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Abstract. — We draw up the list of Gauss hypergeometric differential equa-
tions having maximal unipotent monodromy at 0 whose associated mirror map
has, up to a simple rescaling, integral Taylor coefficients at 0. We also prove
that these equations are characterized by much weaker integrality properties
(of p-adic integrality for infinitely many primes p in suitable arithmetic progres-
sions). It turns out that the mirror maps with the above integrality property
have modular origins.
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1. Introduction

For any α, β ∈ C, we let F (α, β; z) be the hypergeometric series defined by

F (α, β; z) = 2F1(α, β; 1; z) =
+∞∑
k=0

(α)k(β)k
k!2

zk

where the Pochhammer symbols (x)k are defined by (x)0 = 1 and, for k ∈ N∗,
(x)k = x(x + 1) · · · (x + k − 1). It satisfies the hypergeometric differential
equation with parameters (α, β) given by

(1) z(z − 1)y′′(z) + ((α+ β + 1)z − 1)y′(z) + αβy(z) = 0.

Assuming that α, β 6∈ −N and setting

G (α, β; z) =

+∞∑
k=0

(α)k(β)k
k!2

(2Hk(1)−Hk(α)−Hk(β)) zk,

where H0(x) = 0 and, for k ∈ N∗, Hk(x) =
∑n−1

k=0
1

x+k , a basis of the 2-

dimensional C-vector space of solutions of (1) is given by

(2) F (α, β; z) , G (α, β; z) + log(z)F (α, β; z) .

Remark 1. — For further use, note that:
i) F (α, β; z) is the unique solution of (1) in 1 + zC[[z]] ;
ii) G (α, β; z) is the unique element G in zC[[z]] such that G(z) +

log(z)F (α, β; z) is a solution of (1).

In this article, we are interested in arithmetic properties of the Taylor co-
efficients at 0 of

Q (α, β; z) = z exp

(
G (α, β; z)

F (α, β; z)

)
= exp

(
G (α, β; z) + log(z)F (α, β; z)

F (α, β; z)

)
.

The map Q (α, β; z) will be called the canonical coordinate with parameters
(α, β). We will identify Q (α, β; z) with its Taylor expansion at 0 (which
belongs to z + z2C[[z]]).

Before stating our main result, we introduce a notation for sets of primes
in some arithmetic progressions which will play a central role in this paper.

Notation 2. — Consider α, β ∈ Q. Let d be the least common denominator
in N∗ of α and β. Let k1 < · · · < kϕ(d) be the integers in {1, ..., d − 1} prime
to d (ϕ denotes Euler’s totient function). For any j ∈ {1, ..., ϕ(d)}, we denote
by Pj the set of primes congruent to kj mod d.

Note that the
⋃
j∈{1,...,ϕ(d)} Pj coincides with the set of primes p prime to d.
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Our main result is :

Theorem 3. — Let us consider α, β in Q∩]0, 1[. Let d be the least common
denominator in N∗ of α and β.

The following assertions are equivalent:
i) there exists κ ∈ N∗ such that κ−1Q (α, β;κz) ∈ Z[[z]];
ii) for all j ∈ {1, ..., ϕ(d)}, for infinitely many primes p in Pj, Q (α, β; z) ∈
Zp[[z]] (where Zp is the ring of p-adic integers);

iii) up to permuting α and β, we have (α, β) ∈ I where

I := {(1/2, 1/2), (1/2, 1/3), (1/2, 2/3), (1/2, 1/4), (1/2, 3/4),

(1/2, 1/6), (1/2, 5/6), (1/3, 1/3), (1/3, 2/3), (1/3, 1/6), (1/3, 5/6),

(2/3, 2/3), (2/3, 1/6), (2/3, 5/6), (1/4, 1/4), (1/4, 3/4), (3/4, 3/4),

(1/6, 1/6), (1/6, 5/6), (5/6, 5/6), (1/8, 3/8), (1/8, 5/8), (3/8, 7/8),

(5/8, 7/8), (1/12, 5/12), (1/12, 7/12), (5/12, 11/12), (7/12, 11/12)}.

