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Abstract. E-functions are entire functions with algebraic Taylor coefficients at the ori-
gin satisfying certain arithmetic conditions, and solutions of linear differential equations
with coefficients in Q(z); they naturally generalize the exponential function. Siegel and
Shidlovsky proved a deep transcendence result for their values at algebraic points. Since
then, a lot of work has been devoted to apply their theorem to special E-functions, in
particular the hypergeometric ones. In fact, Siegel asked whether any E-function can be
expressed as a polynomial in z and generalized confluent hypergeometric series. As a first
positive step, Shidlovsky proved that E-functions with order of the differential equation

equal to 1 are in Q[z]eQz. In this paper, we give a new proof of a result of Gorelov that
any E-function (in the strict sense) with order ≤ 2 can be written in the form predicted
by Siegel with confluent hypergeometric functions 1F1[α;β;λz] for suitable α, β ∈ Q and
λ ∈ Q. Gorelov’s result is in fact more general as it holds for E-functions in the large
sense. Our proof makes use of André’s results on the singularities of the minimal differ-
ential equations satisfied by E-functions, together with a rigidity criterion for (irregular)
differential systems recently obtained by Bloch-Esnault and Arinkin. An ad-hoc version
of this criterion had already been used by Katz in his study of confluent hypergeometric
series. Siegel’s question remains unanswered for orders ≥ 3.

1. Introduction

We fix an embedding of Q into C. An E-function (in the strict sense) is a power series

f(z) =
∞∑
n=0

an
n!
zn ∈ Q[[z]]

such that:

(1) f(z) satisfies a non-zero linear differential equation with coefficients in Q(z);
(2) there exists C > 0 such that for any σ ∈ Gal(Q/Q), we have |σ(an)| ≤ Cn+1; and

there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam is an
algebraic integer for all m ≤ n.

If an ∈ Z, the conditions in (2) reduce to |an| ≤ Cn+1. This class of arithmetic power
series was defined by Siegel [18] (in a slightly more general way) to mimic the Dio-
phantine properties of the exponential function, and his program was later completed
by Shidlovsky [20]. Throughout the paper, we set θ = z d

dz
and by “solution of a differen-

tial operator L ∈ Q(z)[ d
dz

]”, it must be understood “solution of the differential equation
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Ly(z) = 0”. More recently, André [2] and Beukers [4] gave a new impulse to the Diophan-
tine theory of E-functions, whose prototypical example is the generalized hypergeometric
function

pFq

[
α1, . . . , αp
β1, . . . , βq

; zq−p+1

]
=
∞∑
n=0

(α1)n · · · (αp)n
n!(β1)n · · · (βq)n

z(q−p+1)n

with q ≥ p ≥ 1, αj, βj ∈ Q, and none of the β’s is a negative integer. If p = q = 1, it is a
solution of the differential operator θ(θ+ β− 1)− z(θ+α) and when α = β, this is simply
exp(z).

The present paper is concerned with the following classical questions: What are E-
functions? Are they related to generalized hypergeometric functions? In fact, Siegel [19,
p. 58] asked the following question: can any E-function be represented as a multivariate
polynomial, with coefficients in Q[z], in finitely many confluent hypergeometric series of
the form pFq[a; b;λzq−p+1], for various q ≥ p ≥ 1, a ∈ Qp

, b ∈ Qq
and λ ∈ Q? See also [20,

p. 84]. (1)
In the recent papers [16, 17], we studied the structural properties of differential equations

satisfied by strict E-functions, in the light of [2]. In particular, as a consequence of the
main result of [16], we proved that any strict E-function f(z) solution of an inhomogeneous
linear equation

f ′(z) = u(z)f(z) + v(z) (1.1)

of order 1 is essentially hypergeometric, where u(z) ∈ Q(z)× and v(z) ∈ Q(z). More
precisely, there exist some a(z), b(z) ∈ Q[z, z−1], β ∈ {1} ∪Q \ Z and λ ∈ Q such that

f(z) = a(z)1F1(1; β;λz) + b(z). (1.2)

This solved a problem, raised by Shidlovsky [20, p. 184], and already partially solved by
André in [2, p. 724]. If v(z) = 0, then in fact b(z) = 0, β = 1 and a(z) ∈ Q[z], so that
f(z) = a(z)eλz, a result due to Shidlovsky [20, p. 184]. When v(z) 6= 0, any solution of

(1.1) is also solution of the differential operator of order 2 given by d
dz

( 1
v(z)

d
dz
− u(z)

v(z)
). We

were not aware at that time that Gorelov had already solved Shidlovsky’s problem in [11,
p. 139, Theorem 2] for E-functions in Siegel’s original sense.

