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Abstract. In the last years, a number of authors have studied the al-
gebraic relations between the generating series of automatic sequences.
It turns out that these series are solutions of Mahler type equations.
This paper is mainly concerned with the difference Galois groups of
Mahler type equations (these groups reflect the algebraic relations be-
tween the solutions of the equations). In particular, we study in details
the equations of order 2, and compute the difference Galois groups of
classical equations related to the Baum-Sweet and to the Rudin-Shapiro
automatic sequences.
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1. Introduction

A number of authors have studied the algebraic relations between the
generating series of certain p-automatic sequences. For instance, the gener-
ating series of the so-called Baum-Sweet and Rudin-Shapiro sequences (see
sections 9.1 and 9.2) were studied by Nishioka and Nishioka in [NN12] : they
are algebraically independent over Q(z). 1 It turns out that the generating

series f(z) =
∑

k≥0 skz
k of any p-automatic sequence (sk)k≥0 ∈ QN

(and,

actually, of any p-regular sequence) satisfies a functional equation of the
form

an(z)f(zp
n
) + an−1(z)f(zp

n−1
) + · · ·+ a0(z)f(z) = 0

with coefficients a0(z), ..., an(z) ∈ Q(z); see Becker’s paper [Bec94] and the
references therein, especially to the works of Dumas and Randé. Such a
functional equation is called a p-Mahler equation, in honor of the work
of Mahler in [Mah30a, Mah30b, Mah29] 2. So, the study of the algebraic
relations between the generating series issued from p-automatic sequences
is a special case of the study of the algebraic relations between solutions of
Mahler equations.

The principal aim of the present work is to study the algebraic relations
between the solutions of p-Mahler equations of order n = 2, via difference
Galois theory.

We shall now describe more carefully the content of this paper. Section 2
contains general prerequisites and complements on difference Galois theory.
In section 3, we establish fundamental properties of the difference Galois
groups of the Mahler equations. In section 4, we study the factorization of
the Mahler operators on the field of Puiseux series, and we define and study
the notion of local exponents at 0 and ∞ (this will be used several times in
the rest of this paper : for the algorithmic aspects studied in section 6, and
also for the calculation of the difference Galois groups of the Baum-Sweet
and of the Rudin-Shapiro equations, and of their direct sum, in section 9).
Section 5 is an aside on a special type of Mahler equations, called regular
singular, for which one can describe explicitly the universal Picard-Vessiot
ring over the field of Puiseux series. We then focus our attention on the
Mahler equations of order n = 2 : in section 6, we give an algorithm to
determine whether or not the difference Galois group of a given Mahler
equation of order 2 is irreducible, and, in the irreducible case, whether or
not it is imprimitive. This is inspired by the analogue of Kovacic’s algorithm
introduced by Hendricks in [Hen97, Hen98]. Note that, in the irreducible and
not imprimitive case, the Galois group, which can be determined explicitly,
contains SL2(Q). For instance, the Baum-Sweet and the Rudin-Shapiro
equations (see sections 9.1 and 9.2) are Mahler equations of order 2, and
hence the algorithm applies in these cases. It would led to the fact that these
Galois groups are µ4 SL2(Q) and GL2(Q) respectively, where µ4 ⊂ C× is the
group of 4th roots of the unity. However, in section 9, we give a shorter way

1. For the relevance of the algebraic properties of the generating series coming from
combinatorics, we refer for instance to Bousquet-Mélou’s paper [BM06].

2. For an introduction to this aspect of Mahler’s work, we refer to Pellarin’s [Pel09]
and to Nishioka’s [Nis96]. We also point out the recent paper [Phi] by Philippon (which
uses difference Galois theory).
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(which could be of interest for other equations) to compute these groups. We
also compute the Galois group of the “direct sum” of the Baum-Sweet and
of the Rudin-Shapiro equations (via the Goursat-Kolchin-Ribet’s lemma),
which turns out to be equal to the direct product of the Galois groups of the
Baum-Sweet and of the Rudin-Shapiro equations. For instance, this gives a
galoisian proof of the following result obtained by Nishioka and Nishioka in
[NN12] : if we let f1(z) = f(z) (resp. g(z)) be the generating series of the
Rudin-Shapiro (resp. Baum-Sweet) sequence, then the series f1(z) = f(z),
f2(z) = f(−z), g(z) and g(z2) are algebraically independent over Q(z).

2. Difference Galois theory: reminders and complements

2.1. Generalities on difference Galois theory. For details on what fol-
lows, we refer to [vdPS97, Chapter 1].

A difference ring is a couple (R,φ) where R is a ring and φ is a ring
automorphism of R. An ideal of R stabilized by φ is called a difference ideal
of (R,φ). If R is a field, then (R,φ) is called a difference field.

The ring of constants Rφ of the difference ring (R,φ) is defined by

Rφ := {f ∈ R | φ(f) = f}.

Two difference rings (R,φ) and (R̃, φ̃) are isomorphic if there exists a ring

isomorphism ϕ : R→ R̃ such that ϕ ◦ φ = φ̃ ◦ ϕ.

A difference ring (R̃, φ̃) is a difference ring extension of a difference ring

(R,φ) if R̃ is a ring extension of R and φ̃|R = φ; in this case, we will

often denote φ̃ by φ. Two difference ring extensions (R̃1, φ̃1) and (R̃2, φ̃2)
of a difference ring (R,φ) are isomorphic over (R,φ) if there exists a ring

isomorphism ϕ : R̃1 → R̃2 such that ϕ|R = IdR and ϕ ◦ φ̃1 = φ̃2 ◦ ϕ.

A difference ring (R,φ) is a difference subring of a difference ring (R̃, φ̃)

if (R̃, φ̃) is a difference ring extension of (R,φ).

We now let (k, φ) be a difference field. We assume that its field of con-
stants C := kφ is algebraically closed and that the characteristic of k is 0.

In what follows, we will frequently denote the difference ring (R,φ) by R.

Consider a difference system

(1) φ(Y ) = AY with A ∈ GLn(k).

According to [vdPS97, §1.1], there exists a difference ring extension R of
(k, φ) such that

1) there exists U ∈ GLn(R) such that φ(U) = AU (such a U is called a
fundamental matrix of solutions of (1));

2) R is generated, as a k-algebra, by the entries of U and det(U)−1;
3) the only difference ideals of R are {0} and R.

Such a difference ring R is called a Picard-Vessiot ring for (1) over (k, φ).
It is unique up to isomorphism of difference rings over (k, φ). It is worth
mentioning that Rφ = C; see [vdPS97, Lemma 1.8].
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The corresponding difference Galois group G over (k, φ) of (1) is the group
of the k-linear ring automorphisms of R commuting with φ :

G := {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ}.
The Picard-Vessiot ring R is not a domain in general. According to

[vdPS97, Corollary 1.16], we can decompose R as a direct product of rings

R = ⊕x∈XRx with Rx = Rex

where
– X = Z/tZ for some integer t ≥ 1,
– for all x ∈ X, ex is an idempotent element of R,
– for all x ∈ X, Rx is a domain,
– for all x ∈ X, φ(ex) = ex+1X and, hence, φ(Rx) = Rx+1X .
Let us consider the total quotient ring K of R, which can be described as

K = ⊕x∈XKx

where Kx is the field of fractions of Rx. It is easily seen that φ admits a
unique extension into a ring automorphism ofK. Therefore, K is a difference
ring extension of R, called the total Picard-Vessiot ring of (1) over (k, φ).
We have Kφ = C. The action of G on R extends to K.

A straightforward computation shows that, for any σ ∈ G, there exists
a unique C(σ) ∈ GLn(C) such that σ(U) = UC(σ). According to [vdPS97,
Theorem 1.13], one can identify G with an algebraic subgroup of GLn(C)
via the faithful representation

σ ∈ G 7→ C(σ) ∈ GLn(C).

If we choose another fundamental system of solutions U , we find a conjugate
representation.

Remark 1. To the difference equation

(2) anφ
n(y) + · · ·+ a1φ(y) + a0y = 0,

with a0, ..., an ∈ k and a0an 6= 0, we associate the difference system

(3) φY = AY, with A =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
− a0
an
− a1
an
· · · · · · −an−1

an

 ∈ GLn(k).

By “Galois group of the difference equation (20)”, we will mean “Galois
group of the difference system (3)”.

The Galois correspondence [vdPS97, Theorem 1.29] reads as follows.

Theorem 2. Let F be the set of difference subrings F of K such that k ⊂ F
and such that every non zero divisor of F is actually a unit of F . Let G be
the set of algebraic subgroups of G. Then,

– for any F ∈ F , the set G(K/F ) of elements of G which fix F pointwise
is an algebraic subgroup of G;

– for any algebraic subgroup H of G, KH := {x ∈ K | ∀σ ∈ H,σ(x) = x}
belongs to F ;
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– the maps F → G, F 7→ G(K/F ) and G → F , H 7→ KH are each other’s
inverses.

The Galois group G reflects the algebraic relations between the entries
of any fundamental matrix of solutions U ∈ GLn(R) of (1). The point is
that Spec(R) is a G-torsor over k; see [vdPS97, Theorem 1.13]. This implies
that there exists a finite extension k′ of k such that the Spec(k′)-schemes
Gk′ := G×Spec(C)Spec(k′) and Spec(R)×Spec(k)Spec(k′) are isomorphic, i.e.
such that there is a k′-algebra isomorphism

(4) R⊗k k′ ∼= C[G]⊗C k′.
Therefore, equation (4) holds true when k′ is replaced by an algebraic closure
k of k. Note that, if G is connected and k is a C1-field 3, then we can take
k′ = k i.e. there is a k-algebra isomorphism

R ∼= C[G]C ⊗ k.
For instance, if n = 2, G = SL2(C) and k is a C1-field, then there is a
k-algebra isomorphism

R ∼= k[Xi,j | 1 ≤ i, j ≤ 2]/(det(Xi,j)1≤i,j≤2 = 1);

in other words, the ideal of polynomial relations with coefficients in k be-
tween the entries of U is generated by det(Xi,j)1≤i,j≤2 = 1.

We shall now introduce a property relative to the base difference
field (k, φ) which appeared in [vdPS97].

Definition 3. We say that the difference field (k, φ) satisfies property (P)
if the following properties hold:

– the field k is C1-field;
– if L is a finite field extension of k such that φ extends to a field endo-

morphism of L then L = k.

The following result is due to van der Put and Singer. We recall that
two difference systems φY = AY and φY = BY with A,B ∈ GLn(k) are
isomorphic over k if there exists T ∈ GLn(k) such that φ(T )A = BT .

Theorem 4. Assume that (k, φ) satisfies property (P). Let G ⊂ GLn(C)
be the difference Galois group over (k, φ) of

(5) φ(Y ) = AY, with A ∈ GLn(k).

Then, the following properties hold :
– G/G◦ is cyclic, where G◦ is the identity component of G;
– there exists B ∈ G(k) such that (5) is isomorphic to φY = BY over k.

