ARITHMETIC PROPERTIES OF MIRROR MAPS ASSOCIATED WITH GAUSS HYPERGEOMETRIC EQUATIONS

by

Julien Roques

Abstract. - We draw up the list of Gauss hypergeometric differential equations having maximal unipotent monodromy at 0 whose associated mirror map has, up to a simple rescaling, integral Taylor coefficients at 0 . We also prove that these equations are characterized by much weaker integrality properties (of p-adic integrality for infinitely many primes p in suitable arithmetic progressions). It turns out that the mirror maps with the above integrality property have modular origins.

Contents

1. Introduction 2
2. A preliminary hypergeometric result 4
3. Dwork's map $\alpha \mapsto \alpha^{\prime}=: \mathfrak{D}_{p}(a)$: remainder and complements 5
4. Proof of Theorem 3 7
4.1. Proof of ii) \Rightarrow iii) 7
4.2. Proof of iii) \Rightarrow i) 8
5. Integrality properties of the Taylor coefficients of $\mathcal{Q}(\alpha, \beta ; z)$ and the hypothesis " $\alpha, \beta \in \mathbb{Q} \cap] 0,1[$ " 12
References 12
[^0]
1. Introduction

For any $\alpha, \beta \in \mathbb{C}$, we let $F(\alpha, \beta ; z)$ be the hypergeometric series defined by

$$
F(\alpha, \beta ; z)={ }_{2} F_{1}(\alpha, \beta ; 1 ; z)=\sum_{k=0}^{+\infty} \frac{(\alpha)_{k}(\beta)_{k}}{k!^{2}} z^{k}
$$

where the Pochhammer symbols $(x)_{k}$ are defined by $(x)_{0}=1$ and, for $k \in \mathbb{N}^{*}$, $(x)_{k}=x(x+1) \cdots(x+k-1)$. It satisfies the hypergeometric differential equation with parameters (α, β) given by

$$
\begin{equation*}
z(z-1) y^{\prime \prime}(z)+((\alpha+\beta+1) z-1) y^{\prime}(z)+\alpha \beta y(z)=0 \tag{1}
\end{equation*}
$$

Assuming that $\alpha, \beta \notin-\mathbb{N}$ and setting

$$
G(\alpha, \beta ; z)=\sum_{k=0}^{+\infty} \frac{(\alpha)_{k}(\beta)_{k}}{k!^{2}}\left(2 H_{k}(1)-H_{k}(\alpha)-H_{k}(\beta)\right) z^{k}
$$

where $H_{0}(x)=0$ and, for $k \in \mathbb{N}^{*}, H_{k}(x)=\sum_{k=0}^{n-1} \frac{1}{x+k}$, a basis of the 2dimensional \mathbb{C}-vector space of solutions of (1) is given by

$$
\begin{equation*}
F(\alpha, \beta ; z), G(\alpha, \beta ; z)+\log (z) F(\alpha, \beta ; z) \tag{2}
\end{equation*}
$$

Remark 1. - For further use, note that:
i) $F(\alpha, \beta ; z)$ is the unique solution of (1) in $1+z \mathbb{C}[[z]]$;
ii) $G(\alpha, \beta ; z)$ is the unique element G in $z \mathbb{C}[[z]]$ such that $G(z)+$ $\log (z) F(\alpha, \beta ; z)$ is a solution of (1).

In this article, we are interested in arithmetic properties of the Taylor coefficients at 0 of

$$
\begin{aligned}
\mathcal{Q}(\alpha, \beta ; z) & =z \exp \left(\frac{G(\alpha, \beta ; z)}{F(\alpha, \beta ; z)}\right) \\
& =\exp \left(\frac{G(\alpha, \beta ; z)+\log (z) F(\alpha, \beta ; z)}{F(\alpha, \beta ; z)}\right)
\end{aligned}
$$

The $\operatorname{map} \mathcal{Q}(\alpha, \beta ; z)$ will be called the canonical coordinate with parameters (α, β). We will identify $\mathcal{Q}(\alpha, \beta ; z)$ with its Taylor expansion at 0 (which belongs to $\left.z+z^{2} \mathbb{C}[[z]]\right)$.

Before stating our main result, we introduce a notation for sets of primes in some arithmetic progressions which will play a central role in this paper.

Notation 2. - Consider $\alpha, \beta \in \mathbb{Q}$. Let d be the least common denominator in \mathbb{N}^{*} of α and β. Let $k_{1}<\cdots<k_{\varphi(d)}$ be the integers in $\{1, \ldots, d-1\}$ prime to d (φ denotes Euler's totient function). For any $j \in\{1, \ldots, \varphi(d)\}$, we denote by \mathcal{P}_{j} the set of primes congruent to $k_{j} \bmod d$.

Note that the $\bigcup_{j \in\{1, \ldots, \varphi(d)\}} \mathcal{P}_{j}$ coincides with the set of primes p prime to d.

Our main result is :
Theorem 3. - Let us consider α, β in $\mathbb{Q} \cap] 0,1[$. Let d be the least common denominator in \mathbb{N}^{*} of α and β.