It is thus natural to wonder if something similar to (1.2) can be said of E-functions
solutions of differential equations of order 2. Actually, a first case was considered in [16].
Indeed, the following result is a direct consequence of [16, Theorem 4]. Again, this result
has been proved by Gorelov in [12, p. 515, Theorem 2] for E-functions in Siegel’s original
sense.

Theorem 1. Let f(z) be a strict E-function solution of a non-zero linear differential
operator of order 2 with coefficients in Q(z) and reducible over Q(z). Then, there exist
a(z), b(z) ∈ Q[z, z−1], β ∈ {1} ∪Q \ Z and λ, µ ∈ Q such that

f(z) = a(z)eµz1F1(1; β;λz) + b(z)eµz. (1.3)

1In this problem, Siegel referred to his original definition of E-functions, which are slightly more general
than the strict ones used in this paper, which are themselves called E∗-functions in [20]. It is widely
believed that both class are identical, but our proof holds only in the strict sense.
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We now state the result if we remove the reducibility hypothesis in the previous result.
We emphasize that Theorem 2 below is a particular case of a result of Gorelov [12, p. 514,
Theorem 1], who in fact did not make the distinction between the reducible and irreducible
case, which is in accordance with the remarks made after the theorem.

Theorem 2. Let f(z) be a strict E-function solution of a non-zero linear differential
operator of order 2 with coefficients in Q(z) and irreducible over Q(z). Then, we have

f(z) = a(z)eµz1F1(α; β;λz) + b(z)eµz1F
′
1(α; β;λz) (1.4)

where a(z), b(z) ∈ Q(z), λ ∈ Q×, µ ∈ Q, and α ∈ Q, β ∈ Q \Z≤0 are such that α− β 6∈ Z.

Note that (1.3) is of the form (1.4) because we have the relation z1F
′
1(1; β; z) = (z−β+

1)1F1(1; β; z)+β−1. Moreover, 1F
′
1(α; β; z) = α

β 1F1(α+1; β+1; z). This explains why such

results give a positive solution to Siegel’s problem for orders ≤ 2. Gorelov proved a stronger
version of Theorem 2: he showed that f(z) can be assumed to be an E-function in Siegel’s
original sense and moreover that the conclusion holds with some a(z), b(z) ∈ Q[z]. On the
other hand, he did not state that α − β 6∈ Z. We observe that in fact a strict E-function
of order 2 may have a representation of the form (1.4) with a(z) and b(z) not necessarily

polynomials, for instance ϕ(z) := 2
z 1F1(1; 1/2; z)− 1

z 1F
′
1(1; 1/2; z) = 4

3
+ 16z

15
+ 16z2

35
+ . . . is

such an E-function. This does not contradict Gorelov’s stronger “polynomial coefficients”
version, because a strict E-function does not necessarily admit a unique representation of
the form (1.4); indeed, it is readily proved that ϕ(z) = 21F

′
1(1; 3/2; z).

The main contribution of this paper is our proof of Theorem 2, which is quite different
from that of Gorelov, even though he also used André’s theory at some point. We did
not try to reprove his version in full. We hope our point of view will be useful for further
studies in this field.

We now illustrate Theorem 2 with the non-hypergeometric E-function

a(z) =
∞∑
n=0

1

n!

( n∑
k=0

(
n

k

)(
n+ k

n

))
zn. (1.5)

It was brought to our attention by F. Beukers during a lecture he gave in June 2016 at
the conference Automates and Number Theory held at Porquerolles, where he asked if a(z)
was related in some way to hypergeometric series. Since it is solution of the irreducible
differential operator z( d

dz
)2 − (6z − 1) d

dz
+ (z − 3), Theorem 2 applies to it and the answer

is yes. Let us give (1.4) in this case. Since
∑∞

n=0

(∑n
k=0

(
n
k

)(
n+k
n

))
zn = 1√

1−6z+z2
(see [15,

§3]), we have

a(z) =
1

2iπ

∫
L

ezx√
1− 6x+ x2

dx

where L is a “vertical” straight line leaving the roots of 1 − 6x + x2 to its left; see [10,
§§4.2-4.3]. With the change of variable x = t + 3 and with L′ a “vertical” straight line
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leaving the roots of t2 − 8 to its left, we obtain

a(z) =
1

2iπ

∫
L′

ez(t+3)

