ARITHMETIC PROPERTIES OF MIRROR MAPS
ASSOCIATED WITH GAUSS HYPERGEOMETRIC
EQUATIONS

by

Julien Roques

Abstract. — We draw up the list of Gauss hypergeometric differential equa-
tions having maximal unipotent monodromy at 0 whose associated mirror map
has, up to a simple rescaling, integral Taylor coefficients at 0. We also prove
that these equations are characterized by much weaker integrality properties
(of p-adic integrality for infinitely many primes p in suitable arithmetic progres-
sions). It turns out that the mirror maps with the above integrality property
have modular origins.
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1. Introduction

For any «, 8 € C, we let F («, 3; z) be the hypergeometric series defined by
+00
@)k(B)k
F(a,B;2) = oFi(o, B; 1;2) = > (),C!(Q)Zk
k=0
where the Pochhammer symbols (x); are defined by (x)p = 1 and, for k € N*,

() = x(x+1)---(z+ k —1). It satisfies the hypergeometric differential
equation with parameters («, 8) given by

(1) 2(z = 1y"(2) + ((a+ B+ 1)z — 1)y (2) + aBy(z) = 0.
Assuming that o, 8 ¢ —N and setting

+oo

(@)k(B)k
Gla,B52) =Y T (2Hk(1) = H(o) — Hi(8)) 2,

k=0
where Hy(z) = 0 and, for k& € N*, Hi(z) = EZ;S x%rk, a basis of the 2-
dimensional C-vector space of solutions of (1) is given by
(2) F(a,8;2),G (a, 85 2) +1og(2) F (o, B; 2) -
Remark 1. — For further use, note that:

i) F (a,B;z) is the unique solution of (1) in 1+ zC[[z]] ;
ii) G (o, B;2) is the unique element G in zC|[z]] such that G(z) +
log(2)F (a, B; 2) is a solution of (1).

In this article, we are interested in arithmetic properties of the Taylor co-
efficients at 0 of

Q(afiz) = zexp<F(a 2

— e (G(avﬂ;Z) +10g(Z)F(Oé7B;Z)>
F(a,B;2) '
The map Q («, 5;z) will be called the canonical coordinate with parameters
(o, B). We will identify Q («, ;z) with its Taylor expansion at 0 (which
belongs to z + 22CJ[[2]]).
Before stating our main result, we introduce a notation for sets of primes
in some arithmetic progressions which will play a central role in this paper.

G(a,ﬁ;Z))

Notation 2. — Consider a, 8 € Q. Let d be the least common denominator
in N* of a and 3. Let ki < --- < ky(q) be the integers in {1,...,d — 1} prime
to d (p denotes Euler’s totient function). For any j € {1,...,o(d)}, we denote
by Pj the set of primes congruent to k; mod d.

Note that the Uj€{17wg0(d)} P;j coincides with the set of primes p prime to d.
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Our main result is :

Theorem 3. — Let us consider o, in QN]0,1[. Let d be the least common
denominator in N* of a and .
The following assertions are equivalent:
i) there exists k € N* such that k~1Q (a, B; k2) € Z[[2]];
ii) for all j € {1,...,(d)}, for infinitely many primes p in P;, Q (o, f;2) €
Zypl[2]] (where Zy, is the ring of p-adic integers);
i11) up to permuting o and [, we have (o, ) € & where

S ={(1/2,1/2),(1/2,1/3),(1/2,2/3),(1/2,1/4), (1/2,3/4),
(1/2,1/6), (1/2,5/6), (1/3,1/3), (1/3,2/3), (1/3,1/6), (1/3,5/6),
(2/3,2/3),(2/3,1/6),(2/3,5/6), (1/4,1/4), (1/4,3/4), (3/4,3/4),
(1/6,1/6),(1/6,5/6),(5/6,5/6),(1/8,3/8),(1/8,5/8),(3/8,7/8),
(5/8,7/8),(1/12,5/12), (1/12,7/12), (5/12,11/12), (7/12,11/12)}.