The following assertions are equivalent:
i) there exists $\kappa \in \mathbb{N}^{*}$ such that $\kappa^{-1} \mathcal{Q}(\alpha, \beta ; \kappa z) \in \mathbb{Z}[[z]]$;
ii) for all $j \in\{1, \ldots, \varphi(d)\}$, for infinitely many primes p in $\mathcal{P}_{j}, \mathcal{Q}(\alpha, \beta ; z) \in$ $\mathbb{Z}_{p}[[z]]$ (where \mathbb{Z}_{p} is the ring of p-adic integers);
iii) up to permuting α and β, we have $(\alpha, \beta) \in \mathscr{I}$ where

$$
\begin{aligned}
\mathscr{I}:= & \{(1 / 2,1 / 2),(1 / 2,1 / 3),(1 / 2,2 / 3),(1 / 2,1 / 4),(1 / 2,3 / 4), \\
& (1 / 2,1 / 6),(1 / 2,5 / 6),(1 / 3,1 / 3),(1 / 3,2 / 3),(1 / 3,1 / 6),(1 / 3,5 / 6), \\
& (2 / 3,2 / 3),(2 / 3,1 / 6),(2 / 3,5 / 6),(1 / 4,1 / 4),(1 / 4,3 / 4),(3 / 4,3 / 4), \\
& (1 / 6,1 / 6),(1 / 6,5 / 6),(5 / 6,5 / 6),(1 / 8,3 / 8),(1 / 8,5 / 8),(3 / 8,7 / 8), \\
& (5 / 8,7 / 8),(1 / 12,5 / 12),(1 / 12,7 / 12),(5 / 12,11 / 12),(7 / 12,11 / 12)\} .
\end{aligned}
$$

The (compositional) inverse of $\mathcal{Q}(\alpha, \beta ; z) \in z+z^{2} \mathbb{C}[[z]]$, will be denoted by

$$
\mathcal{Z}(\alpha, \beta ; q) \in q+q^{2} \mathbb{C}[[q]]
$$

and will be called the mirror map with parameters (α, β). Note that, for all $\kappa \in \mathbb{N}^{*}$,

$$
\begin{equation*}
\kappa^{-1} \mathcal{Q}(\alpha, \beta ; \kappa z) \in \mathbb{Z}[[z]] \Leftrightarrow \kappa^{-1} \mathcal{Z}(\alpha, \beta ; \kappa q) \in \mathbb{Z}[[q]] ; \tag{3}
\end{equation*}
$$

for a proof see for instance [14, Lemma 2]. In particular, Theorem 3 also holds if we replace canonical coordinates by mirror maps.

It is worth mentioning that the canonical coordinates with parameters in \mathscr{I} have modular origins.

Our approach for proving Theorem 3 is based on the work of Dwork in [5]. The proof of Theorem 3 is given in § 4 whereas in § 2 and $\S 3$ we give preliminary results.

In $\S 5$, we prove that the hypothesis " $\alpha, \beta \in \mathbb{Q} \cap] 0,1[$ " is necessary in order to get integrality properties of the Taylor coefficients of $\mathcal{Q}(\alpha, \beta ; z)$ as in Theorem 3.

For results concerning the arithmetic properties of mirror maps associated with hypergeometric series whose coefficients are quotients of factorials, we refer to the work of Lian and Yau [10, 11, 12], Zudilin [14], Krattenthaler and Rivoal $[\mathbf{8}, \mathbf{7}]$ and Delaygue $[\mathbf{3}, \mathbf{4}, \mathbf{2}]$. In our case, the hypothesis "quotient of factorials" would mean that there exist $C>0$ and integers e_{1}, \ldots, e_{r} and f_{1}, \ldots, f_{s} such that

$$
F(\alpha, \beta ; z)=\sum_{k=0}^{+\infty} C^{k} \frac{\left(e_{1} k\right)!\cdots\left(e_{r} k\right)!}{\left(f_{1} k\right)!\cdots\left(f_{s} k\right)!}{ }^{k} .
$$

Using Proposition 2 in Chapter 4 of [3], we see that this holds in a finite number of cases, namely, if and only if, up to permuting α and β,

$$
(\alpha, \beta) \in\{(1 / 2,1 / 2),(1 / 3,2 / 3),(2 / 3,1 / 3),(1 / 4,3 / 4),(3 / 4,1 / 4),(1 / 6,5 / 6)\}
$$

Note that the (well-known) integrality property of $\mathcal{Z}(1 / 2,1 / 2 ; z)$ (namely, $\left.16^{-1} \mathcal{Z}(1 / 2,1 / 2 ; 16 z) \in \mathbb{Z}[[z]]\right)$ is used by Y. André in $[\mathbf{1}]$.

2. A preliminary hypergeometric result

Lemma 4. - Let us consider $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} \in \mathbb{Q} \backslash \mathbb{Z}$.
The following assertions are equivalent:
i) $F\left(\alpha_{1}, \beta_{1} ; z\right)=F\left(\alpha_{2}, \beta_{2} ; z\right)$;
ii) $\left(\alpha_{2}, \beta_{2}\right) \in\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\beta_{1}, \alpha_{1}\right)\right\}$.

