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Abstract. — We introduce and give numerical characterizations of two no-
tions of rigidity for a class of regular singular q-difference equations. A special
attention is devoted to the generalized q-hypergeometric equations : we show
their rigidity and we proceed with a detailed “monodromic” study of these
equations.
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In this paper, q is a complex number such that 0 < |q| < 1.

1. Introduction - Organization of the paper

1.1. Introduction. — There is a Riemann-Hilbert equivalence, due to G.
D. Birkhoff [2], between the category E of regular singular q-difference systems
and a category C of “connection data” (see section 3). In this equivalence, a
n× n regular singular q-difference system

Y (qz) = A(z)Y (z), A ∈ GLn(C(z))

corresponds to some triple

CA = (A(0),M,A(∞)) ∈ GLn(C)×GLn(M(C∗))×GLn(C)

such that M(qz)A(0) = A(∞)M(z) where M denotes the sheaf over P1
C of

meromorphic functions (this is not exactly Birkhoff’s original equivalence, but
a modified version introduced by J. Sauloy in [14]).

In the present paper, we introduce and study two notions of rigidity based on
the residues of the Birkhoff matrices M appearing in the above equivalence.
The systematic use of residues is partially motivated by our work in [12].
Note that the notion of residue is fundamental for the Galoisian use of the
q-analogue of Stokes’ phenomenon by J.-P. Ramis and J. Sauloy in [10, 11].

Actually, we will not work in the whole category C but in its full subcate-
gory Cc of “completely regular singular connection data” made of the triples
(A(0),M,A(∞)) such that M has at most simple poles on C∗. Recall that the
usual notion of “regular singular” for q-difference systems is based only on
singularities at 0 and ∞, letting aside intermediate singularities; here, we also
pay attention to these intermediate singularities.

We first introduce two notions of local isomorphy for the objects of Cc. We
shall only give here the heuristic ideas and we refer to section 4 for the formal
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definitions. We classically think about CA as the gluing of the local data A(0)

and A(∞) via a “global connection data” namely Birkhoff matrix M ; here, we
extract from Birkhoff matrix itself local data (the places of localisation “live”
on the complex torus C∗/qZ). The first notion, referred to as local isomorphy,

relies on the idea that CA is the gluing of A(0) viewed as a local data at 0,
A(∞) viewed as a local data at ∞ and, for all i ∈ {1, ...,m}, RessiM viewed

as a “local connection data” from A(0) to A(∞) where we have denoted by
s1, ..., sm the poles of M on some fundamental domain of C∗ with respect to
the action by multiplication of qZ ((qk, z) 7→ qkz). The second notion, referred
to as weak local isomorphy, is similar except that we consider the residues
RessiM independently of A(0) and A(∞).

The corresponding notions of rigidity for the objects of Cc are the following :
an object C of Cc is rigid (resp. strongly rigid) if and only if any object C ′

of Cc locally isomorphic (resp. weakly locally isomorphic) to C is actually
isomorphic to C.

In sections 5.4 and 5.5, we give numerical characterizations of these notions
of rigidity under the hypothesis that qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅. In what
follows, we denote, for all A ∈ Mn(C), by z(A) the centralizer of A in Mn(C)
and, for all R ∈ Mn(C), by g(R) and h(R) the complex Lie sub-algebras of
Mn(C)×Mn(C) defined by

g(R) = {(X,Y ) ∈ z(A(0))× z(A(∞)) | Y R = RX}
and

h(R) = {(X,Y ) ∈ Mn(C)×Mn(C) | Y R = RX}.
Moreover, an object (A(0),M,A(∞)) of Cc is said to be normalized if the eigen-

values of both A(0) and A(∞) belong to {c ∈ C∗ | |q| ≤ |c| < 1}.

Theorem (Numerical characterization of rigidity; Theorem 28)

Let C = (A(0),M,A(∞)) be a normalized irreducible object of Cc of size n

such that qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅. Let s1, ..., sm be the poles of M on
some fundamental domain of C∗ with respect to the action by multiplication
of qZ and set, for all i ∈ {1, ...,m}, RessiM = Ri. Then :

i)
∑m

i=1 dim g(Ri) ≤ (m− 1)(dim z(A(0)) + dim z(A(∞))) + 1;
ii) C is rigid if and only if the inequality in i) is an equality.