The (compositional) inverse of Q (α, β; z) ∈ z+ z2C[[z]], will be denoted by

Z (α, β; q) ∈ q + q2C[[q]]

and will be called the mirror map with parameters (α, β). Note that, for all
κ ∈ N∗,

(3) κ−1Q (α, β;κz) ∈ Z[[z]]⇔ κ−1Z (α, β;κq) ∈ Z[[q]];

for a proof see for instance [14, Lemma 2]. In particular, Theorem 3 also holds
if we replace canonical coordinates by mirror maps.

It is worth mentioning that the canonical coordinates with parameters in
I have modular origins.

Our approach for proving Theorem 3 is based on the work of Dwork in
[5]. The proof of Theorem 3 is given in § 4 whereas in § 2 and § 3 we give
preliminary results.

In § 5, we prove that the hypothesis “α, β ∈ Q∩]0, 1[” is necessary in or-
der to get integrality properties of the Taylor coefficients of Q (α, β; z) as in
Theorem 3.

For results concerning the arithmetic properties of mirror maps associated
with hypergeometric series whose coefficients are quotients of factorials, we
refer to the work of Lian and Yau [10, 11, 12], Zudilin [14], Krattenthaler
and Rivoal [8, 7] and Delaygue [3, 4, 2]. In our case, the hypothesis “quotient
of factorials” would mean that there exist C > 0 and integers e1, ..., er and
f1, ..., fs such that

F (α, β; z) =

+∞∑
k=0

Ck
(e1k)! · · · (erk)!

(f1k)! · · · (fsk)!
zk.
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Using Proposition 2 in Chapter 4 of [3], we see that this holds in a finite
number of cases, namely, if and only if, up to permuting α and β,

(α, β) ∈ {(1/2, 1/2), (1/3, 2/3), (2/3, 1/3), (1/4, 3/4), (3/4, 1/4), (1/6, 5/6)}.
Note that the (well-known) integrality property of Z (1/2, 1/2; z) (namely,

16−1Z (1/2, 1/2; 16z) ∈ Z[[z]]) is used by Y. André in [1].

2. A preliminary hypergeometric result

Lemma 4. — Let us consider α1, β1, α2, β2 ∈ Q \ Z.
The following assertions are equivalent:
i) F (α1, β1; z) = F (α2, β2; z);
ii) (α2, β2) ∈ {(α1, β1), (β1, α1)}.

Proof. — One can for instance apply Proposition 1 in Chapter 4 of [3].

Proposition 5. — Let us consider α1, β1, α2, β2 ∈ Q \ Z.
The following assertions are equivalent:

i) G(α1,β1;z)
F (α1,β1;z)

= G(α2,β2;z)
F (α2,β2;z)

;

ii) (α2, β2) ∈ {(α1, β1), (β1, α1), (1− α1, 1− β1), (1− β1, 1− α1)}.

Proof. — We denote by w(α, β; z) the wronskian determinant of the hyperge-
ometric equation (1) with respect to the basis of solutions (2). It satisfies the
first order differential equation

y′(z) = −(α+ β + 1)z − 1

z(z − 1)
y(z)

so there exists Cα,β ∈ C∗ such that

(4) w(α, β; z) = Cα,βz
−1(1− z)−α−β.

Assume that i) holds. Then

G (α1, β1; z) + log(z)F (α1, β1; z)

F (α1, β1; z)
=
G (α2, β2; z) + log(z)F (α2, β2; z)

F (α2, β2; z)
.

Differentiating this equation, we get

− w(α1, β1; z)

F (α1, β1; z)
2 = − w(α2, β2; z)

F (α2, β2; z)
2

so, in virtue of formula (4), there exist C1, C2 ∈ C∗ such that

−C1z
−1(1− z)−α1−β1

F (α1, β1; z)
2 = −C2z

−1(1− z)−α2−β2

F (α2, β2; z)
2 .

It follows that there exists γ ∈ Q such that

F (α1, β1; z) = (1− z)γF (α2, β2; z) .
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A short calculation then shows that F (α2, β2; z) is solution of some linear
differential equation with rational coefficients of the form

(5) z(z − 1)y′′(z) + ∗y′(z)

+

(
zγ(γ − 1) + ((α1 + β1 + 1)z − 1)γ

1− z
+ α1β1

)
y(z) = 0.

But it is also solution of the hypergeometric differential equation

(6) z(z − 1)y′′(z) + ((α2 + β2 + 1)z − 1)y′(z) + α2β2y(z) = 0.