Let G̃ be an algebraic subgroup of GLn(C) such that A ∈ G̃(k). The following
properties hold :

– G is conjugate to a subgroup of G̃;

– any minimal element in the set of algebraic subgroups H̃ of G̃ for which

there exists T ∈ GLn(k) such that φ(T )AT−1 ∈ H̃(k) is conjugate to G;

3. Recall that k is a C1-field if every non-constant homogeneous polynomial P over k
has a non-trivial zero provided that the number of its variables is more than its degree.
For instance, the function field of any algebraic curve over an algebraically closed field is
a C1-field in virtue of Tsen’s theorem [Lan52].
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– G is conjugate to G̃ if and only if, for any T ∈ G̃(k) and for any proper

algebraic subgroup H̃ of G̃, one has that φ(T )AT−1 /∈ H̃(k).

Proof. The proof of [vdPS97, Propositions 1.20 and 1.21] in the special case
where k := C(z) and φ is the shift φ(f(z)) := f(z+h) with h ∈ C×, extends
mutatis mutandis to the present case. �

2.2. Base difference field extensions. Let (k′, φ) be a difference field
extension of (k, φ). We shall first explain how on can see the difference
Galois group G′ of the difference system (1) over (k′, φ) as a subgroup of the
difference Galois group G of the difference system (1) over (k, φ).

Let R′ be a Picard-Vessiot ring over (k′, φ) for the difference system (1).
Let U ∈ GLn(R′) be a fundamental matrix of solutions of (1). We consider
the sub-k-algebra R of R′ generated by the entires of U and by det(U)−1.
It is clear that R is a difference subring of R′.

Lemma 5. An element of R is a zero divisor of R if and only if it is a zero
divisor of R′.

Proof. It is obvious that, if a ∈ R is a zero divisor of R, then it is a zero
divisor of R′. Conversely, let a ∈ R be a zero divisor of R′. As recalled in
section 2.1, we can decompose R′ as follows

R′ = ⊕x∈XR′x,
where

– X = Z/tZ,
– for all x ∈ X, R′x is a domain,
– for all x ∈ X, φ induces an isomorphism from R′x to R′x+1X

.
Consider the corresponding decomposition a =

∑
x∈X ax. The fact that a

is a zero divisor of R′ ensures that ax = 0 for some x ∈ X. It follows that
aφ(a) · · ·φt−1(a) = 0. Therefore, there exists i ∈ {0, ..., t − 1} such that
φi(a) is a zero divisor of R. Since φi is a ring automorphism of R, we get
that a is a zero divisor of R, as expected. �

Thanks to Lemma 5, one can see the total quotient ring K of R as a
difference subring of the total quotient ring K ′ of R′:

K ⊂ K ′.

Proposition 6. The difference ring (R,φ) is a Picard-Vessiot ring over
(k, φ) for (1). Therefore, the difference ring (K,φ) is a total Picard-Vessiot
ring over (k, φ) for (1).

Proof. According to [vdPS97, Corollary 1.24], in order to prove that R is
a Picard-Vessiot ring over (k, φ) for (1), it is sufficient to prove that the
following properties hold true :

– R has no nilpotent elements;
– the ring of constants of K is C;
– there is a fundamental matrix of solutions of (1) in GLn(R);
– R is minimal with respect to the previous properties.

The first property follows from the facts that R ⊂ R′ and that R′ has no
nilpotent elements (recall that R′ is a direct product of domains). The
second property follows from the facts that K ⊂ K ′ and that (K ′)φ = C
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(because K ′ is a total Picard-Vessiot ring). The third property follows from
the fact that U is a fundamental matrix of solutions of (1) in GLn(R). The
minimality property of R is obvious. �

Consider the Galois group G′ of (1) over (k′, φ) given by

G′ = {σ ∈ Aut(R′/k′) | φ ◦ σ = σ ◦ φ}

and the Galois group G of (1) over (k, φ) given by

G = {σ ∈ Aut(R/k) | φ ◦ σ = σ ◦ φ}.

Then, the restriction map σ 7→ σ|R gives a closed immersion

G′ ⊂ G.

We shall now focus our attention on the case when k′ is an algebraic
extension of k.

Theorem 7. Assume that k′ is an algebraic extension of k. Then, G′ and
G have the same identity component.

Proof. As recalled in section 2.1, the scheme Gk′ := G ×Spec(C) Spec(k′) is

isomorphic to Spec(R)×Spec(k) Spec(k′), and the scheme G′
k′

:= G′ ×Spec(C)

Spec(k′) is isomorphic to Spec(R′)×Spec(k) Spec(k′). Therefore, the dimen-
sion of G, which is equal to the dimension of Gk′ , is equal to the dimension of

Spec(R)×Spec(k) Spec(k′), which is itself equal to the dimension of Spec(R).
Similarly, the dimension of G′ is equal to the dimension of Spec(R′). But
the ring extension R ⊂ R′ is integral, so Spec(R) and Spec(R’) have the
same dimensions. Hence G and G′ have the same dimensions. So, we have
a closed immersion G′ ⊂ G of algebraic groups with the same dimensions.
It follows that G and G′ have the same identity component. �

With the notations and hypotheses of Theorem 7, one can ask the follwing
question : Is G′ a normal subgroup of G? Let us study this question in
detail. Since G′ is an algebraic subgroup of G, the Galois correspondence
[vdPS97, Theorem 1.29] ensures that there exists a difference subring F of
K containing k such that every non zero divisor of F is a unit of F , and
such that

G′ = {σ ∈ Aut(K/F ) | φ ◦ σ = σ ◦ φ}.
By Galois correspondence again,

F = KG′ = (K ′)G
′ ∩K = k′ ∩K.

Using [vdPS97, Corollary 1.30], we obtain the following result.

Proposition 8 (Normality criterion). The algebraic group G′ is normal in
G if and only if the set of elements of k′ ∩K which are fixed by the natural
action of the group

{σ ∈ Aut(k′ ∩K/k) | φ ◦ σ = σ ◦ φ}

is reduced to k.
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We shall now give an example illustrating the fact that G′ is not a nor-
mal subgroup of G in general, in contrast with the differential case [Kat87,
Proposition 1.4.5].

We consider the difference field (l, φ) which is given by

l = ∪d≥1Q(z1/d) and φ
(
f(z1/d)

)
= f(zp/d).

We consider the difference subfields k and k′ of l given by

k = ∪m≥0Q(z1/p
m

)

and

k′ = k(z
1

p2−1 ) = ∪m≥0Q(z
1

pm(p2−1) ).

Consider the difference system

φY = AY, A ∈ GL2(k)

associated to the difference equation φ2y = zy. A total Picard-Vessiot ring
over (k′, φ) for this system is given by the difference ring (K ′, φ) defined as
follows:

– as a ring, K ′ = k′ ⊕ k′ is the direct sum of two copies of k′;
– the action of φ on (a, b) ∈ K ′ is given by φ(a, b) = (φ(b), φ(a)).

Note that k′ is seen as a difference subfield of K ′ via a ∈ k′ 7→ (a, a) ∈ K ′.
A total Picard-Vessiot ring over (k, φ) is given by K := K ′. Therefore, we
have k′ ∩K = k′, and it is easily seen that

{σ ∈ Aut(k′ ∩K/k) | φ ◦ σ = σ ◦ φ} = {Id}.
The above normality criterion implies that G′ is not a normal subgroup of
G.

2.3. Iterations. Let d ≥ 1 be an integer and consider the iterated difference
system

(6) φdY = AdY with Ad = φd−1(A)φd−2(A) · · ·A ∈ GLn(k).

The aim of this section is to study the relations between the difference Galois
groups of this difference system and of the original difference system (1), and
to generalize van der Put and Singer’s [vdPS97, Corollary 1.17] (which is
concerned with the case d = t with the notations introduced below).

Let R be a Picard-Vessiot ring over (k, φ) for the difference system (1).
As recalled in section 2.1, we can decompose R as a direct product of rings

R = ⊕x∈XRx with Rx = Rex

where
– X = Z/tZ for some integer t ≥ 1,
– for all x ∈ X, ex is an idempotent element of R,
– for all x ∈ X, Rx is a domain,
– for all x ∈ X, φ(ex) = ex+1X and, hence, φ(Rx) = Rx+1X .

We denote by Y the quotient of X by its ideal generated by d1X . For all
y ∈ Y , we introduce the ring

Sy = ⊕x∈yRx.
We have

R = ⊕y∈Y Sy and, for all y ∈ Y , φ(Sy) = Sy+1Y .
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In particular, if r = |Y | = gcd(d, t), then, for all y ∈ Y ,

φr(Sy) = Sy and, hence, φd(Sy) = Sy.

Therefore, (Sy, φ
d) (resp. (Sy, φ

r)) is a difference ring extension of (k, φd)
(resp. (k, φr)), when k is identified with k1Sy .

Proposition 9. The difference ring (S0Y , φ
d) is a Picard-Vessiot ring over

(k, φd) for the difference system (6).

Proof. Let U ∈ GLn(R) be a fundamental matrix of solutions of (1). We
can decompose U as follows

U =
∑
y∈Y

Uy

where, for all y ∈ Y , Uy ∈ GLn(Sy). We have

φd(U) =
∑
y∈Y

φd(Uy) and φd(U) = AdU =
∑
y∈Y

AdUy.

Since φd(Uy) ∈ GLn(Sy) and AdUy ∈ GLn(Sy), it follows that, for all y ∈ Y ,

φd(Uy) = AdUy.
Since R is generated as a k-algebra by the entries of U and detU−1, we

get that, for all y ∈ Y , Sy is generated as a k-algebra by the entries of Uy
and detU−1y .

It remains to prove that (S0Y , φ
d) is a simple difference ring. Let I be

a minimal non zero difference ideal of (S0Y , φ
d). Since φd(I) is a non zero

difference ideal of (S0Y , φ
d) included in I, we get that φd(I) = I. Since

S0Y = ⊕x∈0Y Rx, we can decompose I as follows

I = ⊕x∈0Y Ix
where, for all x ∈ 0Y , Ix is an ideal of Rx. Since I is non zero, there exists
x ∈ 0Y such that Ix is non zero. But φd(I) ⊂ I and, for all integer j ≥ 0,
φjd(Rx) ⊂ Rx+jd1X , so φjd(Ix) ⊂ Ix+jd1X . Therefore, for any x ∈ 0Y , Ix is
non zero. Using the fact that, for all j ∈ N, φjr induces a permutation of
{Rx | x ∈ 0Y }, we see that

φjr(I) = ⊕x∈0Y Ij,x
where, for all integer j ≥ 0 and x ∈ 0Y , Ij,x is a non zero ideal of Rx.

We now consider

J0 = ∩j∈NφjrI = ∩d/r−1j=0 φjr(I) ⊂ S0Y ,

which is a difference ideal of (S0Y , φ
r). The decomposition

J0 = ⊕x∈0Y ∩
d/r−1
j=0 Ij,x,

together with the fact that a finite intersection of non zero ideals of a domain
is non zero, show that J0 is non zero.

We set

J = ⊕r−1k=0φ
k(J0) ⊂ ⊕y∈Y Sy,

which is a non zero difference ideal of (R,φ). Therefore, J = R. So, J0 = S0Y
and, hence, I = S0Y as expected. �
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We will also use the iterated difference system

(7) φrY = ArY with Ar = φr−1(A)φr−2(A) · · ·A ∈ GLn(k).

The following result is the particular case d = r of the previous proposition.

Proposition 10. The difference ring (S0Y , φ
r) is a Picard-Vessiot ring over

(k, φr) for the difference system (7).