Theorem (Numerical characterization of strong rigidity; Theorem
29)

We use the same notations and hypotheses as above. Then :
i)
∑m

i=1 dim h(Ri) ≤ 2mn2 − (dim z(A(0)) + dim z(A(∞))) + 1;
ii) C is strongly rigid if and only if the inequality in i) is an equality.

In section 6.2, a special attention is devoted to the generalized q-
hypergeometric equations. We prove the following results concerning the
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rigidity and the “monodromic” description of the generalized q-hypergeometric
equations. In what follows, we will say that an object C of C “comes from”
a generalized q-hypergeometric equation if it corresponds to a generalized
q-hypergeometric equation in Birkhoff’s correspondance mentionned at the
beginning of the paper.

Theorem (Rigidity and “monodromic” characterization of the q-
hypergeometrics; Theorem 37)

i) Any irreducible object of C coming from a generalized q-hypergeometric
equation is strongly rigid.

ii) A normalized irreducible object C = (A(0),M,A(∞)) of C such that

qZ Sp(A(0))∩ qZ Sp(A(∞)) = ∅ comes from a generalized q-hypergeometric
equation if and only if the following properties hold :

a) M has at most simple poles on C∗;
b) the poles of M in C∗ belong to some q-logarithmic spiral qZz0 ⊂ C∗;
c) Resz0 M has rank one.

We also have the following characterization :

Proposition (Proposition 38). — Let C = (A(0),M,A(∞)) be a normal-

ized irreducible object of Cc such that qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅. If both

A(0) and A(∞) have n distinct eigenvalues then the following properties are
equivalent :

- C is strongly rigid;
- C comes from a generalized q-hypergeometric equation.

Moreover, for fixed A(0) and A(∞), we describe explicitly the residues
Resz0 M occurring for some M such that (A(0),M,A(∞)) comes from a
(normalized irreducible) generalized q-hypergeometric equation with fixed
parameters; see Theorem 40 in section 6.3.

It is usually considered that the theory of q-difference equations started
with the work of Euler on problems of combinatorics. It was followed by the
work of Gauss, Jacobi, Heine, Ramanujan, etc. The first systematic study
of the q-hypergeometric series and equations is due to Heine [7]. We refer
the reader to the classical books of Fine [5], Gasper and Rahman [6] and
Slater [15] for additional informations. The whole paper is influenced by the
theory of differential equations. The generalized q-hypergeometric equations
are quantizations of the so-called generalized hypergeometric equations. The
hypergeometric theory goes back at least as far as Euler. The hypergeomet-
ric equations were studied in the 19th century by Gauss (who gave the first
full systematic treatment), Riemann, Schwarz, Klein, etc. More recently, the
monodromy of the generalized hypergeometric equations has been studied by
Beukers and Heckman [1]. Recall that these equations are rigid. The usual
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notion of rigidity for local systems has attracted the attention of many math-
ematicians. We refer in particular to Katz’ book [8]. The first chapter of this
book provides a numerical characterization of rigidity (Theorem 1.1.2 in loc.
cit.). This result was generalized to any field (instead of C) by Strambach and
Völklein in [16]. These results were a source of inspiration for our numerical
characterizations of rigidity and of strong rigidity for q-difference equations.

We hope that this paper will serve as basis for further research. We shall
now raise a couple of questions that deserve special attention.

Katz gave in [8] an algorithmic proof of the fact that any irreducible rigid
local system can be build up from a rank one local system by applying a
finite sequence of middle convolution and middle tensor operations. Is there
a convenient q-analogue of the middle convolution operation and of Katz’s
algorithm? It is worth mentioning that a purely algebraic convolution functor
was introduced by Detweiller and Reiter in [4]. It shares many properties with
Katz’s middle convolution functor and can be used to reprove many of Katz’s
results. After the present paper was completed, we became aware of the fact
that the q-middle convolution is the subject of the ongoing PhD thesis work of
Yamaguchi, to whom we refer the interested reader. Last, we refer to the work
of Bloch and Esnault in [3] for Fourier transforms and rigidity; unfortunately,
q-Fourier transform theory is still in its infancy.