This equation being irreducible over C(z) ([6]), the coefficients of equations

(5) and (6) must be the same. In particular, zγ(γ−1)+((α1+β1+1)z−1)γ
1−z must be

regular at z = 1; this entails that γ = 0 or γ = 1 − (α1 + β1). If γ = 0
then F (α1, β1; z) = F (α2, β2; z) and hence, in virtue of Lemma 4, (α2, β2) ∈
{(α1, β1), (β1, α1)}. If γ = 1− (α1 + β1) then

F (α1, β1; z) = (1− z)1−(α1+β1)F (α2, β2; z) .

Since (formula (1.3.15) in [13])

F (α1, β1; z) = (1− z)1−(α1+β1)F (1− α1, 1− β1; z) ,
we get F (α2, β2; z) = F (1− α1, 1− β1; z) and Lemma 4 ensures that
(α2, β2) ∈ {(1− α1, 1− β1), (1− β1, 1− α1)}.

We leave the converse statement to the reader.

3. Dwork’s map α 7→ α′ =: Dp(a): remainder and complements

For any prime number p, for any p-adic integer α in Q, we denote by Dp(α)
the unique p-adic integer in Q such that

pDp(α)− α ∈ {0, ..., p− 1}.
The operator α 7→ Dp(α) was used by Dwork in [5] (and denoted by α 7→ α′).

Proposition 6. — Assume that α ∈ Q∩]0, 1[. Let a,m ∈ N∗ be such that
α = a/m and gcd(a,m) = 1 (so gcd(m, p) = 1). Then

Dp(α) =
x

m
∈ Q∩]0, 1[

where x is the unique integer in {1, ...,m− 1} such that px ≡ a mod m.
In particular, Dp(α) does not depend on the prime p coprime to m in a fixed

arithmetic progression k + Nm.

Proof. — Indeed, we have p xm − α = px−a
m ∈ Z. Moreover, we have

−1 < −α < p
x

m
− α =

px− a
m

≤ p(m− 1)− a
m

= p− p+ a

m
< p.
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Therefore, Dp(α) = x
m .

We will need the following properties.

Lemma 7. — Let p be a prime number and consider p-adic integers α, β in
Q such that

(Dp(α),Dp(β)) ∈ {(α, β), (β, α), (1− α, 1− β), (1− β, 1− α)}.

Let m,n ∈ N∗ and a, b ∈ Z be such that α = a/m and β = b/n with gcd(a,m) =
gcd(b, n) = 1. Let d = lcm(m,n) be the least common denominator in N∗ of
α and β. Then p2 = 1 mod d. Moreover, if m 6= n then p = ±1 mod d.

Proof. — Let us first assume that (Dp(α),Dp(β)) = (α, β). This implies that
pα − α = (p − 1)α belongs to Z. Therefore, p = 1 mod m. Similarly, p = 1
mod n.

Assume that (Dp(α),Dp(β)) = (β, α). Then pβ−α and pα−β belong to Z.
This implies m = n, a = pb mod m and b = pa mod m, so b = p2b mod m
and hence p2 = 1 mod m.

Assume that (Dp(α),Dp(β)) = (1− α, 1− β). Then p(1− α)− α = −(p+
1)α + p belongs to Z. This implies that p = −1 mod m. Similarly, p = −1
mod n.

Assume that (Dp(α),Dp(β)) = (1 − β, 1 − α). Then p(1 − β) − α and
p(1 − α) − β belong to Z. It follows that m = n, bp = −a mod m and
ap = −b mod m, so b = p2b mod m and hence p2 = 1 mod m.

Proposition 8. — Let us consider α, β in Q∩]0, 1[. Let d be the least common
denominator in N∗ of α and β.

The following assertions are equivalent:
i) for all j ∈ {1, ..., ϕ(d)}, there exists a prime p in Pj such that

(Dp(α),Dp(β)) ∈ {(α, β), (β, α), (1− α, 1− β), (1− β, 1− α)};

ii) for all prime p prime to d,

(Dp(α),Dp(β)) ∈ {(α, β), (β, α), (1− α, 1− β), (1− β, 1− α)};

iii) up to permuting α and β, (α, β) ∈ I (defined in Theorem 3).

Proof. — The equivalence between assertions i) and ii) follows from the fact
that Dp(α) and Dp(β) do not depend on p ∈ Pj .