Let K be the total quotient ring of R over (k, φ). So K = ⊕x∈XKx with
Kx = Frac(Rx). Then, (K,φ) is a total Picard-Vessiot ring for the difference
system (1). For any y ∈ Y , we set Ly = ⊕x∈yKx, which is the total quotient

ring of Sy. According to Proposition 9 (resp. Proposition 10), (L0Y , φ
d)

(resp. (L0Y , φ
r)) is a total Picard-Vessiot ring for the difference system (6)

over (k, φd) (resp. (7) over (k, φr)).
We consider the difference Galois group over (k, φ) of the difference system

(1) given by

G = {σ ∈ Aut(K/k) | φ ◦ σ = σ ◦ φ},
the difference Galois group over (k, φd) of the difference system (6) given by

G′ = {σ ∈ Aut(L0Y /k) | φd ◦ σ = σ ◦ φd}

and the difference Galois group over (k, φr) of the difference system (7) given
by

G′′ = {σ ∈ Aut(L0Y /k) | φr ◦ σ = σ ◦ φr}.

Proposition 11. We have G′ = G′′.

Proof. We have an obvious closed immersion of algebraic groups G′′ ⊂ G′

(because r divides d). By Galois correspondence for the difference system

(7), we have LG
′′

0Y
= k. By Galois correspondence again, but for the difference

system (6), we get that the inclusion of algebraic groups G′′ ⊂ G′ is actually
an equality. �

We consider the map α : G′′ → G defined as follows. For all σ ∈ G′′,
α(σ) : K → K is the unique k-linear endomorphism of K such that, for all
y = j1Y ∈ Y , α(σ)|Ly = φjσφ−j . The map α(σ) is well-defined because

– φj induces a ring isomorphism between L0Y and Lj1Y = Ly;

– if j, j′ ∈ Z are such that y = j1Y = j′1Y , then φjσφ−j = φj
′
σφ−j

′

(indeed, in this case, we have j ≡ j′ mod r and, hence, φjσφ−j =

φj
′
σφ−j

′
because σ commutes with φr).

The fact that α(σ) is an element of G is straightforward.
We consider the map β : G → Y defined as follows. It is easily seen

that any σ ∈ G induces a permutation of {ex | x ∈ X}. More precisely,
if σ(e0X ) = e`1X , then, for all x′ ∈ X, σ(ex′) = ex′+`1X (indeed, if x′ =
j1X then ex′ = ej1X = φj(e0X ) so σ(ex′) = σ(φj(e0X )) = φj(σ(e0X )) =
φj(e`1X ) = e`1X+j1K = ex′+`1X ). Therefore, σ induces a permutation of
{1Ly =

∑
x∈y ex | y ∈ Y }. We denote by β(σ) the unique element of Y such

that σ(1L0Y
) = 1Lβ(σ) . Note that, for any y ∈ Y , we have σ(1Ly) = 1Ly+β(σ) .

Equivalently, one can define β(σ) as the unique element of Y such that

σ(L0Y ) = Lβ(σ).
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Moreover, for any σ ∈ G and y ∈ Y , we have

σ(Ly) = Ly+β(σ).

It is easily seen that α and β are morphisms of algebraic groups.

Theorem 12. We have the following exact sequence of algebraic groups :

0 −→ G′ = G′′
α−→ G

β−→ Y −→ 0

Proof. The fact that α is injective is obvious.
For any σ ∈ G′′, we have α(σ)(1L0Y

) = σ(1L0Y
) because 1L0Y

∈ L0Y .

And, σ(1L0Y
) = 1L0Y

because σ is a ring endomorphism of L0Y . Therefore,

β ◦ α(σ) = 0Y .
Consider σ ∈ kerβ. Then, σ′ := σ|L0Y

leaves L0Y globally invariant and

belongs to G′. It is easily seen that σ = α(σ′) ∈ im(α).
It remains to prove that β is surjective. Consider x =

∑
y∈im(β) 1Ly . For

all σ ∈ G, we have σ(x) =
∑

y∈im(β) 1Ly+β(σ) = x (the last equality follows

from the fact that β(σ) belongs to the group im(β)). According to Galois
correspondence, we have x ∈ k. But x is idempotent, so x = 0K or 1K .
Since x 6= 0K , we get x = 1K . Therefore, im(β) = Y . �

2.4. Systems, equations and modules. In linear algebra, it is usual to
work either with matrices with entries in a field k, with endomorphisms of a
finite dimensional k-vector space or with k[X]-modules of finite type. This
can be imitated in the context of difference algebra, as we shall now explain.

One can rewrite the difference system

(8) φY = AY with A ∈ GLn(k)

as the fixed point equation ΦA(Y ) = Y where ΦA : kn → kn is defined
by ΦA(Y ) = A−1φ(Y ) (here φ acts component-wise on the elements of kn,
which are seen as column vectors). The map ΦA is a φ-linear automorphism
of the k-vector space kn i.e. ΦA(X + λY ) = ΦA(X) + φ(λ)ΦA(Y ) for all
X,Y ∈ kn and λ ∈ k. This leads to the following concept : a difference
module is a pair (V,Φ) where V is a finite dimensional k-vector space and
φ : V → V is a φ-linear automorphism of V . So, we have attached the
difference module (kn,ΦA) to the difference system (8). Conversely, we can
attach a difference system to any difference module (V,Φ) by choosing some
basis of V .

Here is an alternate description of the difference modules. Consider the
Öre algebra Dk = k[φ, φ−1] of non commutative Laurent polynomials with
coefficients in k such that φa = φ(a)φ for all a ∈ k. By “Dk-module” we will
mean “left Dk-module of finite length” (it is equivalent to require that the k-
vector space obtained by restriction of scalars has finite dimension). There
is a natural correspondence between difference modules and Dk-modules.
Indeed, we can attach to the difference module (V,Φ) the Dk-module M
whose underlying abelian group is the underlying group of V and such that
L =

∑
aiφ

i ∈ Dk acts on m ∈ M as Lm =
∑
aiΦ

i(m). Conversely, we can
attach to the Dk-module M , the difference module (V,Φ) where V is the k-
vector space obtained from M by restriction of scalars and where Φ(v) = φv,
for any v ∈ V .
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The following result, known as the cyclic vector lemma, ensures that
any Dk-module (and, hence, any difference system and difference module)
“comes form” an equation.

Proposition 13. Let M be a Dk-module. There exists L ∈ Dk such that
M ∼= Dk/DkL.

The category of Dk-modules is a C-linear rigid tensor category. The dual
of a Dk-module M will be denoted by M∨ and the tensor product by the
usual symbol ⊗. For details, we refer to [vdPS97, §1.4].

2.5. Tannakian duality. For details on what follows, see [vdPS97, §1.4].
For tannakian categories in general, we refer to Deligne and Milne’s [DM81].
We let 〈M〉 be the smallest full subcategory of the category of Dk-modules
containing M and closed under all constructions of linear algebra, namely
direct sums, tensor products, duals and subquotients. We let (R,φ) be a
Picard-Vessiot ring of M over (k, φ) and we let G be the corresponding
difference Galois group over (k, φ). There is a C-linear equivalence of cat-
egories between 〈M〉 and the category of rational C-linear representations
of the linear algebraic group G, which is compatible with all constructions
of linear algebra (this is called tannakian duality). Such an equivalence is
given by a functor sending an object N of 〈M〉 to the representation

ρN : G → GL(ω(N))

σ 7→ (σ ⊗ IdN )|ω(N)

where
ω(N) = ker(φ⊗ φ− 1 : R⊗k N → R⊗k N).

The difference Galois group of N over (k, φ) can be identified with the image
of ρN .

We now focus on a specific situation that we will encounter later in this
paper. If N1 and N2 are objects of 〈M〉, then the Galois group of N1 ⊕N2

can be identified with

(ρN1 ⊕ ρN2) (G) ⊂ G1 ×G2,

where G1 (resp. G2) is the difference Galois group of N1 (resp. N2) over
(k, φ) identified with ρN1(G) (resp. ρN2(G)). We have the following result.

Proposition 14. Assume that :
– N1 and N2 have rank 2,
– G1 (resp. G2) contains SL(ω(N1)) (resp. SL(ω(N2))),
– for any object N of rank one of 〈N1⊕N2〉, N1 is neither isomorphic to
N ⊗N2 nor to N ⊗N∨2 .

Then, the Galois group of N1⊕N2, seen in G1×G2, contains SL(ω(N1))×
SL(ω(N2)).

Proof. Indeed, this is a direct consequence of Goursat-Kolchin-
Ribet’s [Kat90, Proposition 1.8.2] (applied to ρ1 := ρN1 and ρ2 := ρN2),
and tannkian duality. �

Note that, if G1 ×G2 contains SL(ω(N1))× SL(ω(N2)), then

G = {(σ1, σ2) ∈ GL(ω(N1))×GL(ω(N2)) | (detσ1, detσ2) ∈ H},
where H is the Galois group of detM1 ⊕ detM2.
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3. Difference Galois theory : more specific results for
Mahler equations

We consider the field of Puiseux series with coefficients in Q given by

K̂ = ∪d≥1K̂d with K̂d = Q((z1/d)).

We will use the notation zd = z1/d. We endow K̂ with the field automor-
phism φp defined by

φp

(
f(z1/d)

)
= f(zp/d).

This makes K̂ a difference field with field of constants K̂φp = Q.
We also consider the difference subfield of K̂ given by

K = ∪d≥1Kd with Kd = Q(z1/d).

The corresponding Öre algebras D
K̂

and DK (see §2.4) will be denoted by

D̂ and D. An element of such an algebra will be called a Malher operator.
A Mahler equation, system or module is a difference equation, system or
module over one of the above difference fields.

The following result will be useful.

Proposition 15. The difference field (K, φp) satisfies property (P) (see De-
finition 15). Therefore, the conclusions of Theorem 4 are valid for (K, φp).

The proof of this proposition, given below, will use the following geometric
result.

Proposition 16. Let X be of smooth projective curve over Q with genus
g ≥ 2. Then, the following properties hold :

(1) any non constant endomorphism of X is an automorphism;

(2) the group of automorphisms of X is finite, of order at most 84(g−1).

Proof. Let ϕ : X → X be a non constant endomorphism of X. Hurwitz’s
formula (see [Har77, Corollary 2.4]) ensures that

−2(N − 1)(g − 1) =
∑
P

(eP − 1)

where N ≥ 1 is the degree of ϕ and where the sum is taken over the ram-
ification points P of ϕ with ramification index eP ≥ 1. The fact that the
right hand side of this equality is ≥ 0 implies that N = 1 i.e. that ϕ has
degree 1 and hence is an automorphism.

The fact that the group of automorphisms of X is finite and has order at
most 84(g − 1) is a classical result due to Hurwitz [Hur92]. �

Proof of Proposition 15. Since K =
⋃
d≥1 Kd! is the increasing union of the

fields Kd!, the fact that K is a C1-field follows from Tsen’s theorem [Lan52]
(according to which the function field of any algebraic curve over an alge-
braically closed field, e.g. Kd!, is C1).

Let L be a finite extension of K such that φp extends to a field endomor-
phism of L; we have to prove that L = K. The primitive element theorem
ensures that there exists u ∈ L such that L = K(u). Let d ∈ Z≥1 be such
that
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– u is algebraic over Kd,
– φp(u) ∈ Kd(u).

Then, Kd(u) is a finite extension of Kd and φp induces an endomorphism
of Kd(u).