√
t2 − 8

dt = e3z

∞∑
n=0

(2z2)n

n!2
= e3z · 0F1(· ; 1; 2z2) (1.6)

= e(3−2
√

2)z · 1F1(1/2 ; 1; 4
√

2z). (1.7)

The hypergeometric function on the right of (1.6) is not formally of the form suggested by
Theorem 2, but this is the case of (1.7). The equality of both expressions is a consequence
of an hypergeometric identity between Kummer M function and Bessel I0 function [1, p.
509, 13.6.1]. In passing, we obtain the binomial identity

n∑
k=0

(
n

k

)(
n+ k

n

)
=

n∑
k=0

(
n

k

)(
2k

k

)√
2
k
(3− 2

√
2)n−k, n ≥ 0, (1.8)

after multiplication of the two (implicit) power series in (1.7). Conversely, (1.8) could be
proved first (by means of Zeilberger’s algorithm) and then (1.7) would follow again.

We don’t know if results similar to Theorems 1 and 2 could be obtained for E-functions
of higher order, even for the order 3; the methods of this paper do not give enough infor-
mations to conclude. In fact, Siegel’s question might have a negative answer in general
and as the order increases, one needs to add more and more special functions to the hy-

pergeometric ones. For instance,
∑∞

n=0
1
n!

(
∑n

k=0

(
n
k

)2(n+k
n

)
)zn is solution of z2y′′′(z)+(3z−

11z2)y′′(z) + (1− 22z− z2)y′(z)− (3 + z)y(z) = 0. Although not hypergeometric, can it be
expressed using confluent hypergeometric series as requested in Siegel’s problem, like a(z)
above, or is it of a different nature? We refer to [13, 14] for further results on this problem.

The paper is organized as follows. In Sections 2 (hypergeometric operators), 3 (Fuchs
relation) and 4 (rigidity), we collect some results from the literature that we need for the
proof of Theorem 2, which is given in Section 5. Some aspects of the proof are similar with
certain results of Katz in [8], though the methods are not written in the same language;
we include these computations for the sake of completeness. Finally, in Section 6, we
make some remarks on E-operators and G-operators. From now on, any E-function is
understood to be in the strict sense.

Acknowledgments. We thanks the referees for their comments that helped us to remove
some inaccuracies.

2. The differential operators Hα;β,γ and Lα,β,γ,λ,µ

In this section, we gather some results on two explicit hypergeometric operators. They
will be used in the proof of Theorem 2 later on.

2.1. The confluent hypergeometric operator Hα;β,γ. We recall that θ = z d
dz

. The
confluent hypergeometric operator with parameters α, β, γ ∈ C is the linear differential
operator given by

Hα;β,γ = (θ + β − 1)(θ + γ − 1)− z(θ + α).
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It has at most two singularities on P1(C), namely 0 and∞. The former is a regular singular
point, the latter is an irregular singular point. More precisely, the slopes of the Newton
polygon of Hα;β,γ at ∞ are 0 and 1, both with multiplicity 1. We denote by

Y ′ = Aα;β,γY (2.1)

the differential system associated to Hα;β,γ.
For later use, we shall now describe the general form of the formal solutions of the

differential system (2.1) as predicted by Turittin’s theorem [21, Theorem 3.54].
We first assume that β − γ 6∈ Z. Then, at 0, the differential system (2.1) admits a

fundamental matrix of formal solutions of the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 0

0 1− γ

)
.

At∞, the differential system (2.1) admits a fundamental matrix of formal solutions of the
form F∞(z)zΓ∞e∆z where

F∞(z) ∈ GL2(C((z−1))), Γ∞ =

(
α− β − γ + 1 0

0 −α

)
and ∆ =

(
1 0
0 0

)
.

We now assume that β − γ ∈ Z. If α − β 6∈ Z, then, at 0, the differential system (2.1)
admits a fundamental matrix of formal solutions of the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 1

0 1− β

)
.

Remark. If the condition α−β 6∈ Z is not satisfied, then Γ0 may be diagonalizable. Consider
for instance the case α = γ − 1 and β − 1 = α− 1.