We now prove that ii) implies iii). So we consider (α, β) satisfying ii). Let
m,n ∈ N∗ and a, b ∈ Z be such that α = a/m and β = b/n with gcd(a,m) =
gcd(b, n) = 1. So d = lcm(m,n).

Let us first assume that m 6= n. Lemma 7 ensures that, for all prime p prime
to d, we have p = ±1 mod d. Using Dirichlet’s theorem, we get ϕ(d) ∈ {1, 2}
and hence d ∈ {2, 3, 4, 6}. Therefore, up to permuting m and n, we see that
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(m,n) belongs to {(2, 3), (2, 4), (2, 6), (3, 6)}. Up to permuting α and β, we
get that (α, β) belongs to

{(1/2, 1/3), (1/2, 2/3), (1/2, 1/4), (1/2, 3/4),

(1/2, 1/6), (1/2, 5/6), (1/3, 1/6), (1/3, 5/6), (2/3, 1/6), (2/3, 5/6)}.

Assume that m = n. Lemma 7 ensures that, for all prime p prime to m, we
have p2 = 1 mod m. Hence, any element of the group (Z/mZ)× has order 1
or 2. The well known structure of (Z/mZ)× yields m ∈ {2, 4, 8, 3, 6, 12, 24}.
Now, the fact that iii) is satisfied follows from the following observations:

- if α = 1/8 then β ∈ {3/8, 5/8} because D3(1/8) = 3/8 6= α, 1− α;
- if α = 3/8 then β ∈ {1/8, 7/8} because D3(3/8) = 1/8 6= α, 1− α;
- if α = 5/8 then β ∈ {1/8, 7/8} because D5(5/8) = 1/8 6= α, 1− α;
- if α = 7/8 then β ∈ {5/8, 3/8} because D3(7/8) = 5/8 6= α, 1− α;
- iff α = 1/12 then β ∈ {5/12, 7/12} because D5(1/12) = 5/12 6= α, 1− α;
- if α = 5/12 then β ∈ {1/12, 11/12} because D5(5/12) = 1/12 6= α, 1− α;
- if α = 7/12 then β ∈ {1/12, 11/12} because D7(7/12) = 1/12 6= α, 1− α;
- if α = 11/12 then β ∈ {5/12, 7/12} because D5(11/12) = 7/12 6= α, 1−α;
- direct calculations show that m = n = 24 is excluded.
We leave the proof of iii) ⇒ i) to the reader (direct calculations).

4. Proof of Theorem 3

The fact that i) implies ii) is obvious (using Dirichlet theorem).

4.1. Proof of ii) ⇒ iii). — Assume that ii) holds. On the one hand,
Dieudonné-Dwork’s Lemma (Lemma 5 in [14] for instance) ensures that, for
all j ∈ {1, ..., ϕ(d)}, for infinitely many primes p in Pj ,

G (α, β; zp)

F (α, β; zp)
= p

G (α, β; z)

F (α, β; z)
mod pZp[[z]].

On the other hand, Dwork’s Theorem 4.1 in [5] ensures that, for all prime p
prime to d,

G (Dp(α),Dp(β); zp)

F (Dp(α),Dp(β); zp)
= p

G (α, β; z)

F (α, β; z)
mod pZp[[z]].

Consequently, for all j ∈ {1, ..., ϕ(d)}, for infinitely many primes p in Pj ,

G (Dp(α),Dp(β); z)

F (Dp(α),Dp(β); z)
=
G (α, β; z)

F (α, β; z)
mod pZp[[z]].
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But Dp(α) and Dp(β) do not depend on p ∈ Pj . So, for all j ∈ {1, ..., ϕ(d)},
for infinitely many primes p ∈ Pj ,

G (Dp(α),Dp(β); z)

F (Dp(α),Dp(β); z)
=
G (α, β; z)

F (α, β; z)
.

In virtue of Proposition 5, we get that, for all j ∈ {1, ..., ϕ(d)}, for infinitely
many primes p ∈ Pj ,

(Dp(α),Dp(β)) ∈ {(α, β), (β, α), (1− α, 1− β), (1− β, 1− α)}.

Proposition 8 ensures that iii) holds.