Consider a morphism of smooth projective curves ϕ : X → P1(Q) whose
induced morphism of function fields “is” the inclusion Kd ⊂ Kd(u). Then
φp induces an endomorphism f of X such that the following diagram is
commutative :

X
f //

ϕ
��

X

ϕ
��

P1(Q)
z 7→zp

// P1(Q).

Observe that
– X has genus g = 0 or 1 (this follows from Proposition 16 since f has

infinite order);
– f has degree p (take degrees in the above commutative diagram);
– f−1(ϕ−1(0)) ⊂ ϕ−1(0) and f−1(ϕ−1(∞)) ⊂ ϕ−1(∞) (immediate from

the above commutative diagram);
– f is totally ramified above any point of Z = ϕ−1(0) ∪ ϕ−1(∞) (indeed,

since f is not constant, it is surjective and, for cardinality reasons, the
inclusion f−1(ϕ−1(0)) ⊂ ϕ−1(0) implies that the fiber of f above any
element of ϕ−1(0) has exactly one element).

Assume that g = 0, so that we can replace X by P1(Q). Hurwitz’s formula
(see [Har77, Corollary 2.4]) applied to f yields to the following equation

−2 = −2p+
∑
P

(eP − 1) = −2p+
∑
Q∈Z

(
p− ]f−1(Q)

)
︸ ︷︷ ︸
=]Z·(p−1)≥2(p−1)

+
∑
Q 6∈Z

(
p− ]f−1(Q)

)
,

where the sum in the middle term is taken over the ramification points
P of f with ramification index eP ≥ 1. This implies that ]Z = 2, so
]ϕ−1(0) = ]ϕ−1(∞) = 1, and that f is unramified above X \ Z. Let c be
an automorphism of P1(Q) such that c(ϕ−1(0)) = 0 and c(ϕ−1(∞)) = ∞.
Then, cfc−1 is totally ramified at 0 and ∞, unramified elsewhere, of degree
p, and fixes 0 and ∞, so cfc−1(z) = zp. It follows from the commutative
diagram

P1(Q)
cfc−1

//

ϕc−1

��

P1(Q)

ϕc−1

��
P1(Q)

z 7→zp
// P1(Q)

that ϕc−1(z) = zN for some N ∈ Z≥1. That is ϕ = cN and f(z) =

c−1(c(z)p). It follows that Kd(u) = Q(z
1/N
d ). In particular, u belongs to

K and hence L = K.
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Assume that g = 1 i.e. that X is an elliptic curve. Then f is unramified
(as any non constant endomorphism of an elliptic curve) of degree p. Con-
sidering cardinals in the inclusion f−1(ϕ−1(0)) ⊂ ϕ−1(0), we get that the
degree of f is equal to 1, so p = 1, which is excluded. �

We will mainly work with the base fields K and K̂; however, we will also

use the difference subfield of K̂ given by

K̂p∞ = ∪d≥0Q((z1/p
d
)),

and its difference subfield given by

Kp∞ = ∪d≥0Q(z1/p
d
).

We will use the following result.

Proposition 17. Let L be a finite field extension of Kp∞ such that φp
extends to an endomorphism of L. Then, there exists α ∈ L such that
αn = z for some integer n ≥ 1, and L = Kp∞(α).

Proof. Same arguments as for the proof of Proposition 15. �

4. Factorization, triangularization and local exponents

4.1. Factorization of Malher operators. In order to avoid heavy nota-
tions, we work in this section with

L =

n∑
i=0

aiφ
i
p where n ≥ 1, a0, ..., an ∈ Q((z)) and a0an 6= 0.

The extension of the results below to an arbitrary L ∈ D̂ is straightforward.
We shall now introduce some notations and terminologies. Let a, r be

elements of some difference field extension of K̂ such that φp(r) = ar. We

will denote by L[r] the operator defined by

L[r] := r−1Lr =
n∑
i=0

aφp(a) · · ·φi−1p (a)aiφ
i
p,

so that L[r](f) = 0 if and only if L(rf) = 0. In particular :
– for any µ ∈ Q, we consider θµ such that φp(θµ) = zµθµ so that

L[θµ] =
n∑
i=0

z(1+p+···+p
i−1)µaiφ

i
p;

– for any c ∈ Q×, we consider ec such that φp(ec) = cec so that

L[ec] =

n∑
i=0

ciaiφ
i
p.

We define the Newton polygon N (L) of L as the convex hull in R2 of

{(i, j) ∈ Z× R | j ≥ vz(an−i)}

where vz : K̂ → Q ∪ {+∞} denotes the z-adic valuation. This polygon is
delimited by two vertical half lines and by k vectors (r1, d1), ..., (rk, dk) ∈
N∗ × Q having pairwise distinct slopes, called the Newton-slopes of L. For
any i ∈ {1, ..., k}, ri is called the multiplicity of the Newton-slope di

ri
.
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Lemma 18. There exists a unique µ1 ∈ Q such that the greatest Newton-
slope of L[θµ1 ] is 0.

Proof. The fact that the greatest Newton-slope of L[θµ1 ] is 0 means that, for
all i ∈ {1, ..., n},

vz(ai) + (1 + p+ · · ·+ pi−1)µ1 ≥ vz(a0)
and that this inequality is an equality for some i ∈ {1, ..., n}. It is easily
seen that there exists a unique µ1 ∈ Q with these properties. �

Definition 19. The rational number µ1 given by Lemma 18 will be called the
first theta-slope of L. Set L[θµ1 ] =

∑n
i=0 biφ

i
p. The characteristic polynomial

associated to the first theta-slope µ1 of L is
∑n

i=0

(
biz
−vz(b0)

)
|z=0

Xi ∈ Q[X];

this is a polynomial of degree ≥ 1 with non zero constant coefficient.

Lemma 20. Let µ1 be the first theta-slope of L and let c1 be a root of the
corresponding characteristic polynomial. Let d1 ∈ Z≥1 be a denominator of

µ1. Then, there exists f1 ∈ 1 + zd1Q[[zd1 ]] such that L(θµ1ec1f1) = 0.

Proof. We set µ = µ1, c = c1 and d = d1. Note that the coefficients of L[θµ]

belong to Q((zd)). We set L[θµ] =
∑n

i=0 biφ
i
p with bi =

∑
j bi,jz

j
d ∈ Q((zd)).

Using the fact that the greatest Newton-slope of L is 0, we see that, up
to left multiplication by some element of Q((zd))

×, we can assume that
b0, ..., bn ∈ Q[[zd]] and b0,0 6= 0. The characteristic polynomial attached to
the first theta-slope µ of L is given, up to multiplication by some constant

in Q×, by
∑n

i=0 bi,0X
i. For f =

∑
k≥0 fkz

k
d ∈ 1 + zdQ[[zd]], we have

L(θµecf) = θµec
∑
i,j,k≥0

bi,jc
ifkz

j+kpi

d = 0

if and only if, for all ` ∈ Z≥0,

(9)
∑
i,j,k≥0

j+kpi=`

bi,jc
ifk = 0.

This equation is automatically satisfied for ` = 0 because∑
i,j,k≥0

j+kpi=0

bi,jc
ifk =

(∑
i

bi,0c
i

)
f0

and
∑

i bi,0c
i = 0 because c is a root of the characteristic polynomial. For

` > 0, equation (9) can be rewritten as follows∑
i,j,k≥0

k<`,j+kpi=`

bi,jc
ifk = −b0,0f`

so that the coefficients of f are (uniquely) recursively determined. �

Lemma 21. Maintaining the notations of Lemma 20, we can factorize L
as follows

L = L2(φp − zµ1c1)f−11

where L2 ∈ D̂ has coefficients in Q((z1/(p
md1))) for some m ∈ Z.
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Proof. This follows by euclidean division of L by the operator (φp−zµ1c1)f−11
which annihilates θµ1ec1f1. �

A repeated application of the previous lemma leads to the following result.

Theorem 22. The operator L admits a factorization of the form

L = anφ
n
p (f1) · · ·φp(fn)(φp − zµncn)f−1n · · · (φp − zµ1c1)f−11

where, for all i ∈ {1, ..., n}, ci ∈ Q×, µi ∈ Q and fi ∈ 1 + zdQ[[zd]] for some
integer d ≥ 1.

4.2. Triangularization and local exponents of the D̂-modules. We

shall first study the D̂-modules of rank one. For any α ∈ K̂×, we denote by

Iα the D̂-module of rank one defined by

Iα = D̂/D̂(φp − α).

In what follows, we will denote by cld(α) the coefficient of the term of lower

degree of α ∈ K̂×. Note that cld : K̂× → Q× is a group morphism.

Proposition 23. (i) For any α, β ∈ K̂×, the D̂-modules Iα and Iβ are
isomorphic if and only if cld(α) = cld(β).

(ii) For any α ∈ K̂×, the D̂-modules Iα and Icld(α) are isomorphic.

(iii) For any D̂-module M of rank 1, there exists a unique c ∈ Q× such
that M is isomorphic to Ic.

Proof. It is easily seen that the set of D̂-modules morphisms form Iα to Iβ
is given by

Hom(Iα, Iβ) = {ϕu | u ∈ K̂, αu = φp(u)β}
where ϕu : Iα → Iβ is defined by ϕu(P ) = Pu and that ϕu is an isomorphism

if and only if u ∈ K̂×. Therefore, Iα ∼= Iβ if and only if there exists u ∈ K̂×

such that αu = φp(u)β. But {φp(u)/u | u ∈ K̂×} = ker(cld : K̂× → Q×).
So Iα ∼= Iβ if and only if cld(α) = cld(β). This proves (i). The remaining
assertions follow easily. �

Theorem 24. Let M be a D̂-module of rank n ≥ 1.

(i) The D̂-module M is triangularizable, i.e. there exists a filtration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M

by submodules of M such, for all i ∈ {0, ..., n − 1}, the quotient D̂-
module Mi+1/Mi has rank 1.

(ii) For all i ∈ {0, ..., n− 1}, we let ci ∈ Q× be such that Mi+1/Mi
∼= Ici.

The list c1, ..., cn does not depend (up to permutation) on the choosen
filtration.

Proof. According to the cyclic vector lemma (Proposition 13), there exists

L ∈ D̂ such that M ∼= D̂/D̂L. Theorem 22 ensures that

L = c(φp − zµncn)f−1n · · · (φp − zµ1c1)f−11

with c ∈ Q((zd)), ci ∈ Q×, µi ∈ Q and fi ∈ 1 + zdQ[[zd]] for some d ∈ Z≥1.
We deduce from this factorization a filtration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M
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such that, for all i ∈ {0, ..., n − 1}, Mi+1/Mi
∼= Izµici

∼= Ici has rank one.
This proves (i).

By Jordan-Hölder theorem, if

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nm = M

is another filtartion of M such that, for all i ∈ {0, ...,m − 1}, Ni+1/Ni has

rank 1, and hence is isomorphic to Idi for some di ∈ Q×, then m = n
and there exists a permutation σ of {1, ..., n} such that Mσ(i)+1/Mσ(i)

∼=
Ni+1/Ni. Proposition 23 ensures that cσ(i) = di, whence (ii). �

Definition 25. The exponents at 0 of the D̂-module M are the non zero
complex numbers c1, ..., cn introduced in Theorem 24.

It will be convenient to introduce the notion of exponents for Mahler
operators.