Proof. - One can for instance apply Proposition 1 in Chapter 4 of [3].
Proposition 5. - Let us consider $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} \in \mathbb{Q} \backslash \mathbb{Z}$.
The following assertions are equivalent:
i) $\frac{G\left(\alpha_{1}, \beta_{1} ; z\right)}{F\left(\alpha_{1}, \beta_{1} ; z\right)}=\frac{G\left(\alpha_{2}, \beta_{2} ; z\right)}{F\left(\alpha_{2}, \beta_{2} ; z\right)}$;
ii) $\left(\alpha_{2}, \beta_{2}\right) \in\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\beta_{1}, \alpha_{1}\right),\left(1-\alpha_{1}, 1-\beta_{1}\right),\left(1-\beta_{1}, 1-\alpha_{1}\right)\right\}$.

Proof. - We denote by $w(\alpha, \beta ; z)$ the wronskian determinant of the hypergeometric equation (1) with respect to the basis of solutions (2). It satisfies the first order differential equation

$$
y^{\prime}(z)=-\frac{(\alpha+\beta+1) z-1}{z(z-1)} y(z)
$$

so there exists $C_{\alpha, \beta} \in \mathbb{C}^{*}$ such that

$$
\begin{equation*}
w(\alpha, \beta ; z)=C_{\alpha, \beta} z^{-1}(1-z)^{-\alpha-\beta} \tag{4}
\end{equation*}
$$

Assume that i) holds. Then

$$
\frac{G\left(\alpha_{1}, \beta_{1} ; z\right)+\log (z) F\left(\alpha_{1}, \beta_{1} ; z\right)}{F\left(\alpha_{1}, \beta_{1} ; z\right)}=\frac{G\left(\alpha_{2}, \beta_{2} ; z\right)+\log (z) F\left(\alpha_{2}, \beta_{2} ; z\right)}{F\left(\alpha_{2}, \beta_{2} ; z\right)}
$$

Differentiating this equation, we get

$$
-\frac{w\left(\alpha_{1}, \beta_{1} ; z\right)}{F\left(\alpha_{1}, \beta_{1} ; z\right)^{2}}=-\frac{w\left(\alpha_{2}, \beta_{2} ; z\right)}{F\left(\alpha_{2}, \beta_{2} ; z\right)^{2}}
$$

so, in virtue of formula (4), there exist $C_{1}, C_{2} \in \mathbb{C}^{*}$ such that

$$
-\frac{C_{1} z^{-1}(1-z)^{-\alpha_{1}-\beta_{1}}}{F\left(\alpha_{1}, \beta_{1} ; z\right)^{2}}=-\frac{C_{2} z^{-1}(1-z)^{-\alpha_{2}-\beta_{2}}}{F\left(\alpha_{2}, \beta_{2} ; z\right)^{2}}
$$

It follows that there exists $\gamma \in \mathbb{Q}$ such that

$$
F\left(\alpha_{1}, \beta_{1} ; z\right)=(1-z)^{\gamma} F\left(\alpha_{2}, \beta_{2} ; z\right) .
$$

A short calculation then shows that $F\left(\alpha_{2}, \beta_{2} ; z\right)$ is solution of some linear differential equation with rational coefficients of the form
(5) $z(z-1) y^{\prime \prime}(z)+* y^{\prime}(z)$

$$
+\left(\frac{z \gamma(\gamma-1)+\left(\left(\alpha_{1}+\beta_{1}+1\right) z-1\right) \gamma}{1-z}+\alpha_{1} \beta_{1}\right) y(z)=0
$$

But it is also solution of the hypergeometric differential equation

$$
\begin{equation*}
z(z-1) y^{\prime \prime}(z)+\left(\left(\alpha_{2}+\beta_{2}+1\right) z-1\right) y^{\prime}(z)+\alpha_{2} \beta_{2} y(z)=0 \tag{6}
\end{equation*}
$$

This equation being irreducible over $\mathbb{C}(z)([6])$, the coefficients of equations (5) and (6) must be the same. In particular, $\frac{z \gamma(\gamma-1)+\left(\left(\alpha_{1}+\beta_{1}+1\right) z-1\right) \gamma}{1-z}$ must be regular at $z=1$; this entails that $\gamma=0$ or $\gamma=1-\left(\alpha_{1}+\beta_{1}\right)$. If $\gamma=0$ then $F\left(\alpha_{1}, \beta_{1} ; z\right)=F\left(\alpha_{2}, \beta_{2} ; z\right)$ and hence, in virtue of Lemma $4,\left(\alpha_{2}, \beta_{2}\right) \in$ $\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\beta_{1}, \alpha_{1}\right)\right\}$. If $\gamma=1-\left(\alpha_{1}+\beta_{1}\right)$ then

$$
F\left(\alpha_{1}, \beta_{1} ; z\right)=(1-z)^{1-\left(\alpha_{1}+\beta_{1}\right)} F\left(\alpha_{2}, \beta_{2} ; z\right)
$$

Since (formula (1.3.15) in [13])

$$
F\left(\alpha_{1}, \beta_{1} ; z\right)=(1-z)^{1-\left(\alpha_{1}+\beta_{1}\right)} F\left(1-\alpha_{1}, 1-\beta_{1} ; z\right)
$$

we get $F\left(\alpha_{2}, \beta_{2} ; z\right)=F\left(1-\alpha_{1}, 1-\beta_{1} ; z\right)$ and Lemma 4 ensures that $\left(\alpha_{2}, \beta_{2}\right) \in\left\{\left(1-\alpha_{1}, 1-\beta_{1}\right),\left(1-\beta_{1}, 1-\alpha_{1}\right)\right\}$.

