polar divisor of b2 on Et is 2P1 + 2P2 + Q2 + ι1(Q2).
Proposition 4.4 ensures that P1 6∼ P2. So, P = P1 or P2 is such that such that none of the σi(P )
with i ∈ Z\{0} is a pole of order ≥ 2 of b2. The result is now a consequence of Proposition 3.7.

Last, assume that d1,1 6= 0. Then, combining Proposition 4.4 and Proposition 4.5, and using
the fact that the set of poles of b2 is included in {P1, P2, Q1, Q2, σ

−1(Q1), σ−1(Q2)}, we get that
P1 is such that none of the σi(P1) with i ∈ Z\{0} is a pole of b2. The result is now a consequence
of Proposition 3.7.
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Université Paul Sabatier - Institut de Mathématiques de Toulouse, 118 route de Narbonne, 31062

Toulouse.
E-mail address: hardouin@math.univ-toulouse.fr
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