Definition 26. The exponents at 0 of L ∈ D̂ are the exponents of the D̂-

module D̂/D̂L.

Note the following result.

Proposition 27. Let M be a D̂-module of rank n ≥ 1. Assume that

M ∼= D̂/D̂L for some L ∈ D̂ such that L = c(φp − αn) · · · (φp − α1) for

some c, α1, ..., αn ∈ K̂×. Then, the exponents of L and of M at 0 are
cld(α1), ..., cld(αn).

Proof. Indeed, the factorization L = c(φp − αn) · · · (φp − α1) induces a fil-
tration

{0} = M0 ⊂M1 ⊂ · · · ⊂Mn = M

of M such that, for all i ∈ {0, ..., n− 1}, Mi+1/Mi
∼= Iαi

∼= Icld(αi). �

4.3. Focus on the operators of order 2. We shall now collect some
results about the operators of order 2, which will be used later in the paper.
Consider an operator of order two

L = φ2p + aφp + b ∈ D̂ with a ∈ Q((z)) and b ∈ Q((z))×.

The proof of Lemma 18 shows that the first theta-slope µ1 of L is the unique
rational number such that

– (1 + p)µ1 ≥ vz(b),
– vz(a) + µ1 ≥ vz(b),
– either (1 + p)µ1 = vz(b) or vz(a) + µ1 = vz(b)

i.e.

µ1 = max

{
vz(b)

1 + p
, vz(b)− vz(a)

}
.

Let d1 ∈ Z≥1 be a denominator of µ1. Let c1 ∈ Q× be a root of the char-
acteristic polynomial of L associated to its first theta-slope µ1. Theorem 22
ensures that

(10) L = φ2p(f1)φp(f2)(φp − c2zµ2)f−12 (φp − c1zµ1)f−11

for some f1 ∈ 1 + zd1Q[[zd1 ]], c2 ∈ Q×, µ2 ∈ Q and f2 ∈ 1 + zd2Q[[zd2 ]]
(d2 ∈ Z≥1). Equating the terms of degree 0 in (10), we get

c1z
µ1c2z

µ2φ2p(f1)φp(f2)f
−1
1 f−12 = b.
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Therefore, c1c2 = cld(b), µ1 +µ2 = vz(b) (so d1 is also a denominator of µ2)
and f2 ∈ 1 + zd1Q[[zd1 ]].

The following result will be used later in this paper.

Proposition 28. Let f ∈ K̂ be such that L(f) = 0. Then f ∈ Q((zd′1pj ))

for some j ∈ Z, where d′1 = (p− 1)d1.

We will give the proof after the following two lemmas.

Lemma 29. We can decompose L as follows

(11) L = φ2p(g1)φp(g2)(φp − c2)g−12 (φp − c1)g−11

for some g1, g2 ∈ Q((zd′1)).

Proof. This follows from equation (10) by using the identity

φp − cizµi = φp(z
µi
p−1 )(φp − ci)(z

µi
p−1 )−1.

�

Lemma 30. Let f ∈ K̂ be such that (φp−c)(f) ∈ Q((zm)) for some m ∈ Z≥1
and c ∈ Q×. Then, there exists j ∈ Z such that f ∈ Q((zmpj )).

Proof. Let f =
∑

k∈Z fkz
k
n ∈ Q((zn)) be such that

(12) (φp − c)(f) =
∑
k∈pZ

(fk/p − cfk)zkn −
∑

k∈Z\pZ

cfkz
k
n ∈ Q((zm)).

Consider k ∈ Z such that p - k and k/n 6∈ 1
mp

ZZ. In particular, we have

p - k and k/n 6∈ 1
mZ. Equation (12) ensures that fk = 0. Moreover, we

have p | kp and kp/n 6∈ 1
mZ. Equation (12) ensures that fk − cfkp = 0 and,

hence, fkp = 0. Repeating this argument, we obtain that fkpj = 0 for all

integer j ≥ 0. So, we have proved that fk = 0 if k/n 6∈ 1
mp

ZZ, whence the
result. �

Proof of Proposition 28. Follows from the decomposition of L given by for-
mula (11) and Lemma 30. �

The following corollary will be essential for the algorithmic considerations
of section 6.

Corollary 31. Let us consider u, v ∈ K̂ such that L = (φp − v)(φp − u).

Then u, v ∈ Q((zd′1)).

Proof. Let c = cld(u) and α = vz(u), so that u ∈ czα(1+znQ[[zn]]) for some

n ∈ Z≥1. There exists f ∈ 1 + znQ[[zn]] such that y = ecz
α
p−1 f satisfies

(φp−u)(y) = 0 so z
α
p−1 f is a solution of L[ec]. It follows from Proposition 28

(applied to L[ec]) that z
α
p−1 f ∈ Q((zd′1pj )) for some j ∈ Z≥0. So α ∈ (p−1)

d′1p
j Z =

1
d1pj

Z and f ∈ Q((zd′1pj )). Therefore, u =
φp(y)
y ∈ Q((zd′1pj )).

Now, a straightforward calculation shows that the equality L = (φp −
v)(φp − u) holds true if and only if uv = b and u(φp(u) + a) = −b. So

u = −b
φp(u)+a

∈ Q (a, b, φp(u)) ⊂ Q (z, φp(u)). It follows that u ∈ Q((zd′1))

and v = b/u ∈ Q((zd′1)). �
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Note also the following result for further use.

Proposition 32. Let us consider u, v ∈ K̂ such that L = (φp − v)(φp − u).
Then, up to permutting u and v, we have cld(u) = c1 and cld(v) = c2 =
cld(b)/c1.

Proof. This a particular case of Proposition 27. �

5. The regular singular systems

5.1. Definition.

Definition 33. We say that the system φpY = AY with A ∈ GLn(K̂) is

regular singular at 0 if there exists F ∈ GLn(K̂) such that φp(F )A = A0F

for some A0 ∈ GLn(Q).

If A0 exists, then it is unique up to conjugation by an element of GLn(Q),
and its list of eigenvalues, counted with multiplicities, coincides with the list
of the exponents of φpY = AY at 0.

Proposition 34. If the z-adic valuations of the entries of A ∈ GLn(K̂)
are ≥ 0 and if A(0) ∈ GLn(Q), then φpY = AY is regular singular at 0.
Moreover, the exponents of φpY = AY are the eigenvalues of A(0).

Proof. We claim that there exists a unique F ∈ In + zd Mn(Q[[zd]]) such

that φp(F )A = A(0)F , where d ∈ Z≥1 is such that A =
∑

j≥0Ajz
j
d ∈

GLn(Q((zd))). Indeed, for any F =
∑

k≥0 Fkz
k ∈ In + zd Mn(Q[[zd]]), we

have φp(F )A =
∑

`≥0

(∑
j,k≥0

kp+j=`
FkAj

)
z`d, so φp(F )A = A(0)F if and only

if, for all ` ∈ Z≥0, ∑
j,k≥0

kp+j=`

FkAj = A(0)F`.

This equation is satisfied for ` = 0 and the coefficients F`, ` ≥ 1, are de-
termined inductively. Therefore, the system φpY = AY is regular singular,
and its exponents are the eigenvalues of A(0). �

5.2. Universal Picard-Vessiot ring and Galois group. Let (Xc)c∈Q×

and Y be indeterminates over K̂, and consider the quotient ring

U := K̂[(Xc)c∈Q× , Y ]/I

of the polynomial ring K̂[(Xc)c∈Q× , Y ] by its ideal I generated by {XcXd−
Xcd | c, d ∈ Q×} ∪ {X1 − 1}. Let ec (resp. `) be the image of Xc (resp. Y )
in U , so that

U = K̂[(ec)c∈Q× , `].

We endow U with its ring automorphism φ such that φ|K̂ = φp,

∀c ∈ C×, φ(ec) = cec and φ(`) = `+ 1.

Hence, (U , φ) is a difference ring extension of (K̂, φp).



22 JULIEN ROQUES

Theorem 35. The difference ring U is the universal Picard-Vessiot ring

for the regular singular Mahler systems over K̂ i.e.

– U is a simple difference ring extension of K̂;
– the ring of constants U φ of U is Q;

– every regular singular Mahler system with coefficients in K̂ has a fun-
damental matrix of solutions with entries in U ;

– no proper difference subring of U has the above three properties.

We shall first prove a series of lemmas.

Lemma 36. We let B = K̂[(ec)c∈Q× ] ⊂ U = B[`]. The following properties

hold :
(i) (ec)c∈Q× is a basis of the K̂-vector space B;

(ii) ` is transcendental over B.

Proof. The relations eced = ecd and e1 = 1 ensure thatB is generated as a K̂-

vector space by (ec)c∈Q× . Let (λc)c∈Q× ∈ K̂(Q×) be such that
∑

c∈Q× λcec =

0. This means that
∑

c∈Q× λcXc ∈ I. For all m ∈ Z, taking the image of

this relation by the evaluation morphism K̂[(Xc)c∈Q× , Y ] → Q defined by

Xc 7→ cm and Y 7→ Y , we get
∑

c∈Q× λcc
m = 0. It follows that, for all

c ∈ Q×, λc = 0 and hence (ec)c∈Q× is free over K̂. This proves (i).

The proof of claim (ii) is a generalization of that of claim (i). Let
a0, ..., an ∈ B (n ∈ N) be such that

∑n
k=0 ak`

k = 0. For all k ∈ {0, ..., n},
let (λk,c)c∈Q× ∈ K̂(Q×) be such that ak =

∑
c∈Q× λk,cec. We have∑n

k=0

(∑
c∈Q× λk,cXc

)
Y k ∈ I. For all m ∈ Z, taking the image of this rela-

tion by the evaluation morphism K̂[(Xc)c∈Q× , Y ]→ Q defined by Xc 7→ cm

and Y 7→ Y , we get
∑n

k=0

(∑
c∈Q× λk,cc

m
)
Y k = 0 and hence, for all

k ∈ {0, ..., n},
∑

c∈Q× λk,cc
m = 0. It follows that, for all k ∈ {0, ..., n}

and c ∈ Q×, λk,c = 0. This proves (ii). �

Lemma 37. Consider c ∈ Q× and λ ∈ K̂. If φ(λ) = cλ and c 6= 1, then
λ = 0.

Proof. Up to replacing z by zd, for a suitable integer d ≥ 1, we can assume
that λ =

∑
k≥N akz

k ∈ Q((z)). We have

φ(λ)− cλ = −c
∑

k≥N,p-k

akz
k +

∑
k≥N,p|k

(ak/p − cak)zk = 0.

So ak = 0 if p - k. Moreover, for k 6= 0, p | k, we have ak = c−1ak/p =

· · · = c−vp(k)ak/pvp(k) = 0, where vp denotes the p-adic valuation. Last,

a0 − ca0 = 0 and hence a0 = 0. �

Lemma 38. Consider c ∈ Q and λ ∈ K̂. If φ(λ) = λ+ c then c = 0.

Proof. Follows from the fact that the constant coefficient of φ(λ)−λ is 0. �
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Proof of Theorem 35. We shall first prove that U φ = Q. Let y =
∑n

k=0 ak`
k

(ak ∈ B) be a non zero element of U φ of minimal degree n in `. So, we have

(13) 0 = φ(y)− y =
n∑
k=0

φ(ak)(`+ 1)k −
n∑
k=0

ak`
k.

Identifying the coefficients of degree n in `, we obtain

φ(an)− an = 0.