We leave the converse statement to the reader.

3. Dwork's map $\alpha \mapsto \alpha^{\prime}=: \mathfrak{D}_{p}(a)$: remainder and complements

For any prime number p, for any p-adic integer α in \mathbb{Q}, we denote by $\mathfrak{D}_{p}(\alpha)$ the unique p-adic integer in \mathbb{Q} such that

$$
p \mathfrak{D}_{p}(\alpha)-\alpha \in\{0, \ldots, p-1\} .
$$

The operator $\alpha \mapsto \mathfrak{D}_{p}(\alpha)$ was used by Dwork in [5] (and denoted by $\alpha \mapsto \alpha^{\prime}$).
Proposition 6. - Assume that $\alpha \in \mathbb{Q} \cap] 0,1\left[\right.$. Let $a, m \in \mathbb{N}^{*}$ be such that $\alpha=a / m$ and $\operatorname{gcd}(a, m)=1($ so $\operatorname{gcd}(m, p)=1)$. Then

$$
\left.\mathfrak{D}_{p}(\alpha)=\frac{x}{m} \in \mathbb{Q} \cap\right] 0,1[
$$

where x is the unique integer in $\{1, \ldots, m-1\}$ such that $p x \equiv a \bmod m$.
In particular, $\mathfrak{D}_{p}(\alpha)$ does not depend on the prime p coprime to m in a fixed arithmetic progression $k+\mathbb{N} m$.

Proof. - Indeed, we have $p \frac{x}{m}-\alpha=\frac{p x-a}{m} \in \mathbb{Z}$. Moreover, we have

$$
-1<-\alpha<p \frac{x}{m}-\alpha=\frac{p x-a}{m} \leq \frac{p(m-1)-a}{m}=p-\frac{p+a}{m}<p
$$

Therefore, $\mathfrak{D}_{p}(\alpha)=\frac{x}{m}$.
We will need the following properties.
Lemma 7. - Let p be a prime number and consider p-adic integers α, β in \mathbb{Q} such that

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in\{(\alpha, \beta),(\beta, \alpha),(1-\alpha, 1-\beta),(1-\beta, 1-\alpha)\}
$$

Let $m, n \in \mathbb{N}^{*}$ and $a, b \in \mathbb{Z}$ be such that $\alpha=a / m$ and $\beta=b / n$ with $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(b, n)=1$. Let $d=\operatorname{lcm}(m, n)$ be the least common denominator in \mathbb{N}^{*} of α and β. Then $p^{2}=1 \bmod d$. Moreover, if $m \neq n$ then $p= \pm 1 \bmod d$.

Proof. - Let us first assume that $\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right)=(\alpha, \beta)$. This implies that $p \alpha-\alpha=(p-1) \alpha$ belongs to \mathbb{Z}. Therefore, $p=1 \bmod m$. Similarly, $p=1$ $\bmod n$.

Assume that $\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right)=(\beta, \alpha)$. Then $p \beta-\alpha$ and $p \alpha-\beta$ belong to \mathbb{Z}. This implies $m=n, a=p b \bmod m$ and $b=p a \bmod m$, so $b=p^{2} b \bmod m$ and hence $p^{2}=1 \bmod m$.

Assume that $\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right)=(1-\alpha, 1-\beta)$. Then $p(1-\alpha)-\alpha=-(p+$ 1) $\alpha+p$ belongs to \mathbb{Z}. This implies that $p=-1 \bmod m$. Similarly, $p=-1$ $\bmod n$.

Assume that $\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right)=(1-\beta, 1-\alpha)$. Then $p(1-\beta)-\alpha$ and $p(1-\alpha)-\beta$ belong to \mathbb{Z}. It follows that $m=n, b p=-a \bmod m$ and $a p=-b \bmod m$, so $b=p^{2} b \bmod m$ and hence $p^{2}=1 \bmod m$.

Proposition 8. - Let us consider α, β in $\mathbb{Q} \cap] 0,1[$. Let d be the least common denominator in \mathbb{N}^{*} of α and β.

The following assertions are equivalent:
i) for all $j \in\{1, \ldots, \varphi(d)\}$, there exists a prime p in \mathcal{P}_{j} such that

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in\{(\alpha, \beta),(\beta, \alpha),(1-\alpha, 1-\beta),(1-\beta, 1-\alpha)\}
$$

ii) for all prime p prime to d,

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in\{(\alpha, \beta),(\beta, \alpha),(1-\alpha, 1-\beta),(1-\beta, 1-\alpha)\}
$$

iii) up to permuting α and $\beta,(\alpha, \beta) \in \mathscr{I}$ (defined in Theorem 3).

Proof. - The equivalence between assertions i) and ii) follows from the fact that $\mathfrak{D}_{p}(\alpha)$ and $\mathfrak{D}_{p}(\beta)$ do not depend on $p \in \mathcal{P}_{j}$.

We now prove that ii) implies iii). So we consider (α, β) satisfying ii). Let $m, n \in \mathbb{N}^{*}$ and $a, b \in \mathbb{Z}$ be such that $\alpha=a / m$ and $\beta=b / n$ with $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(b, n)=1$. So $d=\operatorname{lcm}(m, n)$.