7( 7(
7( 7(

The (compositional) inverse of Q («, f3; z) € z + 22C|[[z]], will be denoted by
2 (o, ;9) € g+ ¢*Cllq]]

and will be called the mirror map with parameters (o, $). Note that, for all
Kk € N*,

(3) K1Q (a, B k2) € Z[[2]] & kT2 (o, By rq) € Z[4]];

for a proof see for instance [14, Lemma 2|. In particular, Theorem 3 also holds
if we replace canonical coordinates by mirror maps.

It is worth mentioning that the canonical coordinates with parameters in
# have modular origins.

Our approach for proving Theorem 3 is based on the work of Dwork in
[5]. The proof of Theorem 3 is given in § 4 whereas in § 2 and § 3 we give
preliminary results.

In § 5, we prove that the hypothesis “a, 5 € QN]0,1[” is necessary in or-
der to get integrality properties of the Taylor coefficients of Q («, f;2) as in
Theorem 3.

For results concerning the arithmetic properties of mirror maps associated
with hypergeometric series whose coefficients are quotients of factorials, we
refer to the work of Lian and Yau [10, 11, 12], Zudilin [14], Krattenthaler
and Rivoal [8, 7] and Delaygue [3, 4, 2]. In our case, the hypothesis “quotient
of factorials” would mean that there exist C' > 0 and integers ey, ..., e, and
fi, -, fs such that

+oo
- k(elk)!--'(erk)!zk
FlewBia) = 2, C i
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Using Proposition 2 in Chapter 4 of [3], we see that this holds in a finite
number of cases, namely, if and only if, up to permuting « and S,

(o, B) € {(1/2,1/2),(1/3,2/3),(2/3,1/3), (1/4,3/4), (3/4,1/4), (1/6,5/6)}.
Note that the (well-known) integrality property of Z (1/2,1/2;2) (namely,
16712 (1/2,1/2;162) € Z[[2]]) is used by Y. André in [1].

2. A preliminary hypergeometric result

Lemma 4. — Let us consider oy, b1, a2, 82 € Q\ Z.
The following assertions are equivalent:
i) F (a1, p1;2) = F (ag, B2; 2);
i) (a2, B2) € {(a1, 1), (B, 1)}

Proof. — One can for instance apply Proposition 1 in Chapter 4 of [3]. O

Proposition 5. — Let us consider ay, b1, a9, 82 € Q\ Z.

The following assertions are equivalent:
i) G(al,ﬁhz) G(a2,82;2) .
F(a1,B1;2) = F(az,p2;2)’

ii) (a2, B2) € {(a1,p1), (B1,a1), (1 —a1,1—p1),(1 = B1,1 —a1)}.

Proof. — We denote by w(a, 3; z) the wronskian determinant of the hyperge-
ometric equation (1) with respect to the basis of solutions (2). It satisfies the
first order differential equation

oy (a+pB4+1)z—1

so there exists Cy g € C* such that
(4) w(a, B;2) = Coppz (1 —2)7P,
Assume that i) holds. Then
G (o, B1; 2) +log(2)F (a1, Br;2) G (a2, B2 2) + log(z)F(ag,ﬁz;z).

F(abﬁl;z) F(OQ?ﬁQ;Z)
Differentiating this equation, we get
w(ay, Br;2)  w(ag, B 2)

Fa1,B5;2)°  Fl(as, B2 2)°
so, in virtue of formula (4), there exist C1,Cy € C* such that

Crz M1 —z) =Pt Cor (1 — ) 2P

Flan,piiz)?®  Floz,f52)°
It follows that there exists v € Q such that

F(a1,B1;2) = (1 = 2)"F (ag, B2; 2) -
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A short calculation then shows that F (ag,f2;2) is solution of some linear
differential equation with rational coefficients of the form