Consider some q-deformations Y (qz) = Aq(z)Y (z) of a given differential

system Y ′(z) = A(z)Y (z) on P1
C. (1) Is there is a link between rigidity of

Y (qz) = Aq(z)Y (z) and rigidity of Y ′(z) = A(z)Y (z)? More precisely: Is
Y ′(z) = A(z)Y (z) rigid if the deformations Y (qz) = Aq(z)Y (z) are rigid? (The
converse statement seems hopeless because rigidity is a “closed” condition.)
This is connected with the problem of finding relations between the local data
(residues of Birkhoff matrices) associated with Y (qz) = Aq(z)Y (z) and the
usual monodromies of Y ′(z) = A(z)Y (z). Is it possible to derive the later
from the former? It is worth mentioning that, thanks to the work of Sauloy in
[13], it is possible to recover the monodromies of Y ′(z) = A(z)Y (z) from the
connection data associated with Y (qz) = Aq(z)Y (z) as q tends to 1. We do
not enter into details here; we simply emphasize that Sauloy’s method relies
on the values of Birkhoff matrices out of a singular locus. In our situation,
one of the difficulties lies in the fact that the local data we consider precisely
come from the behavior of Birkhoff matrices at some points of this singular
locus.

Acknowledgements. I would like to thank the Institut des Hautes Etudes
Scientifiques for its support and hospitality. I also acknowledge the support
of this work by the ANR project ANR-10-JCJC 0105.

1. Roughly speaking, this means that
Aq(z)−In
(q−1)z

tends to A(z) as q tends to 1.
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1.2. Organization of the paper. — In section 2, we introduce general
notations. In section 3, we recall a Riemann-Hilbert correspondence for reg-
ular singular q-difference systems. In section 4, we introduce the categories
of completely regular singular connection data and equations. We then intro-
duce the notions of local isomorphy and weak local isomorphy and also the
corresponding notions of rigidity and strong rigidity. In section 5, we give
numerical characterizations of rigidity and strong rigidity. In section 6.1, we
show the strong rigidity and we give simple “monodromic” characterizations
of the generalized q-hypergeometric equations. We also describe in detail the
residues coming from generalized q-hypergeometric connection data with fixed
local data at 0 and ∞.

2. General notations

We will denote by O (resp. M) the sheaf over P1
C of analytic (resp. mero-

morphic) functions.
We will denote by C{z−a} the local ring Oa of germs of analytic functions

at a ∈ C and by C({z − a}) its field of fractions.
We will denote by C[[z]] the local ring of formal power series with coefficients

in C and by C((z)) its field of fractions.
We will denote by σq the q-dilatation operator (σqy(z) = y(qz)).
We will denote by Sp(M) (resp. Sp(f)) the set of complex eigenvalues of a

matrix M ∈ Mn(C) (resp. of an endomorphism f of some finite dimensional
C-vector space).

We will denote by rk(M) (resp. rk(f)) the rank of a matrix M ∈ Mn(C)
(resp. of an endomorphism f of some finite dimensional C-vector space).

For any matrix-valued meromorphic function M ∈ Mn(M(Ω)) (Ω is an open
subset of C), we denote by Resu(M) ∈ Mn(C) the residue of M at u ∈ Ω.

3. Riemann-Hilbert correspondence for regular singular
q-difference systems

This section follows the presentation of J. Sauloy in [13, 14]. We also
refer the reader to M. van der Put and M. Singer’s book [9]; especially to
section 12.3.

3.1. The category of regular singular q-difference systems E . — Let
F be the category of q-difference systems on P1

C. Its objects are the matrices
A ∈ GLn(C(z)) for some n ∈ N∗; the integer n will be called the size of A. Its
morphisms from an object A of size n to an object B of size p are the matrices
F ∈ Mp,n(C(z)) such that (σqF )A = BF .
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The category E of regular singular q-difference systems on P1
C is the full

subcategory of F whose objects are the matrices A ∈ GLn(C(z)) such that
there exists R ∈ GLn(C(z)) with the property that (σqR)−1AR belongs to
both GLn(C{z}) and GLn(C{z−1}). (Equivalently, E is the full subcategory
of F whose objects are the matrices A ∈ GLn(C(z)) such that there exists
R0 ∈ GLn(C(z)) and R∞ ∈ GLn(C(z)) with the property that (σqR0)

−1AR0

belongs to GLn(C{z}) and (σqR∞)−1AR∞ belongs to GLn(C{z−1}).)