Let us first assume that $m \neq n$. Lemma 7 ensures that, for all prime p prime to d, we have $p= \pm 1 \bmod d$. Using Dirichlet's theorem, we get $\varphi(d) \in\{1,2\}$ and hence $d \in\{2,3,4,6\}$. Therefore, up to permuting m and n, we see that
(m, n) belongs to $\{(2,3),(2,4),(2,6),(3,6)\}$. Up to permuting α and β, we get that (α, β) belongs to

$$
\begin{aligned}
& \{(1 / 2,1 / 3),(1 / 2,2 / 3),(1 / 2,1 / 4),(1 / 2,3 / 4) \\
& \quad(1 / 2,1 / 6),(1 / 2,5 / 6),(1 / 3,1 / 6),(1 / 3,5 / 6),(2 / 3,1 / 6),(2 / 3,5 / 6)\}
\end{aligned}
$$

Assume that $m=n$. Lemma 7 ensures that, for all prime p prime to m, we have $p^{2}=1 \bmod m$. Hence, any element of the $\operatorname{group}(\mathbb{Z} / m \mathbb{Z})^{\times}$has order 1 or 2 . The well known structure of $(\mathbb{Z} / m \mathbb{Z})^{\times}$yields $m \in\{2,4,8,3,6,12,24\}$. Now, the fact that iii) is satisfied follows from the following observations:

- if $\alpha=1 / 8$ then $\beta \in\{3 / 8,5 / 8\}$ because $\mathfrak{D}_{3}(1 / 8)=3 / 8 \neq \alpha, 1-\alpha$;
- if $\alpha=3 / 8$ then $\beta \in\{1 / 8,7 / 8\}$ because $\mathfrak{D}_{3}(3 / 8)=1 / 8 \neq \alpha, 1-\alpha$;
- if $\alpha=5 / 8$ then $\beta \in\{1 / 8,7 / 8\}$ because $\mathfrak{D}_{5}(5 / 8)=1 / 8 \neq \alpha, 1-\alpha$;
- if $\alpha=7 / 8$ then $\beta \in\{5 / 8,3 / 8\}$ because $\mathfrak{D}_{3}(7 / 8)=5 / 8 \neq \alpha, 1-\alpha$;
- iff $\alpha=1 / 12$ then $\beta \in\{5 / 12,7 / 12\}$ because $\mathfrak{D}_{5}(1 / 12)=5 / 12 \neq \alpha, 1-\alpha$;
- if $\alpha=5 / 12$ then $\beta \in\{1 / 12,11 / 12\}$ because $\mathfrak{D}_{5}(5 / 12)=1 / 12 \neq \alpha, 1-\alpha$;
- if $\alpha=7 / 12$ then $\beta \in\{1 / 12,11 / 12\}$ because $\mathfrak{D}_{7}(7 / 12)=1 / 12 \neq \alpha, 1-\alpha$;
- if $\alpha=11 / 12$ then $\beta \in\{5 / 12,7 / 12\}$ because $\mathfrak{D}_{5}(11 / 12)=7 / 12 \neq \alpha, 1-\alpha$;
- direct calculations show that $m=n=24$ is excluded.

We leave the proof of iii) \Rightarrow i) to the reader (direct calculations).

4. Proof of Theorem 3

The fact that i) implies ii) is obvious (using Dirichlet theorem).
4.1. Proof of ii) \Rightarrow iii). - Assume that ii) holds. On the one hand, Dieudonné-Dwork's Lemma (Lemma 5 in [14] for instance) ensures that, for all $j \in\{1, \ldots, \varphi(d)\}$, for infinitely many primes p in \mathcal{P}_{j},

$$
\frac{G\left(\alpha, \beta ; z^{p}\right)}{F\left(\alpha, \beta ; z^{p}\right)}=p \frac{G(\alpha, \beta ; z)}{F(\alpha, \beta ; z)} \quad \bmod p \mathbb{Z}_{p}[[z]]
$$

On the other hand, Dwork's Theorem 4.1 in [5] ensures that, for all prime p prime to d,

$$
\frac{G\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z^{p}\right)}{F\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z^{p}\right)}=p \frac{G(\alpha, \beta ; z)}{F(\alpha, \beta ; z)} \quad \bmod p \mathbb{Z}_{p}[[z]]
$$

Consequently, for all $j \in\{1, \ldots, \varphi(d)\}$, for infinitely many primes p in \mathcal{P}_{j},

$$
\frac{G\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z\right)}{F\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z\right)}=\frac{G(\alpha, \beta ; z)}{F(\alpha, \beta ; z)} \quad \bmod p \mathbb{Z}_{p}[[z]]
$$

But $\mathfrak{D}_{p}(\alpha)$ and $\mathfrak{D}_{p}(\beta)$ do not depend on $p \in \mathcal{P}_{j}$. So, for all $j \in\{1, \ldots, \varphi(d)\}$, for infinitely many primes $p \in \mathcal{P}_{j}$,

$$
\frac{G\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z\right)}{F\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta) ; z\right)}=\frac{G(\alpha, \beta ; z)}{F(\alpha, \beta ; z)}
$$