We shall now consider a special case with α− β ∈ Z, namely α = β − 1 = γ − 1. In this
case, at 0, the differential system (2.1) admits a fundamental matrix of formal solutions of
the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 1

0 1− β

)
.

This can be seen by direct calculation using that, in the present case, we have Hα;β,γ =
(θ + α − z)(θ + α). At ∞, the differential system (2.1) admits a fundamental matrix of
formal solutions of the form F∞(z)zΓ∞e∆z where

F∞(z) ∈ GL2(C((z−1))), Γ∞ =

(
1− β 0

0 1− β

)
and ∆ =

(
1 0
0 0

)
.

2.2. The operator Lα,β,γ,λ,µ. For any α, β, γ, λ, µ ∈ C, with λ 6= 0, we consider the linear
differential operator given by

Lα;β,γ;λ,µ = (θ + β − 1− µz)(θ + γ − 1− µz)− λz(θ + α− µz).

There is a simple relation between the operators Lα;β,γ;λ,µ and Hα;β,γ : we have

Hα;β,γ

(
y(z)

)
= 0⇐⇒ Lα;β,γ;λ,µ

(
y(λz)eµz

)
= 0.
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We denote by
Y ′ = Aα;β,γ;λ,µY (2.2)

the differential system associated to Lα;β,γ;λ,µ.

The results of Section 2.1 imply the following facts.
We first assume that β − γ 6∈ Z. Then, at 0, the differential system (2.2) admits a

fundamental matrix of formal solutions of the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 0

0 1− γ

)
.

At∞, the differential system (2.2) admits a fundamental matrix of formal solutions of the
form F∞(z)zΓ∞e∆z where

F∞(z) ∈ GL2(C((z−1))), Γ∞ =

(
α− β − γ + 1 0

0 −α

)
and ∆ =

(
λ+ µ 0

0 µ

)
.

We now assume that β − γ ∈ Z. If α − β 6∈ Z, then, at 0, the differential system (2.2)
admits a fundamental matrix of formal solutions of the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 1

0 1− β

)
.

If α = β − 1 = γ − 1, then, at 0, the differential system (2.2) admits a fundamental
matrix of formal solutions of the form F0(z)zΓ0 where

F0(z) ∈ GL2(C((z))) and Γ0 =

(
1− β 1

0 1− β

)
.

At∞, the differential system (2.2) admits a fundamental matrix of formal solutions of the
form F∞(z)zΓ∞e∆z where

F∞(z) ∈ GL2(C((z−1))), Γ∞ =

(
α− β − γ + 1 0

0 −α

)
and ∆ =

(
λ+ µ 0

0 µ

)
.

3. Fuchs’ relation

In this section, we state a “Fuchs relation” between the exponents of certain (possibly
irregular) differential systems.

Proposition 1. Let us consider a differential system Y ′ = AY with A ∈ M2(C(z)). We
assume that the following properties are satisfied :

(1) Y ′ = AY has only apparent singularities on C×;
(2) Y ′ = AY has a basis of solutions at 0 of the form F0(z)zΓ0 where F0(z) ∈ GL2(C((z)))

and Γ0 ∈M2(C) is upper-triangular.
(3) Y ′ = AY admits a basis of formal solutions at ∞ of the form F∞(z)zΓ∞e∆z where

F∞(z) ∈ GL2(C((z−1))), Γ∞ ∈ M2(C) is upper-triangular, ∆ = diag(θ1, θ2) ∈
M2(C) is diagonal, and Γ∞ and ∆ commute.

Then, the trace of Γ0 − Γ∞ belongs to Z.
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Proof. The monodromy of Y ′ = AY at 0 with respect to the fundamental matrix of so-
lutions F0(z)zΓ0 is given by M0 = e2πiΓ0 . Its monodromy at ∞ with respect to the same
fundamental matrix of solutions is of the form M∞ = Pe−2πiΓ∞S∞P

−1 where P ∈ GL2(C)
and where S∞ ∈ GL2(C) is a product of Stokes matrices (see [21, Proposition 8.12]). In
particular, S∞ is unipotent and, hence, det(S∞) = 1. But, we have M0M∞ = I2 because
Y ′ = AY has only apparent singularities on C× and, hence, trivial monodromies around
each point of C×. It follows that det(M0M∞) = det(I2) = 1 i.e. e2πi tr(Γ0−Γ∞) = 1. Whence
the result. �

4. A Reminder on rigidity

This section is a reminder about the notion of rigidity of (possibly irregular) differential
systems. We start by recalling the notions of formal and rational equivalences.