4.2. Proof of iii) ⇒ i). — The proof of iii) ⇒ i) follows easily form
Dieudonné-Dwork’s Lemma and from Dwork’s congruences already used at
the beginning of § 4.1. (Indeed, it is easily seen that, for all prime p, the
growth of the p-adic valuations of the coefficients of Q (α, β; z) is at most
linear. Therefore, iii) ⇒ i) is a consequence of Dieudonné-Dwork’s Lemma
and Dwork’s congruences which show that Q (α, β; z) belongs to Zp[[z]] for al-
most all primes p if (α, β) ∈ I .) However, we shall give another proof which
also shows the modular origin of the canonical coordinates with parameters
(α, β) ∈ I .

The following lemma shows that it is sufficient to treat the cases that

(α, β) ∈ {(1/2, 1/2), (1/2, 2/3), (1/2, 1/4), (1/2, 1/6), (1/3, 2/3),

(1/3, 1/6), (1/4, 3/4), (1/6, 5/6), (1/8, 3/8), (1/12, 5/12)}.

Lemma 9. — We have

Q (α, β; z) = −Q
(
α, 1− β;

z

z − 1

)
and hence

Z (α, β; q) =
Z (α, 1− β;−q)
Z (α, 1− β;−q)− 1

.

Proof. — A direct calculation shows that y(z) is a solution of the hyperge-
ometric equation with parameters (α, 1 − β) if and only if (1 − z)−αy( z

z−1)

is solution of the hypergeometric equation with parameters (α, β). It follows
that

(1− z)−αF
(
α, 1− β;

z

z − 1

)
and

(1− z)−α
(
G

(
α, 1− β;

z

z − 1

)
+ log

(
z

1− z

)
F

(
α, 1− β;

z

z − 1

))
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form a basis of the C-vector space of solutions of the hypergeometric equation
with parameters (α, β). Using Remark 1, it is easily seen that:

(7) F (α, β; z) = (1− z)−αF
(
α, 1− β;

z

z − 1

)
and

G (α, β; z) = (1−z)−α
(
G

(
α, 1− β;

z

z − 1

)
− log (1− z)F

(
α, 1− β;

z

z − 1

))
.

(Note that formula (7) is classical and known as Pfaff transformation.) There-
fore,

Q (α, β; z) = −Q
(
α, 1− β;

z

z − 1

)
.

We introduce Dedekind’s η function defined by

η(q) = q1/24
∞∏
n=1

(1− qn)

and Dedekind-Klein’s J-invariant defined by

J(q) =
Q3(q)

Q3(q)−R2(q)

where Q and R (with Ramanujan’s notations) are the Eisenstein series defined
by

Q(q) = 1 + 240

+∞∑
n=1

σ3(n)qn, R(q) = 1− 504

+∞∑
n=1

σ5(n)qn

with σk(n) =
∑

d|n d
k.

The following formulas show that the desired integrality property of
Z (α, β; q) holds if

(α, β) ∈ {(1/2, 1/2), (1/3, 2/3), (1/3, 1/6), (1/4, 3/4), (1/6, 5/6),

(1/8, 3/8), (1/12, 5/12)}.

We have

(8) 16−1Z (1/2, 1/2; 16q) = e
iπ
3
η8(q4)

η8(−q)

(9) 64−1Z (1/4, 3/4; 64q) =
1

64 + η24(q)
η24(q2)
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(10) 432−1Z (1/6, 5/6; 432q) =
1

864

(
1−

√
J(q)− 1

J(q)

)

(11) 108−1Z (1/3, 1/6; 108q) =
η12(q)

η12(q3)

1(
27 + η12(q)

η12(q3)

)2
(12) 256−1Z (1/8, 3/8; 256q) =

η24(q)

η24(q2)

1(
64 + η24(q)

η24(q2)

)2
(13) 1728−1Z (1/12, 5/12; 1728q) =

1

1728J(q)

(14) 27−1Z (1/3, 2/3; 27q) =
1

27 + η12(q)
η12(q3)

.

For (8) see [9, §9, formula (9.8)], for (9) see [9, §9, formula (9.6)], for (10)
see [9, §9, after formula (9.7)], for (11) see [9, §9, after formula (9.10)], for
(12) see [9, §9, formula (9.13) together with (9.6)], for (13) see [9, §9, Case
N = (2, 6)], the proof of (14) is similar to the proof of the case (1/8, 3/8) in
loc. cit. for instance.