In virtue of Proposition 5, we get that, for all $j \in\{1, \ldots, \varphi(d)\}$, for infinitely many primes $p \in \mathcal{P}_{j}$,

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in\{(\alpha, \beta),(\beta, \alpha),(1-\alpha, 1-\beta),(1-\beta, 1-\alpha)\} .
$$

Proposition 8 ensures that iii) holds.
4.2. Proof of iii) $\Rightarrow \mathbf{i}$. - The proof of iii) \Rightarrow i) follows easily form Dieudonné-Dwork's Lemma and from Dwork's congruences already used at the beginning of $\S 4.1$. (Indeed, it is easily seen that, for all prime p, the growth of the p-adic valuations of the coefficients of $\mathcal{Q}(\alpha, \beta ; z)$ is at most linear. Therefore, iii) \Rightarrow i) is a consequence of Dieudonné-Dwork's Lemma and Dwork's congruences which show that $\mathcal{Q}(\alpha, \beta ; z)$ belongs to $\mathbb{Z}_{p}[[z]]$ for almost all primes p if $(\alpha, \beta) \in \mathscr{I}$.) However, we shall give another proof which also shows the modular origin of the canonical coordinates with parameters $(\alpha, \beta) \in \mathscr{I}$.

The following lemma shows that it is sufficient to treat the cases that

$$
\begin{aligned}
& (\alpha, \beta) \in\{(1 / 2,1 / 2),(1 / 2,2 / 3),(1 / 2,1 / 4),(1 / 2,1 / 6),(1 / 3,2 / 3) \\
& (1 / 3,1 / 6),(1 / 4,3 / 4),(1 / 6,5 / 6),(1 / 8,3 / 8),(1 / 12,5 / 12)\}
\end{aligned}
$$

Lemma 9. - We have

$$
\mathcal{Q}(\alpha, \beta ; z)=-\mathcal{Q}\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)
$$

and hence

$$
\mathcal{Z}(\alpha, \beta ; q)=\frac{\mathcal{Z}(\alpha, 1-\beta ;-q)}{\mathcal{Z}(\alpha, 1-\beta ;-q)-1}
$$

Proof. - A direct calculation shows that $y(z)$ is a solution of the hypergeometric equation with parameters $(\alpha, 1-\beta)$ if and only if $(1-z)^{-\alpha} y\left(\frac{z}{z-1}\right)$ is solution of the hypergeometric equation with parameters (α, β). It follows that

$$
(1-z)^{-\alpha} F\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)
$$

and

$$
(1-z)^{-\alpha}\left(G\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)+\log \left(\frac{z}{1-z}\right) F\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)\right)
$$

form a basis of the \mathbb{C}-vector space of solutions of the hypergeometric equation with parameters (α, β). Using Remark 1, it is easily seen that:

$$
\begin{equation*}
F(\alpha, \beta ; z)=(1-z)^{-\alpha} F\left(\alpha, 1-\beta ; \frac{z}{z-1}\right) \tag{7}
\end{equation*}
$$

and
$G(\alpha, \beta ; z)=(1-z)^{-\alpha}\left(G\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)-\log (1-z) F\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)\right)$.
(Note that formula (7) is classical and known as Pfaff transformation.) Therefore,

$$
\mathcal{Q}(\alpha, \beta ; z)=-\mathcal{Q}\left(\alpha, 1-\beta ; \frac{z}{z-1}\right)
$$

We introduce Dedekind's η function defined by

$$
\eta(q)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

and Dedekind-Klein's J-invariant defined by

$$
J(q)=\frac{Q^{3}(q)}{Q^{3}(q)-R^{2}(q)}
$$

where Q and R (with Ramanujan's notations) are the Eisenstein series defined by

$$
Q(q)=1+240 \sum_{n=1}^{+\infty} \sigma_{3}(n) q^{n}, \quad R(q)=1-504 \sum_{n=1}^{+\infty} \sigma_{5}(n) q^{n}
$$

with $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$.
The following formulas show that the desired integrality property of $\mathcal{Z}(\alpha, \beta ; q)$ holds if

$$
\begin{array}{r}
(\alpha, \beta) \in\{(1 / 2,1 / 2),(1 / 3,2 / 3),(1 / 3,1 / 6),(1 / 4,3 / 4),(1 / 6,5 / 6) \\
(1 / 8,3 / 8),(1 / 12,5 / 12)\}
\end{array}
$$

We have

$$
\begin{align*}
16^{-1} \mathcal{Z}(1 / 2,1 / 2 ; 16 q) & =e^{\frac{i \pi}{3}} \frac{\eta^{8}\left(q^{4}\right)}{\eta^{8}(-q)} \tag{8}\\
64^{-1} \mathcal{Z}(1 / 4,3 / 4 ; 64 q) & =\frac{1}{64+\frac{\eta^{24}(q)}{\eta^{24}\left(q^{2}\right)}}
\end{align*}
$$