4.1. Formal equivalence. Recall that two differential systems

Y ′ = AY and Y ′ = BY with A,B ∈Mn(C(z)) (4.1)

are formally equivalent at 0 if there exists R ∈ GLn(C((z))) such that

B = R−1AR−R−1R′. (4.2)

This means that one gets Y ′ = BY from Y ′ = AY by replacing Y by RY .
More generally, there is a notion of formal equivalence at any s ∈ P1(C). More precisely,

we denote by K̂s the field of formal Laurent series at s ∈ P1(C). We say that the differential

systems (4.1) are formally equivalent at s if there exists R ∈ GLn(K̂s) such that equation
(4.2) holds.

4.2. Rational equivalence. The differential systems (4.1) are called rationally equivalent
if there exists R ∈ GLn(C(z)) such that equation (4.2) holds.

Of course, “rationally equivalent” implies “formally equivalent at any s ∈ P1(C)”, but
the converse is not true in general. This is where rigidity comes into play.

4.3. Rigidity. We say that a given differential system

Y ′ = AY with A ∈Mn(C(z)) (4.3)

is rigid if, for any differential system Y ′ = BY with B ∈Mn(C(z)), the fact that Y ′ = AY
is formally equivalent to Y ′ = BY at each s ∈ P1(C) implies that Y ′ = AY and Y ′ = BY
are rationally equivalent.

If Y ′ = AY is irreducible over C(z), there is a numerical rigidity criterion, which can
be stated as follows. We denote by ⊗ the Kronecker tensor product on Mn(C), i.e., for
C,D ∈Mn(C(z)), the tensor product C ⊗D ∈Mn2(C) is defined by

C ⊗D =

c1,1D · · · c1,nD
...

. . .
...

cn,1D · · · cn,nD

 .
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We define the “internal End” of Y ′ = AY as the differential system Y ′ = E(A)Y with

E(A) = A⊗ In − In ⊗ At ∈Mn2(C).

We set
rig(A) = 2n2 −

∑
s∈P1(C)

(
irr(E(A), s) + n2 − dimC sol(E(A), s)

)
where irr(E(A), s) is Malgrange irregularity of Y ′ = E(A)Y at s, and where sol(E(A), s)

is the C-vector space of the solutions in Mn,1(K̂s) of Y ′ = E(A)Y . We recall that the
Malgrange irregularity irr(B, s) at s of a given differential system Y ′ = BY , with B ∈
Mn(C(z)), is the height of its Newton polygon. Equivalently, it is equal to the sum of the
slopes (counted with multiplicities) of the Newton polygon at s of Y ′ = BY .

Theorem 3 ([3, Proposition 3.4], [5, Theorems 4.7 and 4.10]). Assume that Y ′ = AY is
irreducible. Then, it is rigid if and only if rig(A) = 2.

We will also use the following inequality.

Theorem 4 ([3, Remark following Proposition 3.4]). Assume that Y ′ = AY is irreducible.
Then, we have rig(A) ≤ 2.

5. Proof of Theorem 2

We are now in position to prove our main result. For simplicity, we split the proof into
two steps.

5.1. First step. We first prove the following result.

Theorem 5. Let us consider a differential system Y ′ = AY with A ∈ M2(C(z)). We
assume that this differential system is irreducible and that the following properties are
satisfied :

(1) Y ′ = AY has at most apparent singularities on C×;
(2) Y ′ = AY has at most a regular singularity at 0;
(3) the slopes at ∞ of Y ′ = AY are included in {0, 1}.

Then, the differential system Y ′ = AY is rationally equivalent to Y ′ = Aα;β,γ;λ,µY for some
α, β, γ, λ, µ ∈ C with λ 6= 0.

Proof. Turittin’s theorem yields the following facts :

(1) Y ′ = AY has a basis of solutions at 0 of the form F0(z)zΓ0 where F0(z) ∈ GL2(C((z)))
and Γ0 ∈M2(C) is upper-triangular;

(2) Y ′ = AY admits a basis of formal solutions at ∞ of the form F∞(z)zΓ∞e∆z where
F∞(z) ∈ GL2(C((z−1))), Γ∞ ∈ M2(C) is upper-triangular, ∆ = diag(θ1, θ2) ∈
M2(C) is diagonal, and Γ∞ and ∆ commute.