(5) 2(z=1)y"(2) +*y'(2)
1)+ (a1 + i +1)z— 1
+ <27(’y ) ((0151_ Zﬂl J2= 1) + a151> y(z) = 0.
But it is also solution of the hypergeometric differential equation
(6) 2(z = 1)y"(2) + (a2 + B2 + 1)z — 1)y'(2) + azf2y(z) = 0.
This equation being irreducible over C(z) ([6]), the coefficients of equations

(5) and (6) must be the same. In particular, ZV(V*l)H(O{i’BIH)ZilM must be

regular at z = 1; this entails that y = 0or vy =1 — (a1 + 51). If v =0
then F' (aq,f1;2) = F (ag, B2;2) and hence, in virtue of Lemma 4, (ag, 52) €
{(a1, 1), (Br,1)}. f v =1— (a1 + B1) then

F (a1, B132) = (1= 2) P F (ay, B3 2) .
Since (formula (1.3.15) in [13])
F (a1, Br52) = (1= 2) I (1 —ay,1 - Bi;2),

we get F(ag,f2;2) = F(1—aj,1—p1;2) and Lemma 4 ensures that
(a27 52) S {(]- —Qaq, 1-— 51)7 (1 - /81, 1-—- al)}-
We leave the converse statement to the reader. O

3. Dwork’s map a — o/ =: Dp(a): remainder and complements

For any prime number p, for any p-adic integer o in Q, we denote by D, («)
the unique p-adic integer in QQ such that
POp(a) —a€{0,...,p—1}.
The operator a — D, () was used by Dwork in [5] (and denoted by o — ).

Proposition 6. — Assume that o € QNI0,1[. Let a,m € N* be such that
a=a/m and ged(a,m) =1 (so ged(m,p) =1). Then

Dy(a) = — € Q0,1

where x is the unique integer in {1,...,m — 1} such that pr = a mod m.
In particular, ®,(c) does not depend on the prime p coprime to m in a fized
arithmetic progression k + Nm.

Proof. — Indeed, we have p2 — a = 222 € Z. Moreover, we have

pr—a _pm—1)—a p+a
_pm=b-a_  pta

T
—1l<—-a<p——a= < <p
m m m
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Therefore, Dp,(a) = £. O

m

We will need the following properties.

Lemma 7. — Let p be a prime number and consider p-adic integers a, B in
Q such that

(Dp(), Dp(B)) € {(, 8),(B,a), (1 —a,1 =), (1= 5,1 -a)}.

Letm,n € N* and a,b € Z be such that o« = a/m and = b/n with gcd(a, m) =
ged(b,n) = 1. Let d = lem(m,n) be the least common denominator in N* of
a and 3. Then p?> =1 mod d. Moreover, if m # n then p = £1 mod d.

Proof. — Let us first assume that (Dp(a),®,(8)) = («, 8). This implies that
pa —a = (p — 1)a belongs to Z. Therefore, p =1 mod m. Similarly, p = 1
mod n.

Assume that (D,(«),D,(8)) = (B, a). Then pS —a and pa— 3 belong to Z.
This implies m = n, a = pb mod m and b = pa mod m, so b = p?>b mod m
and hence p> =1 mod m.

Assume that (Dp(a),Dp()) =1 —a,1—p). Then p(l —a) —a=—(p+
1)a + p belongs to Z. This implies that p = —1 mod m. Similarly, p = —1
mod n.

Assume that (D,(),9,(8)) = (1 — 5,1 — «). Then p(1 — f) — a and

p(1 — ) — 8 belong to Z. It follows that m = n, bp = —a mod m and
ap = —b mod m, so b= p?b mod m and hence p> =1 mod m. O
Proposition 8. — Let us consider «, 3 in QN|0, 1[. Let d be the least common

denominator in N* of o and (.
The following assertions are equivalent:
i) for all j € {1,...,(d)}, there exists a prime p in P; such that

(Dp(a), Dp(B)) € {(,8),(B,a), (1 —a,1 =), (1= 5,1 -a)};

it) for all prime p prime to d,

(QP(O‘)’ 91)(6)) € {(Oé,ﬁ), (Bva)7 (1 -G, 1- B)a (1 - 67 1- Oé)};
i) up to permuting o and B, (o, B) € & (defined in Theorem 3).