$$
\begin{align*}
& 432^{-1} \mathcal{Z}(1 / 6,5 / 6 ; 432 q)=\frac{1}{864}\left(1-\sqrt{\frac{J(q)-1}{J(q)}}\right) \tag{10}\\
& 108^{-1} \mathcal{Z}(1 / 3,1 / 6 ; 108 q)=\frac{\eta^{12}(q)}{\eta^{12}\left(q^{3}\right)} \frac{1}{\left(27+\frac{\eta^{12}(q)}{\eta^{12}\left(q^{3}\right)}\right)^{2}} \tag{11}\\
& 256^{-1} \mathcal{Z}(1 / 8,3 / 8 ; 256 q)=\frac{\eta^{24}(q)}{\eta^{24}\left(q^{2}\right)} \frac{1}{\left(64+\frac{\eta^{24}(q)}{\eta^{24}\left(q^{2}\right)}\right)^{2}} \tag{12}\\
& 1728^{-1} \mathcal{Z}(1 / 12,5 / 12 ; 1728 q)=\frac{1}{1728 J(q)} \tag{13}\\
& 27^{-1} \mathcal{Z}(1 / 3,2 / 3 ; 27 q)=\frac{1}{27+\frac{\eta^{12}(q)}{\eta^{12}\left(q^{3}\right)}} . \tag{14}
\end{align*}
$$

For (8) see $[\mathbf{9}, \S 9$, formula (9.8)], for (9) see [$\mathbf{9}, \S 9$, formula (9.6)], for (10) see $[\mathbf{9}, \S 9$, after formula (9.7)], for (11) see [$\mathbf{9}, \S 9$, after formula (9.10)], for (12) see $[\mathbf{9}, \S 9$, formula (9.13) together with (9.6)], for (13) see [9, $\S 9$, Case $N=(2,6)]$, the proof of (14) is similar to the proof of the case $(1 / 8,3 / 8)$ in loc. cit. for instance.

The fact that the expected integrality property of $\mathcal{Z}(\alpha, \beta ; q)$ also holds in the remaining cases, i.e. for $(\alpha, \beta) \in\{(1 / 2,2 / 3),(1 / 2,1 / 4),(1 / 2,1 / 6)\}$, is a direct consequence of the following lemma applied to $\beta \in\{2 / 3,1 / 4,1 / 6\}$ combined with the previous formulas (11), (12) and (13); the details are left to the reader.

Lemma 10. - We have

$$
\mathcal{Q}(1 / 2, \beta ; z)=2 \sqrt{-\mathcal{Q}\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)}
$$

and hence

$$
\begin{aligned}
\mathcal{Z}(1 / 2, \beta ; q)=2 \mathcal{Z} & \left(\frac{1-\beta}{2}, \frac{\beta}{2} ;-q^{2} / 4\right) \\
& +2 \sqrt{\mathcal{Z}\left(\frac{1-\beta}{2}, \frac{\beta}{2} ;-q^{2} / 4\right)^{2}-\mathcal{Z}\left(\frac{1-\beta}{2}, \frac{\beta}{2} ;-q^{2} / 4\right)} .
\end{aligned}
$$

Proof. - A direct calculation shows that $y(z)$ is a solution of the hypergeometric equation with parameters $((1-\beta) / 2, \beta / 2)$ if and only if $(1-z)^{\beta / 2} y\left(\frac{z^{2}}{4 z-4}\right)$
is solution of the hypergeometric equation with parameters $(1 / 2, \beta)$. It follows that

$$
(1-z)^{\frac{\beta}{2}} F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)
$$

and

$$
\begin{aligned}
(1-z)^{\frac{\beta}{2}} G\left(\frac{1-\beta}{2},\right. & \left.\frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right) \\
& +\log \left(\frac{z^{2}}{1-z}\right)(1-z)^{\frac{\beta}{2}} F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)
\end{aligned}
$$

form a basis of the \mathbb{C}-vector space of solutions of the hypergeometric equation with parameters $(1 / 2, \beta)$. Consequently:

$$
\begin{equation*}
F(1 / 2, \beta ; z)=(1-z)^{\frac{\beta}{2}} F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{aligned}
G(1 / 2, \beta ; z)=\frac{1}{2}(1-z)^{\frac{\beta}{2}} G & \left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right) \\
& -\log (1-z)^{\frac{1}{2}}(1-z)^{\frac{\beta}{2}} F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)
\end{aligned}
$$

(Note that formula (15) is classical.) Therefore,

$$
\begin{aligned}
\mathcal{Q}(1 / 2, \beta ; z) & =z \exp \left(\frac{G(1 / 2, \beta ; z)}{F(1 / 2, \beta ; z)}\right) \\
& =\frac{z}{(1-z)^{1 / 2}} \exp \left(\frac{\frac{1}{2} G\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)}{F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)}\right) \\
& =2 \sqrt{\frac{z^{2}}{4(1-z)} \exp \left(\frac{G\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)}{F\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)}\right)} \\
& =2 \sqrt{-\mathcal{Q}\left(\frac{1-\beta}{2}, \frac{\beta}{2} ; \frac{z^{2}}{4 z-4}\right)} .
\end{aligned}
$$

5. Integrality properties of the Taylor coefficients of $\mathcal{Q}(\alpha, \beta ; z)$ and the hypothesis " $\alpha, \beta \in \mathbb{Q} \cap] 0,1[$ "

Lemma 11. - Consider $\alpha \in \mathbb{Q} \backslash \mathbb{Z}$. Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}^{*}$ be such that $\alpha=a / m$. Then, for any prime $p>|a|$ prime to m, we have

$$
\left.\mathfrak{D}_{p}(\alpha)=\frac{x}{m} \in \mathbb{Q} \cap\right] 0,1[
$$

where x is the unique element in $\{1, \ldots, m-1\}$ such that $p x \equiv a \bmod m$.
In particular, $\mathfrak{D}_{p}(\alpha)$ does not depend on the prime $p>|a|$ coprime to m in a fixed arithmetic progression $k+\mathbb{N} m$.