Hence, we have:

• at 0, the differential system Y ′ = AY is formally equivalent to Y ′ = Γ0

z
Y ;

• at ∞, the differential system Y ′ = AY is formally equivalent to Y ′ =
(

Γ∞
z

+ ∆
)
Y.
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Therefore, setting B = E(A), we see that

• at 0, the differential system Y ′ = BY is formally equivalent to Y ′ = B0Y with

B0 =
Γ0 ⊗ I2 − I2 ⊗ Γt0

z
.

• at ∞, the differential system Y ′ = BY is formally equivalent to Y ′ = B∞Y with

B∞ =

(
Γ∞
z

+ ∆

)
⊗ I2 − I2 ⊗

(
Γ∞
z

+ ∆

)t
.

Note that θ1 6= θ2. Indeed, assume at the contrary that θ1 = θ2. Then, the differential
system Y ′ = AY is rationally equivalent to Y ′ =

(
Γ0

z
+ θ1I2

)
Y (because the differential

system satisfied by F0(z)zΓ0e−θ1z is regular singular on P1(C), with at most apparent singu-
larities on C× and, hence, is of the form R(z)zΓ0 for some R(z) ∈ GL2(C(z))). Therefore,
the differential system Y ′ = AY is reducible. This is a contradiction.

Since ∆ and Γ∞ commute, the fact that θ1 6= θ2 implies that Γ∞ is diagonal :

Γ∞ =

(
γ∞,1 0

0 γ∞,2

)
.

We now split our study in several cases, but the idea of the proof will be the same in any
cases : we will prove that the differential system Y ′ = AY is rigid and formally equivalent
to Y ′ = Aα;β,γ;λ,µY for some α, β, γ, λ, µ ∈ C, with λ 6= 0, at any s ∈ P1(C). We will
conclude that these systems are actually rationally equivalent by rigidity.

The case Γ0 diagonal non resonant. We assume that Γ0 is a diagonal matrix

Γ0 =

(
γ0,1 0
0 γ0,2

)
such that γ0,2 − γ0,1 6∈ Z. It follows that

B0 =


0 0 0 0

0 γ0,1−γ0,2
z

0 0

0 0 γ0,2−γ0,1
z

0
0 0 0 0


and

B∞ =


0 0 0 0

0 γ∞,1−γ∞,2

z
+ θ1 − θ2 0 0

0 0 −(γ∞,1−γ∞,2

z
+ θ1 − θ2) 0

0 0 0 0

 .

Then, we have

irr(B, 0) = irr(B0, 0) = 0 and dimC sol(B, 0) = dimC sol(B0, 0) = 2.

Moreover, we have

irr(B,∞) = irr(B∞,∞) = 2 and dimC sol(B,∞) = dimC sol(B∞,∞) = 2.
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So, we get

rig(A) = 2 · 4− (0 + 4− 2)− (2 + 4− 2) = 2.

Therefore, Y ′ = AY is rigid in virtue of Theorem 3.
We now consider α, β, γ, λ, µ ∈ C such that

1− β ≡ γ0,1 mod Z
1− γ ≡ γ0,2 mod Z
α− β − γ + 1 ≡ γ∞,1 mod Z
−α ≡ γ∞,2 mod Z
λ+ µ = θ1

µ = θ2

.

We can indeed solve this system of equations because, in virtue of Proposition 1, we have
γ0,1 + γ0,2 − γ∞,1 − γ∞,2 ≡ 0 mod Z. Note that λ 6= 0 because θ1 6= θ2. Note also that
β−γ ≡ γ0,2−γ0,1 6≡ 0 mod Z. Using Section 2, we see that Y ′ = AY is formally equivalent
at 0 and ∞ to Y ′ = Aα;β,γ;λ,µY . Therefore, by rigidity, these two systems are rationally
equivalent.

The case Γ0 diagonal and resonant is impossible. We assume that Γ0 is a diagonal
matrix

Γ0 =

(
γ0,1 0
0 γ0,2

)
such that γ0,2 − γ0,2 ∈ Z. Then, the equality rig(A) ≤ 2 (see Theorem 4 above) reads as
follows :

8− (0 + 4− 4)− (2 + 4− dimC sol(B,∞)) ≤ 2

i.e. dimC sol(B,∞) ≤ 0. This is a contradiction because dimC sol(B,∞) ≥ 2.