Let (λn,c)c∈Q× ∈ K̂(Q×) be such that an =
∑

c∈Q× λn,cec. We have

φ(an)− an =
∑
c∈Q×

(φ(λn,c)c− λn,c)ec = 0

so φ(λn,c)c − λn,c = 0. According to lemma 37, we must have λn,c = 0 for

c 6= 1 and we have λn,1 ∈ Q. So an ∈ Q×. If n = 0, then we get y ∈ Q×,
as expected. We shall now prove that we necessarily have n = 0. Assume
at the contrary that n ≥ 1. Equating the coefficients of degree n− 1 in ` in
equation (13), we get

φ(an−1)− an−1 = −nan.

Let (λn−1,c)c∈Q× ∈ K̂(Q×) be such that an−1 =
∑

c∈Q× λn−1,cec. We have

φ(an−1)− an−1 =
∑
c∈Q×

(φ(λn−1,c)c− λn−1,c)ec = −nan = −nane1

so φ(λn−1,c)c − λn−1,c = 0 for c 6= 1 and φ(λn−1,1) − λn−1,1 = −nan. Ac-
cording to lemma 38, the last equation is impossible.

Note that φ induces a ring automorphism of B, so that (B,φ) is a dif-
ference ring (simply denoted by B). We shall now prove that B is a simple
difference ring. Let J be a non zero difference ideal ofB. Let b =

∑
c∈Q× λcec

((λc)c∈Q× ∈ K̂(Q×)) be a non zero element of J such that the cardinal of the

support of (λc)c∈Q× is minimal. Let c0 ∈ Q× be such that λc0 6= 0; up to re-

placing b by b/λc0 we can assume that λc0 = 1. Then, considering the cardi-
nal of the support of b−φ(b) ∈ J , we get 0 = b−φ(b) =

∑
c∈Q×(λc−φ(λc)c)ec.

Therefore, for all c ∈ Q×, λc− cφ(λc) = 0 so, according to lemma 37, λc = 0
for c 6= 1 and λ1 ∈ Q. It follows that b = λ1 ∈ U × and hence J = B.

We shall now prove that U is a simple difference ring. Let J be a non
zero difference ideal of U . Let n be the minimal degree in ` of the non
zero elements of J . The set E made of the coefficients of `n in the elements
of J of degree ≤ n in ` is a non zero difference ideal of B. Therefore,
E = B. So, there exists a non zero element y = `n +

∑n−1
k=0 ak`

k ∈ U = B[`]
(ak ∈ B) of degree n in `, which is unitary in `. Considering the degree in `
of φ(y)− y ∈ J , we get φ(y)− y = 0 i.e. y ∈ U φ = Q. As y 6= 0, we deduce
that J = U , as expected.

In order to prove that any regular singular difference system φpY = AY

over K̂ has a fundamental matrix of solutions with entries in U , it is clearly
sufficient to consider the case that A ∈ GLn(Q). Using Dunford decomposi-
tion, we are reduced to the cases n = 1 or A unipotent of maximal unipotent
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index. Here are explicit constructions of fundamental systems of solutions
in these two cases :

– for c ∈ Q×, ec is a fundamental solution in U of φpy = cy;

– for A = U ∈ GLn(Q) unipotent,

eA := exp(` log(U)) =
n∑
k=0

(
`

k

)
(U − In)k,

where In ∈ GLn(Q) is the identity matrix, is a fundamental matrix of
solutions in U of φpY = UY .

The minimality property of U is easy to deduce from what precedes, and
the details are left to the reader. �

We shall now describe the corresponding universal difference Galois group

G := {σ ∈ Aut(U /K̂) | φ ◦ σ = σ ◦ φ}.
We have φ(σ(ec)) = σ(φ(ec)) = σ(cec) = cσ(ec). It follows that there

exists h(c) ∈ Q× such that σ(ec) = h(c)ec. Since, σ(ecd) = σ(ec)σ(ed) =
h(c)ech(d)ed = h(c)h(d)ecd, we have h(cd) = h(c)h(d). In other words,

h = Q× → Q× is a group morphism. Moreover, φ(σ(`)) = σ(φ(`)) =
σ(`+ 1) = σ(`) + 1. It follows that σ(`) = `+ a, for some a ∈ Q.

It follows clearly that G is made of the K̂-algebra morphism σ : K̂→ K̂
such that

∀c ∈ Q×, σ(ec) = h(c)ec and σ(`) = `+ a

for some group morphism h = Q× → Q× and some a ∈ Q.

6. Difference Galois groups of the Mahler equations of order
two : algorithmic aspects

Consider the Mahler equation

(14) φ2p(y) + aφp(y) + by = 0 with a ∈ Q(z) and b ∈ Q(z)×

and denote by

φpY = AY with A =

(
0 1
−b −a

)
∈ GL2(Q(z))

the associated Mahler system.

Remark 39. We consider Mahler equations with coefficients in Q(z) (in-
stead of K) in order to avoid heavy notations. What follows can be easily
extended to equations with coefficients in K.

We let G ⊂ GL2(Q) be the difference Galois group over (K, φp) of equa-
tion (14). According to Proposition 15, G is an algebraic subgroup of
GL2(Q) such that the quotient G/G◦ of G by its identity component G◦

is cyclic. A direct inspection of the classification, up to conjugation, of the
algebraic subgroups of GL2(Q) given in [NvdPT08, Theorem 4] shows that
G satisfies one of the following properties :

– The group G is reducible (i.e. conjugate to some subgroup of the group
of upper-triangular matrices in GL2(Q)). If G is reducible, we distin-
guish the following sub-cases :
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– The group G is completely reducible (i.e. is conjugate to some
subgroup of the group of diagonal matrices in GL2(Q)).

– The group G is not completely reducible.
– The group G is irreducible (i.e. not reducible) and imprimitive (see §7

for the definition).
– The group G is irreducible and is not imprimitive, and, in this case,

there exists an algebraic subgroup µ of Q× such that G = µSL2(Q).
Therefore, G = {M ∈ GL2(Q) | det(M) ∈ H} where H = det(G) ⊂
Q×. In order to determine H, one can use the fact that H = det(G)
is the difference Galois group of φpy = (detA)y = by (this follows for
instance from tannakian duality).

Our first task, undertaken in the present section, is to study the reducibil-
ity of G. The imprimitivity of G will be considered in §7.

6.1. Riccati equation and irreducibility. A straightforward calculation
shows that, for u ∈ K, φp − u is a right factor of φ2p + aφp + b if and only if

(15) u(φp(u) + a) = −b.
This non linear difference equation is called the Riccati equation associated
to equation (14).

Lemma 40. The following statements hold:

(1) If (15) has one and only one solution in K then G is reducible but
not completely reducible.

(2) If (15) has exactly two solutions in K then G is completely reducible

but not an algebraic subgroup of Q×I2.

(3) If (15) has at least three solutions in K then it has infinitely many

solutions in K and G is an algebraic subgroup of Q×I2.

(4) If none of the previous cases occurs then G is irreducible.

Proof. The proof of this lemma is identical to that of [Hen98, Theorem 4.2].
However, we give a sketch of proof here because some details will be used
later in this paper.

(1) We assume that (15) has one and only one solution u ∈ K. A straight-
forward calculation shows that

φp(T )AT−1 =

(
u ∗
0 b/u

)
for T :=

(
1− u 1
−u 1

)
∈ GL2(K).

We deduce from this and from Proposition 15 that G is reducible.
Moreover, if G was completely reducible then, according to Proposi-

tion 15, φp(T )AT−1 would be diagonal for some T := (ti,j)1≤i,j≤2 ∈ GL2(K).
Equating the entries of the antidiagonal of φp(T )AT−1 with 0, we find that
− t21
t22
,− t11

t12
∈ K are solutions of the Riccati equation (15). Since det(T ) 6= 0,

these solutions are distincts, whence a contradiction.
(2) Assume that (15) has exactly two solutions u1, u2 ∈ K. We have

φp(T )AT−1 =

(
u1 0
0 u2

)
for T :=

1

u1 − u2

(
−u2 1
−u1 1

)
∈ GL2(K).

We deduce from this and from Proposition 15 that G is completely reducible.
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Moreover, if G was an algebraic subgroup of Q×I2 then, according to
Proposition 15, there would exist u ∈ K and T = (ti,j)1≤i,j≤2 ∈ GL2(K)
such that

φp(T )AT−1 = uI2.

This equality implies that t21 and t22 are non zero and that, for all c, d ∈ Q
with ct2,2 + dt1,2 6= 0,

−ct21 + dt11
ct22 + dt12

∈ K

is solution of (15). It is easily seen that we get in this way infinitely many
solutions of Riccati equation, this is a contradiction.

(3) Assume that (15) has at least three solutions u1, u2, u3 ∈ K. The proof
of assertion (2) of the present lemma shows that φpY = AY is isomorphic

over K to φpY =

(
ui 0
0 uj

)
Y for all 1 ≤ i < j ≤ 3. Therefore, there exists

T ∈ GL2(K) such that

φp(T )

(
u1 0
0 u2

)
=

(
u1 0
0 u3

)
T.

Equating the second columns in this equality, we see that there exists

f ∈ K× such that either u1 =
φpf
f u2 or u3 =

φpf
f u2; up to renumbering,

one can assume that the former case holds true. It follows that φpY = AY
is isomorphic over K to

φpY = (u1I2)Y

and, according to Proposition 15, G is an algebraic subgroup of Q×I2. We
have shown during the proof of statement (2) that this implies that Riccati
equation (15) has infinitely many solutions in K.

(4) Assume that G is reducible. According to Proposition 15, there exists
T = (ti,j)1≤i,j≤2 ∈ GL2(K) such that φp(T )AT−1 is upper triangular. Then
t22 6= 0 and − t21

t22
∈ K is a solution of Riccati equation (15). This proves

claim (4). �

6.2. Irreducibility over K : an algorithm. We know that G is reducible
if and only if the Riccati equation

(16) u(φp(u) + a) = −b
has a solution in K. We shall now describe an algorithm that decides
whether or not equation (16) has a solution in K.

Let u ∈ K be an hypothetic solution of equation (16).
Thanks to Corollary 31, we can find an explicit N ∈ Z≥1 such that u ∈

K ∩Q((zN )) = Q(zN ).

Let c ∈ Q× and let n, d be coprime non zero monic elements of Q[zN ]
such that u = cn/d. Let r be the greatest common divisor 4 of φ−1p (n) and

d in Q[zNp] and consider the coprime monic elements of Q[zNp] given by
s = n/φp(r) and t = d/r. Then, we have

u = c
φp(r)

r

s

t

4. By “greatest common divisor”, we mean the “monic greatest common divisor”.
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with gcd(s, φp(t)) = gcd(φp(r)s, rt) = 1.
According to Proposition 32, we have c = cld(u) ∈ {c1, cld(b)/c1} where

c1 is a root of the characteristic polynomial associated to the first theta-slope
of L.

Let k be a number field such that a, b ∈ k(z). Let p1, p2, p3 ∈ k[z] be such
that

a =
p1
p3

and b =
p2
p3
.

Then, the Riccati equation (15) becomes

p3c
φpr

r

s

t
φp

(
c
φpr

r

s

t

)
+ p1c

φpr

r

s

t
= −p2,

i.e.

(17) c2p3φ
2
p(r)sφp(s) + cp1φp(r)sφp(t) = −p2rtφp(t).