Proof. — The equivalence between assertions i) and ii) follows from the fact
that ©, () and D,(5) do not depend on p € P;.

We now prove that ii) implies iii). So we consider («a, 3) satisfying ii). Let
m,n € N* and a,b € Z be such that & = a/m and 8 = b/n with ged(a,m) =
ged(b,n) = 1. So d = lem(m, n).

Let us first assume that m # n. Lemma 7 ensures that, for all prime p prime
to d, we have p = +1 mod d. Using Dirichlet’s theorem, we get ¢(d) € {1,2}
and hence d € {2,3,4,6}. Therefore, up to permuting m and n, we see that
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(m,n) belongs to {(2,3),(2,4),(2,6),(3,6)}. Up to permuting o and 3, we
get that («, 8) belongs to

{(1/2,1/3),(1/2,2/3),(1/2,1/4),(1/2,3/4),
(1/2,1/6),(1/2,5/6),(1/3,1/6),(1/3,5/6),(2/3,1/6),(2/3,5/6)}.

Assume that m = n. Lemma 7 ensures that, for all prime p prime to m, we
have p?> = 1 mod m. Hence, any element of the group (Z/mZ)* has order 1
or 2. The well known structure of (Z/mZ)* yields m € {2,4,8,3,6,12,24}.
Now, the fact that iii) is satisfied follows from the following observations:

- if a =1/8 then 8 € {3/8,5/8} because D3(1/8) =3/8 # a,1 —

- if @ =3/8 then 8 € {1/8,7/8} because ©3(3/8) =1/8 # o, 1 — a5

- if @ =5/8 then 8 € {1/8,7/8} because D5(5/8) =1/8 # o, 1 — a5

- if a =7/8 then 8 € {5/8,3/8} because D3(7/8) =5/8 # a,1 —

- iff @« =1/12 then g € {5/12,7/12} because D5(1/12) =5/12 # o, 1 — «;

~if @ = 5/12 then B € {1/12,11/12} because D5(5/12) = 1/12 # a, 1 — a;
- if a =7/12 then § € {1/12,11/12} because ©(7/12) = 1/12 # a, 1 — o
- ifa=11/12 then 8 € {5/12,7/12} because D5(11/12) = 7/12 # a,1 —«a;
- direct calculations show that m = n = 24 is excluded.
We leave the proof of iii) = i) to the reader (direct calculations). O
4. Proof of Theorem 3

The fact that i) implies ii) is obvious (using Dirichlet theorem).

4.1. Proof of ii) = iii). — Assume that ii) holds. On the one hand,

Dieudonné-Dwork’s Lemma (Lemma 5 in [14] for instance) ensures that, for
all j € {1,...,¢(d)}, for infinitely many primes p in P;,
G, B;27) _ Gla,fB;2)
F(a,8:27)  "F(a,B;2)

mod pZy[[2]].

On the other hand, Dwork’s Theorem 4.1 in [5] ensures that, for all prime p
prime to d,

G (Dp(a),Dp(B);2) G (o, B;2)

F@p), 000 "Fla, 5 "ot PHlED
Consequently, for all j € {1,...,¢(d)}, for infinitely many primes p in P;,

G (Dp(a),D,(B);2)  G(a,B;2)

F@p(),Dy(B)2) ~ Flapiz) ot VoIl
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But ©,(a) and ©,(3) do not depend on p € P;. So, for all j € {1,...,¢(d)},
for infinitely many primes p € Pj,

G (gp(a)7 QP(B)ﬂ Z) — G (O[, /87 Z)

F(Dp(a), Dp(B);2)  F (o, B;2)
In virtue of Proposition 5, we get that, for all j € {1,...,(d)}, for infinitely
many primes p € P;,

(Dp(a), Dp(P)) € {(a, ), (B, ), (1 =, 1 =), (1 = 5,1 - )}

Proposition 8 ensures that iii) holds.