The case Γ0 non diagonal. Up to conjugation, we can assume that

Γ0 =

(
γ0,1 1
0 γ0,1

)
.

Then, we have

B0 =


0 0 1/z 0
−1/z 0 0 1/z

0 0 0 0
0 0 −1/z 0

 ,

whose Jordan normal form is given by
0 1/z 0 0
0 0 1/z 0
0 0 0 0
0 0 0 0

 .
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Moreover, we have

B∞ =


0 0 0 0

0 γ∞,1−γ∞,2

z
+ θ1 − θ2 0 0

0 0 −(γ∞,1−γ∞,2

z
+ θ1 − θ2) 0

0 0 0 0

 .

Then, we have

irr(B, 0) = irr(B0, 0) = 0 and dimC sol(B, 0) = dimC sol(B0, 0) = 2.

Moreover, we have

irr(B,∞) = irr(B∞,∞) = 2 and dimC sol(B,∞) = dimC sol(B∞,∞) = 2.

So, we have

rig(A) = 2 · 4− (0 + 4− 2)− (2 + 4− 2) = 2.

Therefore, Y ′ = AY is rigid in virtue of Theorem 3.
We consider α, β, γ, λ, µ ∈ C such that

1− β ≡ γ0,1 mod Z
1− γ ≡ γ0,1 mod Z
α− β − γ + 1 ≡ γ∞,1 mod Z
−α ≡ γ∞,2 mod Z
λ+ µ = θ1

µ = θ2

.

We can indeed solve this system of equations because, in virtue of Proposition 1, we have
γ0,1 + γ0,1 − γ∞,1 − γ∞,2 ≡ 0 mod Z. Note that λ 6= 0 because θ1 6= θ2. Note also that
β − γ ∈ Z. If α − β ∈ Z, then the congruence α − β − γ + 1 ≡ γ∞,1 mod Z implies
that β ≡ γ ≡ −γ∞,1 mod Z but β ≡ γ ≡ −γ0,1 mod Z so γ0,1 ≡ γ∞,1 mod Z. Now, the
congruence γ0,1 + γ0,1 − γ∞,1 − γ∞,2 ≡ 0 mod Z implies that γ∞,2 ≡ γ∞,1 mod Z hence
α ≡ β ≡ γ mod Z. Therefore, we can and will assume that α = β − 1 = γ − 1. Using
Section 2, we see that Y ′ = AY is formally equivalent at 0 and ∞ to Y ′ = Aα;β,γ;λ,µY . By
rigidity, these two systems are rationally equivalent. �

5.2. Second step. Let f(z) be an E-function as in Theorem 2. By hypothesis, f(z)
satisfies a non-zero linear differential equation of order ≤ 2 with coefficients in Q(z).

If f(z) satisfies a non-zero differential equation of order 1 with coefficients in Q(z), then
it is well-known that f(z) = a(z)eαz with a(z) ∈ Q(z) and α ∈ Q. Whence the result.

We shall now assume that f(z) does not satisfy a differential equation of order 1 with
coefficients in Q(z). Then, according to [2, Theorem 4.3], the vector F (z) = (f(z), f ′(z))t

satisfies some linear differential system F ′(z) = A(z)F (z) for some A(z) ∈M2(Q(z)), with
the following properties :

(1) Y ′ = AY has only apparent singularities on C×;
(2) Y ′ = AY has a basis of solutions at 0 of the form F0(z)zΓ0 where F0(z) ∈ GL2(Q((z)))

and Γ0 ∈M2(Q) is upper-triangular;
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(3) Y ′ = AY admits a basis of formal solutions at ∞ of the form F∞(z)zΓ∞e∆z where
F∞(z) ∈ GL2(Q((z))), Γ∞ ∈ M2(Q) is upper-triangular, ∆ ∈ M2(Q) is diagonal
and such that Γ∞∆ = ∆Γ∞.

If Y ′ = AY is reducible over C(z) or, equivalently, over Q(z), then we are in the situation
of Theorem 1, which is a consequence of [16, Theorem 4]. We observe here that the series

1F1(1; γ;λz) is a solution of L1;1,γ;λ,0.

We shall now assume that Y ′ = AY is irreducible over C(z) or, equivalently, over Q(z).
Then, according to Theorem 5, there exists R(z) ∈ GL2(C(z)) such that

A = R−1Aα;β,γ;λ,µR−R−1R′.