Proof. - Indeed, we have $p \frac{x}{m}-\alpha=\frac{p x-a}{m} \in \mathbb{Z}$. Moreover, we have

$$
\frac{p-a}{m} \leq p \frac{x}{m}-\alpha=\frac{p x-a}{m} \leq \frac{p(m-1)-a}{m}=p-\frac{p+a}{m}
$$

and the fact that $p>|a|$ ensures that $0<\frac{p-a}{m}$ and $p-\frac{p+a}{m}<p$. Therefore, $\mathfrak{D}_{p}(\alpha)=\frac{x}{m}$.
Proposition 12. - Assume that $\alpha, \beta \in \mathbb{Q} \backslash \mathbb{Z}$ are such that, for infinitely many primes p, we have $\mathcal{Q}(\alpha, \beta ; z) \in \mathbb{Z}_{p}[[z]]$. Then $\left.\alpha, \beta \in \mathbb{Q} \cap\right] 0,1[$.

Proof. - We use the notations $\left(d, \mathcal{P}_{j}, \ldots\right)$ of $\S 1$. Let $j \in\{1, \ldots, \varphi(d)\}$ be such that, for infinitely many primes p in \mathcal{P}_{j}, we have $\mathcal{Q}(\alpha, \beta ; z) \in \mathbb{Z}_{p}[[z]]$. Arguing as in $\S 4.1$ (using the fact that $\mathfrak{D}_{p}(\alpha)$ does not depend on the prime p large enough in \mathcal{P}_{j} in virtue of Lemma 11), we see that, for infinitely many primes p in \mathcal{P}_{j},

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in\{(\alpha, \beta),(\beta, \alpha),(1-\alpha, 1-\beta),(1-\beta, 1-\alpha)\}
$$

Lemma 11 ensures that, for all prime p large enough in \mathcal{P}_{j}, we have

$$
\left(\mathfrak{D}_{p}(\alpha), \mathfrak{D}_{p}(\beta)\right) \in(\mathbb{Q} \cap] 0,1[) \times(\mathbb{Q} \cap] 0,1[)
$$

whence the result.

References

[1] Yves André. G-fonctions et transcendance. J. Reine Angew. Math., 476:95-125, 1996.
[2] E. Delaygue. Intégralité des coefficients de taylor de racines d'applications miroir. Journal de Théorie des Nombres de Bordeaux, 2011.
[3] E. Delaygue. Propriétés arithmétiques des applications miroir. Thèse, Grenoble (available online at http://www.theses.fr/2011GRENM032), 2011.
[4] E. Delaygue. Critère pour l'intégralité des coefficients de taylor des applications miroir. J. Reine Angew. Math., 662:205-252, 2012.
[5] B. Dwork. On p-adic differential equations. IV. Generalized hypergeometric functions as p-adic analytic functions in one variable. Ann. Sci. École Norm. Sup. (4), 6:295-315, 1973.
[6] N. M. Katz. Exponential sums and differential equations, volume 124 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1990.
[7] C. Krattenthaler and T. Rivoal. On the integrality of the Taylor coefficients of mirror maps. II. Commun. Number Theory Phys., 3(3):555-591, 2009.
[8] C. Krattenthaler and T. Rivoal. On the integrality of the Taylor coefficients of mirror maps. Duke Math. J., 151(2):175-218, 2010.
[9] C. Krattenthaler and T. Rivoal. Analytic properties of mirror maps. J. Austr. Math. Soc., 2011.
[10] B. H. Lian and S.-T. Yau. Arithmetic properties of mirror map and quantum coupling. Comm. Math. Phys., 176(1):163-191, 1996.
[11] B. H. Lian and S.-T. Yau. Integrality of certain exponential series. In Algebra and geometry (Taipei, 1995), volume 2 of Lect. Algebra Geom., pages 215-227. Int. Press, Cambridge, MA, 1998.
[12] B. H. Lian and S.-T. Yau. The nth root of the mirror map. In Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), volume 38 of Fields Inst. Commun., pages 195-199. Amer. Math. Soc., Providence, RI, 2003.
[13] L. J. Slater. Generalized hypergeometric functions. Cambridge University Press, Cambridge, 1966.
[14] V. V. Zudilin. On the integrality of power expansions related to hypergeometric series. Mat. Zametki, 71(5):662-676, 2002.

April 19, 2013
Julien Roques, Institut Fourier, Université Grenoble 1, CNRS UMR 5582, 100 rue des Maths, BP 74, 38402 St Martin d'Hères • E-mail:Julien.Roques@ujf-grenoble.fr

[^0]: 2000 Mathematics Subject Classification. - 33C05
 Key words and phrases. - Hypergeometric series and equations, Mirror maps.