The fact that the expected integrality property of Z (α, β; q) also holds in
the remaining cases, i.e. for (α, β) ∈ {(1/2, 2/3), (1/2, 1/4), (1/2, 1/6)}, is
a direct consequence of the following lemma applied to β ∈ {2/3, 1/4, 1/6}
combined with the previous formulas (11), (12) and (13); the details are left
to the reader.

Lemma 10. — We have

Q (1/2, β; z) = 2

√
−Q

(
1− β

2
,
β

2
;

z2

4z − 4

)
and hence

Z (1/2, β; q) = 2Z
(

1− β
2

,
β

2
;−q2/4

)

+ 2

√
Z
(

1− β
2

,
β

2
;−q2/4

)2

−Z
(

1− β
2

,
β

2
;−q2/4

)
.

Proof. — A direct calculation shows that y(z) is a solution of the hypergeo-

metric equation with parameters ((1−β)/2, β/2) if and only if (1−z)β/2y( z2

4z−4)
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is solution of the hypergeometric equation with parameters (1/2, β). It follows
that

(1− z)
β
2 F

(
1− β

2
,
β

2
;

z2

4z − 4

)
and

(1− z)
β
2G

(
1− β

2
,
β

2
;

z2

4z − 4

)
+ log

(
z2

1− z

)
(1− z)

β
2 F

(
1− β

2
,
β

2
;

z2

4z − 4

)
form a basis of the C-vector space of solutions of the hypergeometric equation
with parameters (1/2, β). Consequently:

(15) F (1/2, β; z) = (1− z)
β
2 F

(
1− β

2
,
β

2
;

z2

4z − 4

)
and

G (1/2, β; z) =
1

2
(1− z)

β
2G

(
1− β

2
,
β

2
;

z2

4z − 4

)
− log (1− z)

1
2 (1− z)

β
2 F

(
1− β

2
,
β

2
;

z2

4z − 4

)
.

(Note that formula (15) is classical.) Therefore,

Q (1/2, β; z) = z exp

(
G (1/2, β; z)

F (1/2, β; z)

)

=
z

(1− z)1/2
exp

 1
2G
(
1−β
2 , β2 ; z2

4z−4

)
F
(
1−β
2 , β2 ; z2

4z−4

)


= 2

√√√√√ z2

4(1− z)
exp

G
(
1−β
2 , β2 ; z2

4z−4

)
F
(
1−β
2 , β2 ; z2

4z−4

)


= 2

√
−Q

(
1− β

2
,
β

2
;

z2

4z − 4

)
.
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5. Integrality properties of the Taylor coefficients of Q (α, β; z) and
the hypothesis “α, β ∈ Q∩]0, 1[“

Lemma 11. — Consider α ∈ Q \ Z. Let a ∈ Z and m ∈ N∗ be such that
α = a/m. Then, for any prime p > |a| prime to m, we have

Dp(α) =
x

m
∈ Q∩]0, 1[

where x is the unique element in {1, ...,m− 1} such that px ≡ a mod m.
In particular, Dp(α) does not depend on the prime p > |a| coprime to m in

a fixed arithmetic progression k + Nm.

Proof. — Indeed, we have p xm − α = px−a
m ∈ Z. Moreover, we have

p− a
m
≤ p x

m
− α =

px− a
m

≤ p(m− 1)− a
m

= p− p+ a

m

and the fact that p > |a| ensures that 0 < p−a
m and p − p+a

m < p. Therefore,
Dp(α) = x

m .

Proposition 12. — Assume that α, β ∈ Q \ Z are such that, for infinitely
many primes p, we have Q (α, β; z) ∈ Zp[[z]]. Then α, β ∈ Q∩]0, 1[.

Proof. — We use the notations (d,Pj ,...) of § 1. Let j ∈ {1, ..., ϕ(d)} be such
that, for infinitely many primes p in Pj , we have Q (α, β; z) ∈ Zp[[z]]. Arguing
as in § 4.1 (using the fact that Dp(α) does not depend on the prime p large
enough in Pj in virtue of Lemma 11), we see that, for infinitely many primes
p in Pj ,

(Dp(α),Dp(β)) ∈ {(α, β), (β, α), (1− α, 1− β), (1− β, 1− α)}.

Lemma 11 ensures that, for all prime p large enough in Pj , we have

(Dp(α),Dp(β)) ∈ (Q∩]0, 1[)× (Q∩]0, 1[),

whence the result.
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