But both β and γ are congruent to one of the eigenvalues of Γ0 modulo Z. Therefore, β and

γ belong to Q. A similar argument yields that α ∈ Q, λ ∈ Q× and µ ∈ Q. In particular,
Aα;β,γ;λ,µ has coefficients in Q(z) and, hence, one can assume that R(z) has coefficients in

Q(z).
We observe that RF is a vector solution of Y ′ = Aα;β,γ;λ,µY , and any such solutions

are of the form (h(z), h′(z))t where h(z) is a solution of Lα;β,γ;λ,µ. Hence, there exist

a(z), b(z) ∈ Q(z) such that

f(z) = a(z)h(z) + b(z)h′(z).

Since the entries of RF belong to Q((z)), we see that h(z) also belongs to Q((z)). As noted
at the beginning of Section 2.2, there exist a solution g(z) ∈ Q((z)) of Hα;β,γ such that

h(z) = g(λz)eµz.

By assumption, the differential system Y ′ = AY is irreducible over Q(z), so that the
differential operators Lα;β,γ;λ,µ and, hence, Hα;β,γ are irreducible over Q(z). This implies
that α−β 6∈ Z and α−γ 6∈ Z. Using Section 2.1, we see that Hα;β,γ has a nonzero solution

in Q((z)) if and only if β ∈ Z or γ ∈ Z. Assume for instance that β ∈ Z. Moreover, if
β − γ ∈ Z, we can assume that γ ≥ β. Then, the Q-vector space of solutions of Hα;β,γ in

Q((z)) is generated by

z1−β
∞∑
n=0

(α− β + 1)n
n!(γ − β + 1)n

zn = z1−β
1F1(α− β + 1; γ − β + 1; z).

Hence, up to a multiplicative constant in Q×, we have g(z) = z1−β
1F1(α−β+1; γ−β+1; z).

This completes the proof of Theorem 2.

6. Some remarks on E-operators and G-operators

Finally, though this is not the subject of this paper, we mention that similar problems
have been formulated for G-functions.

A G-function at z = 0 is a power series f(z) =
∑∞

n=0 anz
n ∈ Q[[z]] such that

∑∞
n=0

an
n!
zn

is an E-function. Both classes of functions have been first introduced by Siegel, and recently
André [2] showed the deep relations that exist between E and G-functions. A non-zero
minimal equation in Q[z, d

dz
] satisfied by a G-function is called a G-operator. From results
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of André, Chudnovky and Katz (see [2, 6, 7]), we know that a G-operator is Fuchsian with
rational exponents at its singularities, and that all its solutions at any point α ∈ Q∪ {∞}
are essentially G-functions of the variable z − α or 1/z if α = ∞. André [2] defined an
E-operator as a differential operator in Q[z, d

dz
] such that its Fourier-Laplace transform is

a G-operator. We recall that the Fourier-Laplace transform L̂ ∈ Q[z, d
dz

] of an operator

L ∈ Q[z, d
dz

] is the image of L by the automorphism of the Weyl algebra Q[z, d
dz

] defined by

z 7→ − d
dz

and d
dz
7→ z. Any E-function is solution of an E-operator, which is not necessarily

minimal for the degree in d
dz

but is minimal for the degree in z. André proved that the
leading polynomial of an E-operator is zm for some integer m ≥ 0, i.e, that 0 is its only
possible finite singularity. It follows that the minimal non-zero differential equation of a
given E-function has only apparent finite non-zero singularities. That property was crucial
for the results proved here.

Using the André-Chudnovky-Katz Theorem, it is easy to prove that G-functions of
differential order 1 are algebraic functions over Q(z) of the form zm

∏d
j=1(z−αj)ej , m ∈ N,

αj ∈ Q×, ej ∈ Z. Dwork conjectured that a globally nilpotent differential operator in

Q(z)[ d
dz

] of order 2 either has algebraic solutions or there exists an algebraic pullback to
Gauss’s hypergeometric equation with rational parameters. This conjecture was disproved
by Krammer [9]. We shall not define the notion of “global nilpotence” here. Let us simply
say that G-operators are conjectured to be exactly the globally nilpotent operators in
Q(z)[ d

dz
], and that G-operators coming from geometry are known to be globally nilpotent

(Katz [7]). Hence, Krammer’s result rules out the possibility to describe all G-functions of
order 2 with algebraic functions and algebraic pullbacks of Gauss’s hypergeometric series
only. This is in clear contrast with Gorelov’s results.
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