4.2. Proof of iii) = i). — The proof of iii) = 1) follows easily form
Dieudonné-Dwork’s Lemma and from Dwork’s congruences already used at
the beginning of § 4.1. (Indeed, it is easily seen that, for all prime p, the
growth of the p-adic valuations of the coefficients of Q («,f;z) is at most
linear. Therefore, iii) = i) is a consequence of Dieudonné-Dwork’s Lemma
and Dwork’s congruences which show that Q (a, ; z) belongs to Zy|[[z]] for al-
most all primes p if (o, 5) € .#.) However, we shall give another proof which
also shows the modular origin of the canonical coordinates with parameters
(o, B) € S

The following lemma shows that it is sufficient to treat the cases that

(o, B) € {(1/2,1/2),(1/2,2/3),(1/2,1/4),(1/2,1/6),(1/3,2/3),
(1/3,1/6), (1/4,3/4), (1/6,5/6), (1/8,3/8), (1/12,5/12)}.

Lemma 9. — We have
z
. — 1—83:
Qo) = -0 (a1 - i 2
and hence
Z(a,1—p3;—
(0 fiq) = o221 Fimd)

Z(O@l_ﬁ;_Q)_l'

Proof. — A direct calculation shows that y(z) is a solution of the hyperge-

ometric equation with parameters (o, 1 — ) if and only if (1 — 2)™%y(%5)

is solution of the hypergeometric equation with parameters («, 3). It follows

that
z
1—2)F (a,1-B;
(-2 (a1 -2

AR (REPRER FO I P AP

and
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form a basis of the C-vector space of solutions of the hypergeometric equation
with parameters (a, 3). Using Remark 1, it is easily seen that:

7) Flougis) = (-2 F (a1 -5 )

z—1

and

G, fBi2) = (1-2)"° (G (a,l—ﬁ;zil> —log(l—z)F<a,1—B;Zi1>>.

(Note that formula (7) is classical and known as Pfaff transformation.) There-
fore,

Q(a,B52) =-Q <a,1—5; : )

z—1

We introduce Dedekind’s n function defined by
n(g) =g/ [ (1 - ¢
n=1

and Dedekind-Klein’s J-invariant defined by

Q*(q)
J(q) = ==~ —~
@ Q*(q) — R*(q)
where @ and R (with Ramanujan’s notations) are the Eisenstein series defined
by

+o0 400
Q(g) =1+240) o3(n)g", R(q) =1-504> o5(n)q"
n=1 n=1

with ox(n) =34, d.
The following formulas show that the desired integrality property of
Z (o, B;q) holds if
(a,8) €{(1/2,1/2),(1/3,2/3),(1/3,1/6),(1/4,3/4),(1/6,5/6),
(1/8,3/8), (1/12,5/12)}.

We have
) 8(.,4
_ i n°(q%)
8 16712 (1/2,1/2;16q) = e
(8) (1/2,1/2;16q) (=)
- 1
(9) 64712 (1/4,3/4;64q) = —i
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B 1 J(q) —1
1 . - — —
(10) 432772 (1/6,5/6;432q) = 364 (1 J(q) )
12
. _ ) 1
(11) 10872 (1/3,1/6;108¢q) = 7712(‘]3) 12(g)
(27+ T‘é)
n'2(q%)
24
- n**(q 1
(12) 25672 (1/8,3/8;256q) = 24(2) 21(q) \ 2
n**(q?) (64+ M)
?Hg?)
1 172871 2 (1/12,5/12;1728¢) = —-——
1
(14) 2771 2(1/3,2/3;27q) = ———~.
n2(q)
27 n'2(q%)

For (8) see [9, §9, formula (9.8)], for (9) see [9, §9, formula (9.6)], for (10)
see [9, §9, after formula (9.7)], for (11) see [9, §9, after formula (9.10)], for
(12) see [9, §9, formula (9.13) together with (9.6)], for (13) see [9, §9, Case
N = (2,6)], the proof of (14) is similar to the proof of the case (1/8,3/8) in
loc. cit. for instance.