Let l1 be the field obtained from k by adjoining the splitting fields of p2 and
φ−1p (p3) seen as elements of k[zNp]. Equation (17) shows that s and t are

divisors in l1[zNp] of p2 and φ−1p (p3) respectively.
So far, c, s and t are fixed (among finitely many possible cases) and it

remains to decide whether or not equation (17) has a solution r ∈ Q[zNp].
But, this is a linear Mahler equation in r, which can be interpreted as a
system of linear equations with coefficients in l = l1(c), whose unknown are
the coefficients of r. Note that this implies that, if there is a solution r in
Q[zNp], then there is also a solution in l[zNp] and hence the Riccati equation
has a solution in l(zN ). In order to determine whether of not such a r exists,
it remains to have a bound on the degree of the potential solutions r of (17)
(i.e. a bound on the number of unknown of the system of linear equations
we are interested in). Rewriting equation (17) as follows

c2 = −cp1φp(r)sφp(t) + p2rtφp(t)

p3φ2p(r)sφp(s)
,

and taking degrees, we get

0 ≤ max{d1 + p deg r, d2 + deg r} − (d3 + p2 deg r)

where d1 = deg p1 + deg s + p deg t, d2 = deg p2 + (p + 1) deg t and d3 =
deg p3 + (p+ 1) deg s. We deduce from this an explicit constant C such that
deg r ≤ C.

If we are able to compute l, then what precedes gives an algorithm to
decide whether of not the Riccati equation has a solution in K, and to
compute such a solution if there is one.

We shall now prove that it is actually sufficient to work (at worst) in the
quadratic extensions of k contained in l.

Lemma 41. If the Riccati equation (16) has a solution in K, then it has a
solution in l′(zN ) for some extension l′ of k of degree at most 2 contained
in l.

Proof. This proof is a straightforward modification of the proof of [Hen98,
Theorem 4.2]. We have seen above that, if the Riccati equation (16) has a
solution in K, then it has a solution in l(zN ). We distinguish three cases.
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(a) Assume that the Riccati equation (15) has a unique solution u in
l(zN ). For any σ ∈ Gal(l(zN )/k(zN )), σ(u) ∈ l(zN ) is a solution of (15), so
σ(u) = u. Since l(zN ) is a Galois extension of k(zN ), we get u ∈ k(zN ).

(b) Assume that the Riccati equation (15) has exactly two solutions u, v
in l(zN ). The kernel H of the natural group morphism Gal(l(zN )/k(zN ))→
S({u, v}), with values in the group of permutations S({u, v}) of {u, v}, has
index ≤ 2 in Gal(l(zN )/k(zN )). Since u and v are fixed by H, they belong
to l′(zN ) for some extension l′ of k of degree 2 contained in l.

(c) Assume that the Riccati equation (15) has at least three solutions
in l(zN ). The proof of assertion (3) of Lemma 40 shows that there ex-
ist T = (ti,j)1≤i,j≤2 ∈ GL2(l(zN )) and some solution u ∈ l(zN ) of the Riccati
equation (15) such that

(18) φp(T )AT−1 = uI2.

For any σ ∈ Gal(l(zN )/k(zN )), we have

φp(σ(T ))Aσ(T )−1 = σ(u)I2.

Therefore, we have

φp(S)u = σ(u)S, with S := σ(T )T−1 ∈ GL2(l(zN )).

It follows that there exists gσ ∈ l(zN )× (namely, one of the non zero entries
of S) such that

σ(u) =
φp(gσ)

gσ
u.

Note that gσ is uniquely determined by this equation if we require that it is
monic, as we shall now assume. Then, the map σ 7→ gσ is a 1 cocycle for the
action of Gal(l(zN )/k(zN )) over l(zN ). Hilbert’s 90 Theorem [Ser68, § 10.1]
ensures that there existsm ∈ l(zN )× such that, for all σ ∈ Gal(l(zN )/k(zN )),

gσ =
m

σ(m)
.

A straightforward calculation shows that

ũ :=
φp(m)

m
u

is invariant under the action of Gal(l(zN )/k(zN )) and hence belongs to
k(zN )×. Moreover, we have

φp
(
T ′
)
A
(
T ′
)−1

= ũI2, with T ′ := mT.

Applying σ ∈ Gal(l(zN )/k(zN )) to this equality, we get

φp
(
σ(T ′)

)
A
(
σ(T ′)

)−1
= ũI2.

It follows that
Cσ := T ′σ

(
T ′−1

)
∈ GL2(l(zN ))

satisfies φp(Cσ) = Cσ and hence that its entries belong to l. Identifying
Gal(l(zN )/k(zN )) with Gal(l/k), we can see σ 7→ Cσ has a 1-cocyle for the
natural action of Gal(l/k) on GL2(l). Since l is a Galois extension of k,
Hilbert’s 90 Theorem [Ser68, § 10.1] ensures that this cocycle is trivial i.e.
that there exists C ∈ GL2(l) such that, for all σ ∈ Gal(l(zN )/k(zN )), Cσ =
Cσ(C−1). Then, T ′′ = C−1T ′, which is a priori an element of GL2(l(zN )), is
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invariant by the action of Gal(l(zN )/k(zN )) and hence has entries in k(zN ).
Note that

φp
(
T ′′
)
A
(
T ′′
)−1

= ũI2

It follows that u1 :=
−t′′11
t′′12

and v1 :=
−t′′21
t′′22

are solutions in k(zN ) of the Riccati

equation (15) (this was already used in the proof of assertion (2) of Lemma
40). Since detT ′′ 6= 0, we get that u1 and v1 are distinct solutions in k(zN )
of the Riccati equation (15). �

It is explained in [Hen97, After Theorem 14] how to find the (finitely
many) extensions of k of degree at most 2 and contained in l. Now, for any
such extension l′, a straightforward modification of the foregoing discussion
gives an algorithm to determine whether or not the Riccati equation (16)
has a solution in l′(zN ). Whence an algorithm to determine whether or not
the Riccati equation (16) has a solution in K.

7. Imprimitivity of the difference Galois group

We want to determine whether G is imprimitive, that is whether G is
conjugate to a subgroup of{(

α 0
0 β

)
| α, β ∈ Q×

}⋃{(
0 γ
δ 0

)
| γ, δ ∈ Q×

}
.

Theorem 42. Assume that G is irreducible and that a 6= 0. Then, G is
imprimitive if and only if there exists u ∈ K such that

(19)

(
φ2p(u) +

(
φ2p

(
b

a

)
− φp(a) +

φp(b)

a

))
u = −φp(b)b

a2
.

Proof. Same proof as [Hen98, Theorem 4.6]. �

Remark 43. If a = 0 then G is imprimitive in virtue of Proposition 15.

Note that the equation (19) is a Riccati-type equation, with respect to
φ2p = φp2 instead of φp. Therefore, using section 6.2, one can determine
algorithmically whether or not the equation (19) has a solution in K.

8. A connectedness criterion

Consider a Mahler equation

(20) anφ
n
p (y) + · · ·+ a1φp(y) + a0y = 0,

with a0, ..., an ∈ Q(z). We denote by

L = anφ
n
p + · · ·+ a1φp + a0

the corresponding Mahler operator.
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8.1. Over K̂ and K. We let R̂ be a Picard-Vessiot ring for L over K̂ and

R ⊂ R̂ be a Picard-Vessiot ring for L over K (see §2.2). We denote by Ĝ and

G the corresponding difference Galois groups, and we see Ĝ as a subgroup of
G (see §2.2). The following result is inspired by Gabber and Katz’s [Kat87,
Proposition 1.2.5] and van der Put and Singer’s [vdPS97, Proposition 12.1].

Proposition 44. The morphism Ĝ/(Ĝ)◦ → G/G◦ induced by the natural

inclusion Ĝ ⊂ G is surjective.

Proof. Let H be the subgroup of G generated, as an abstract group, by G◦

and Ĝ. Note that H has finite index in G (because G◦ ⊂ H ⊂ G) and
hence is an algebraic subgroup of G. We have to prove that H = G. By
Galois correspondence, it is equivalent to prove that RH = K. We have

RH ⊂ R̂H ⊂ R̂Ĝ = K̂. Moreover RH ⊂ RG
◦

and, according to [vdPS97,

Corollary 1.31], RG
◦

is a finite dimension vector space over K. So RH ⊂ K̂
is a finite field extension of K, endowed with an endomorphism ϕ such that
ϕ|K = φp. Proposition 15 ensures that RH = K. �

Corollary 45. If Ĝ is connected then G is connected.

Corollary 46. Let c1, ..., cn be the exponents of L at 0. If the algebraic group
generated by diag(c1, ..., cn) in GLn(Q) is connected then G is connected.

Proof. Up to renumbering the ci, there exist g1, ..., gn ∈ K̂ such that, for all
i ∈ {1, ..., n}, cld(gi) = ci and

L = (φp − gn) · · · (φp − g1).
Let Tn (resp. Dn) be the group of upper-triangular (resp. diagonal) matrices

in GLn(Q). The above factorization of L allows us to see Ĝ as a subgroup

of Tn such that the image Ĝ′ of the morphism

Ĝ → Dn

(ai,j)1≤i,j≤n 7→ diag(a1,1, . . . , an,n)

is the Galois group over K̂ of φpY = diag(g1, . . . , gn)Y (follows from tan-

nakian duality for instance). The connectedness of Ĝ is equivalent to that of

Ĝ′. But Ĝ′ is the intersection of the kernels of the characters χ : Dn → Q×

which are trivial on Ĝ′. By tannakian duality, a character χ : Dn → Q×,
given by χ(diag(x1, . . . , xn)) = xm1

1 · · ·xmnn for some m1, . . . ,mn ∈ Z, is

trivial on Ĝ′ if and only if gm1
1 · · · gmnn = u/φp(u) for some u ∈ K̂. This

is equivalent to cm1
1 · · · c

mn
2 = 1. So, Ĝ′ is the algebraic subgroup of Dn

generated by diag(c1, ..., cn), which is connected. Therefore Ĝ is connected
and the result follows from Corollary 45. �

8.2. Over K̂p∞ and Kp∞. We shall now give results analogous to those

stated in section 8.1 but with K̂ replaced by K̂p∞ and K replaced by Kp∞

(these difference fileds are defined at the end of section 3).

We let R̂ be a Picard-Vessiot ring for L over K̂p∞ and R ⊂ R̂ be a

Picard-Vessiot ring for L over Kp∞ (see §2.2). We denote by Ĝ and G the

corresponding difference Galois groups, and we see Ĝ as a subgroup of G
(see §2.2).
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Proposition 47. The morphism Ĝ/(Ĝ)◦ → G/G◦ induced by the natural

inclusion Ĝ ⊂ G is surjective.

Proof. Same proof as Proposition 44, using Proposition 17 instead of Propo-
sition 15 at the end of the proof. �

Corollary 48. If Ĝ is connected then G is connected.

Corollary 49. Assume that there exist g1, ..., gn ∈ K̂p∞ such that

L = (φp − gn) · · · (φp − g1).

Let I = {(m1, ...,mn) ∈ Zn | gm1
1 · · · gmnn = u/φp(u) for some u ∈ K̂p∞}.

Assume that {(x1, ..., xn) ∈ (Q×)n | xm1
1 · · ·xmnn = 1} is connected. Then,

G is connected.