The fact that the expected integrality property of Z («, ;¢q) also holds in
the remaining cases, i.e. for (o, ) € {(1/2,2/3),(1/2,1/4),(1/2,1/6)}, is
a direct consequence of the following lemma applied to g € {2/3,1/4,1/6}
combined with the previous formulas (11), (12) and (13); the details are left
to the reader.

Lemma 10. — We have

— 2
Q(1/2,8;2) = 2\/—9 <1 5 6,2;45_ 4>

and hence

2020 =22 (30, 5 a)

J— 2 J—
+2\/Z (1 25,5;—612/4) -z <1 26,5;—612/4)

Proof. — A direct calculation shows that y(z) is a solution of the hypergeo-
2

metric equation with parameters ((1—2)/2, 5/2) if and only if (l—z)B/Qy(ZIZZ—%)
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is solution of the hypergeometric equation with parameters (1/2, 3). It follows
that

s (1-B8 B 2
(1_2)2F< 2 ’2’4z—4>

and

N[

(1-2)

1-8 8 22
G( 2 ’2’4z—4>
a s (1-B8 B 22
+1°g<1—z>(1_z)2F( 2 ’2’4z—4>

form a basis of the C-vector space of solutions of the hypergeometric equation
with parameters (1/2,3). Consequently:

— 22
(19 P80 == (1505 )

and

(Vg

1 1— 2
G/ = 30— 26 (50 )

(1-2)

[N
o[@

—log(1—2)

1-8 B8 22
F —; .
< 2 1274z — 4)
(Note that formula (15) is classical.) Therefore,

Q(1/2,8;2) = =zexp <§
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5. Integrality properties of the Taylor coefficients of Q («, ;2) and
the hypothesis “«a, 5 € QN]O, 1[*

Lemma 11. — Consider a« € Q\ Z. Let a € Z and m € N* be such that
a =a/m. Then, for any prime p > |a| prime to m, we have

() = — € Q0. 1|

where x is the unique element in {1,...,m — 1} such that pr = a mod m.
In particular, ©,(a) does not depend on the prime p > |a| coprime to m in
o fixed arithmetic progression k + Nm.

Proof. — Indeed, we have p.- — a = #-2 € Z. Moreover, we have
—a T T —a m—1)—a a
p-a_ T P cpm-l—a_ pta

m m m m m

and the fact that p > |a| ensures that 0 < Z’;L—“ and p — % < p. Therefore,

Dp(a) = £, O

Proposition 12. — Assume that o, € Q\ Z are such that, for infinitely
many primes p, we have Q (o, 5; 2) € Zy[[2]]. Then «, B € QN]O, 1].

Proof. — We use the notations (d, P;,...) of § 1. Let j € {1, ..., o(d)} be such
that, for infinitely many primes p in P;, we have Q («, 3; 2) € Zyp[[2]]. Arguing
as in § 4.1 (using the fact that ©,(«) does not depend on the prime p large
enough in P; in virtue of Lemma 11), we see that, for infinitely many primes
p in Py,

(Qp(a)a Qp(ﬁ)) € {(OZ?ﬂ)v (6705)7 (1 - Q, 1- B)v (1 - 67 - Oé)}

Lemma 11 ensures that, for all prime p large enough in P;, we have

(Dp(@), Dp(B)) € (QNJO, 1[) x (QN]0, 1)),

whence the result. O
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