Proof. Similar to the proof of Proposition 46. �

9. Examples : the Baum-Sweet and the Rudin-Shapior sequences

9.1. The Baum-Sweet sequence. The Baum-Sweet sequence (an)n≥0 is
the automatic sequence defined by an = 1 if the binary representation of n
contains no block of consecutive 0 of odd length, and an = 0 otherwise. It
is characterized by the following recursive equations :

a0 = 1, a2n+1 = an, a4n = an, a4n+2 = 0.

Let g(z) =
∑

n≥0 anz
n be the corresponding generating series. The above

recursive equations show that Y (z) =

(
g(z)
g(z2)

)
satisfies

(21) φ2Y = AY where A =

(
0 1
1 −z

)
and, hence,

(22) φ4Y = BY where B = φ2 (A)A =

(
1 −z2
−z 1 + z3

)
.

We let G be the Galois group of (21) over K. We let G′ (resp. H) be the
Galois group of (21) (resp. (22)) over K2∞ (resp. K4∞).

Theorem 50. We have H = SL2(Q) and G = G′ = µ4 SL2(Q), where
µ4 ⊂ Q× is the group of 4th roots of the unity.

This theorem will follow from a series of simple lemmas.

Lemma 51. The Galois group H is connected.

Proof. We have B(0) = I2. So, the system (22) is equivalent to φ4Y = Y

over K̂4∞ , and, hence, its Galois group over K̂4∞ is trivial. Corollary 48
yields the desired result. �

Lemma 52. The system (22) is equivalent to the following equation

(23) φ24 − (z9 + z6 + 1)φ4 + z6.
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Proof. We have

B−1 =

(
1 + z3 z2

z 1

)
.

The vectors

e :=

(
0
1

)
and ΦB(e) = B−1φ4(e) =

(
z2

1

)
form a K4∞-basis of (K4∞)2 so that e is a cyclic vector for the system (22).
Moreover, we have

Φ2
B(e) = B−1φ4

(
z2

1

)
=

(
z11 + z8 + z2

z9 + 1

)
= (z9 + z6 + 1)ΦB(e)− z6e.

�

Lemma 53. The Galois group H is irreducible.

Proof. This amounts to show that the operator (23) is irreducible over K4∞ ,
that is that the Riccati equation

(24) u(φ4(u)− (z9 + z6 + 1)) = −z6

does not have any solution u ∈ K4∞ . Assume at the contrary that is has

a solution u ∈ K4∞ . We have u ∈ Q(z), because u = −z6
φ4(u)−(z9+z6+1)

∈
Q(z, φ4(u)). Let s, t be coprime elements of Q[z] such that u = s/t. We
have

s(z)

t(z)

(
s(z4)− (z9 + z6 + 1)t(z4)

t(z4)

)
= −z6.

Using the fact that s is coprime to t, we see that

s(z)

t(z4)
∈ Q[z] and

s(z4)− (z9 + z6 + 1)t(z4)

t(z)
∈ Q[z].

Since their product is a monomial, these polynomials are monomials. More-
over, it is easily seen that they cannot both vanish at 0 so one of the following
properties holds

(i) either s(z)
t(z4)

= cz6 and s(z4)−(z9+z6+1)t(z4)
t(z) = c′;

(ii) or s(z)
t(z4)

= c and s(z4)−(z9+z6+1)t(z4)
t(z) = c′z6

for some constants c, c′ ∈ Q×.
If (i) holds then

s(z) = cz6t(z4) and s(z4) = (z9 + z6 + 1)t(z4) + c′t(z).

So

1 =
(z9 + z6 + 1)t(z4) + c′t(z)

s(z4)
=

(z9 + z6 + 1)t(z4) + c′t(z)

cz24t(z16)
.

Letting z →∞, we get 1 = 0.
If (ii) holds then

s(z) = ct(z4) and s(z4) = (z9 + z6 + 1)t(z4) + c′z6t(z).

So,

(25) ct(z16) = (z9 + z6 + 1)t(z4) + c′z6t(z).

But deg
(
(z9 + z6 + 1)t(z4)

)
= 9+4 deg t(z) and deg(z6t(z)) = 6+deg t(z) so

the degree of the right hand side of (29) is equal to 9 + 4 deg t(z). Moreover,
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the degree of the left hand side of (29) is equal to 16 deg t(z). So, we obtain
the equality 9 + 4 deg t(z) = 16 deg t(z), which is impossible.

In any case we get a contradiction. �

Proof of Theorem 50. The fact that H is connected and irreducible implies
that H contains SL2(Q). Moreover, we have H ⊂ SL2(Q) because detB = 1.
So H = SL2(Q). Theorem 12 ensures that the Galois group over K4∞ of
equation (21) contains SL2(Q). Theorem 7 implies that G′ contains SL2(Q).
But detA = −1, so G′ = {M ∈ GL2(Q) | detM = ±1} = µ4 SL2(Q). Using
Theorem 7, we see that G = µ4 SL2(Q). �

9.2. The Rudin-Shapiro sequence. The Rudin-Shapiro sequence
(an)n≥0 is the automatic sequence defined by an = (−1)bn where bn is the
number of pairs of consecutive 1 in the binary representation of n. It is the
characterized by the following recurrence relations :

a0 = 1, a2n = an, a2n+1 = (−1)nan.

We let f(z) =
∑

n≥0 anz
n be the corresponding generating function. We

set f1(z) = f(z) and f2(z) = f(−z). The recursive equations above show
that the vector

Y (z) =

(
f1(z)
f2(z)

)
satisfies the following Mahler system :

(26) φ2Y = AY where A =
1

2

(
1 1
1
z −1

z

)
.

We let G (resp. H) be the Galois group of (26) over K (resp. over K2∞).

Theorem 54. We have G = H = GL2(Q).

This theorem will follow from a series of simple lemmas.

Lemma 55. The system (26) is equivalent to the following equation

(27) φ22 − (1− z)φ2 − 2z.

Proof. We have

A−1 =

(
1 z
1 −z

)
.

The vectors

e :=

(
1
0

)
and ΦA(e) = A−1φ2(e) =

(
1
1

)
form a K2∞-basis of (K2∞)2 so that e is a cyclic vector for (26). Moreover,
we have

Φ2
A(e) = A−1φ2

(
1
1

)
=

(
1 + z
1− z

)
= (1− z)ΦA(e) + 2ze.

�

Lemma 56. The Galois group H is irreducible.
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Proof. This amounts to show that the operator (27) is irreducible over K2∞ ,
that is that the Riccati equation

(28) u(φ2(u)− (1− z)) = −2z

does not have any solution u ∈ K2∞ . Assume at the contrary that it has a so-
lution u ∈ K2∞ . We have u ∈ Q(z), because u = −2z

φ2(u)−(1−z) ∈ Q(z, φ2(u)).

Let s, t be coprime elements of Q[z] such that u = s/t. We have

s(z)

t(z)

(
s(z2)− (1− z)t(z2)

t(z2)

)
= −2z.

Using the fact that s is coprime to t, we see that

s(z)

t(z2)
∈ Q[z] and

s(z2)− (1− z)t(z2)
t(z)

∈ Q[z].

Since their product is a monomial, these polynomials are monomials. So,
one of the following properties holds

(i) either s(z)
t(z2)

= cz and s(z2)−(1−z)t(z2)
t(z) = c′;

(ii) or s(z)
t(z2)

= c and s(z2)−(1−z)t(z2)
t(z) = c′z

for some constants c, c′ ∈ Q×.
If (i) holds then

s(z) = czt(z2) and s(z2) = (1− z)t(z2) + c′t(z).

So

1 =
(1− z)t(z2) + c′t(z)

s(z2)
=

(1− z)t(z2) + c′t(z)

cz2t(z4)
.

Letting z →∞, we get 1 = 0.
If (ii) holds then

s(z) = ct(z2) and s(z2) = (1− z)t(z2) + c′zt(z).

So,

(29) ct(z4) = (1− z)t(z2) + c′zt(z).

Let us first assume that deg t(z) > 0. We have deg
(
(1− z)t(z2)

)
= 1 +

2 deg t(z) and deg(zt(z)) = 1 + deg t(z) so the degree of the right hand side
of (29) is equal to 1 + 2 deg t(z). Moreover, the degree of the left hand side
of (29) is equal to 4 deg t(z). So, we obtain the equality 1 + 2 deg t(z) =
4 deg t(z), which is impossible. It remains to consider the case that t(z) =

t ∈ Q× and hence s(z) = s ∈ Q×. The second equation in (ii) above entails

that s = t. So s(z)
t(z2)

= 1 and s(z2)−(1−z)t(z2)
t(z) = z so

s(z)

t(z2)

(
s(z2)− (1− z)t(z2)

t(z)

)
= z,

which is a contradiction.
In any case, we get a contradiction. �

Lemma 57. The Galois group G is connected.
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Proof. The first theta-slope is 1 and we have

L[θ1] = z3φ22 − (1− z)zφ2 − 2z.

So

L = (φ2 − a)(φ2 − b) = φ22 − (a+ φ2(b))φ2 + ab

with b ∈ −2z(1 + zQ[[z]]). Since ab = −2z, we get a ∈ 1 + zQ[[z]].
Using Corollary 49, we get that G is connected. �

Proof of Theorem 54. The fact that H is connected and irreducible implies
that H contains SL2(Q). Moreover, detA = −2z, so the Galois group of

φ2y = (detA)y is Q×. It follows that H = GL2(Q). Using Theorem 7, we
get G = GL2(Q). �

9.3. Galois group of Baum-Sweet ⊕ Rudin-Schapiro. Let N1 (resp.
N2) be the difference module over K corresponding to the Baum-Sweet
equation (21) (resp. to the Rudin-Schapiro equation (26)). We use the
notations of section 2.5 for these specific N1 and N2. We have seen that
the difference Galois group G1 (resp. G2) of N1 (resp. N2) over K is
µ4 SL(ω(N1)) (resp. GL(ω(N2))). Let G ⊂ G1×G2 be the difference Galois
group of N1⊕N2 over K. The Baum-Sweet equation (21) is regular singular
at 0, and its exponents at 0 are the eigenvalues of(

0 1
1 0

)
i.e. ±1. On the other hand, we have seen during the proof of Lemma 57 that
the exponents at 0 of the Rudin-Shapiro equation (26) are 1 and −2. Let N
be a difference module of rank one over K, and denote by c its exponent at
0. Then, the exponents of N ⊗N2 are c,−2c, and the exponents of N ⊗N∨2
are c,−c/2. So neither N ⊗N2, nor N ⊗N∨2 has the same exponents at 0
than N1. Therefore, N1 is neither isomorphic to N ⊗ N2, nor to N ⊗ N∨2 .
Proposition 14 ensures that

G = {(σ1, σ2) ∈ GL(ω(N1))×GL(ω(N2)) | (detσ1,detσ2) ∈ H},

where H is the Galois group of detM1 ⊕ detM2. But detM1 corresponds
to the equation φ2y = −1 and detM2 to φ2y = −2z. Therefore, the Galois

group of detM1 ⊕ detM2 is µ2 ×Q×. So,

G = µ4 SL(ω(N1))×GL(ω(N2)).
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tions de l’Université de Nancago, No. VIII.

[vdPS97] M. van der Put and M. F. Singer. Galois theory of difference equations, volume
1666 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.
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