3.2. The category of connection data C . — We denote by C the cate-
gory of connection data. Its objects are the triples

(A(0),M,A(∞)) ∈ GLn(C)×GLn(M(C∗))×GLn(C),

for some n ∈ N∗, such that

(σqM)A(0) = A(∞)M ;

the integer n will be called the size of (A(0),M,A(∞)). The morphisms of C
from an object (A(0),M,A(∞)) of size n to an object (B(0), N,B(∞)) of size p
are the pairs

(S(0), S(∞)) ∈ Mp,n(C[z, z−1])×Mp,n(C[z, z−1])

such that 
(σqS

(0))A(0) = B(0)S(0)

(σqS
(∞))A(∞) = B(∞)S(∞)

S(∞)M = NS(0).

Note that it would have been more natural to require that the coefficients of
S(0) and S(∞) belong to C({z}) and C({z−1}) respectively; actually, we would
not get additional morphisms in this way in virtue of the following result (and
its variant at ∞) which is [14, Lemma 2.1.3.2].

Proposition 1. — Let us consider A(0) ∈ GLn(C) and B(0) ∈ GLp(C).

If S(0) ∈ Mp,n(C({z})) is such that (σqS
(0))A(0) = B(0)S(0) then S(0) ∈

Mp,n(C[z, z−1]).

We will use the following variant of Proposition 1.

Proposition 2. — We maintain the notations and hypotheses of Proposi-
tion 1. If we assume moreover that Sp(A(0)) ∩ qZ∗ Sp(B(0)) = ∅ then S(0) ∈
Mp,n(C).

Before proceeding with the proof of Proposition 2, we recall without proof
a classical result of linear algebra (which will be used several times).
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Lemma 3. — Let us consider X ∈ Mn(C), Y ∈ Mp(C) and the C-linear
endomorphism ϕ of Mp,n(C) given by

ϕ : Mp,n(C) → Mp,n(C)

U 7→ UX − Y U.

We have

Sp(ϕ) = Sp(X)− Sp(Y ) = {λ− µ | λ ∈ Sp(X), µ ∈ Sp(Y )}.

In particular, ϕ is a C-linear automorphism if and only if Sp(X)∩Sp(Y ) = ∅.

Proof of Proposition 2. — Let S(0) =
∑

k∈Z Ukz
k be the Laurent series ex-

pansion of S(0) at 0. The equality (σqS
(0))A(0) = B(0)S(0) ensures that, for

all k ∈ Z, qkUkA
(0) = B(0)Uk. But, for k ∈ Z∗, Sp(qkA(0)) ∩ Sp(B(0)) = ∅ so

Uk = 0 in virtue of Lemma 3.

Definition 4 (Normalized connection data). — We say that an object

C = (A(0),M,A(∞)) of C is normalized if Sp(A(0)) ∪ Sp(A(∞)) ⊂ {c ∈
C∗ | |q| ≤ |c| < 1}.

Remark 5. — In Definition 4, we could replace {c ∈ C∗ | |q| ≤ |c| < 1} by
any fixed fundamental domain of C∗ for the action by multiplication of qZ.

It is well known that the full subcategory of C made of the normalized
objects is essential (this will not be used).

The following result will be used later.

Proposition 6. — If (S(0), S(∞)) is a isomorphism between normalized ob-

jects of C then (S(0), S(∞)) ∈ GLn(C)×GLn(C)

Proof. — Immediate consequence of Proposition 2.

3.3. The category of solutions S . — In order to state the Riemann-
Hilbert correspondence, it is convenient to introduce a category S of solutions.
Its objects are the quadruples

(A(0),M (0), A(∞),M (∞))

∈ GLn(C)×GLn(M(C))×GLn(C)×GLn(M(P1
C \ {0})),

for some n in N∗, such that

(σqM)A(0) = A(∞)M

where

M = (M (∞))−1M (0);
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the integer n is called the size of (A(0),M (0), A(∞),M (∞)). Its morphisms from
an object of size n to an object of size p are triples

(F, S(0), S(∞)) ∈ Mp,n(C(z))×Mn,p(C(z))×Mn,p(C(z))

satisfying some compatibility conditions : we refer to section 3.1.1.2 of [14]
for details.

3.4. The Riemann-Hilbert correspondence. — We now state the
Riemann-Hilbert correspondence for regular singular q-difference systems; the
following result is Proposition 3.1.1.3 in [14].

Theorem 7 (Riemann-Hilbert correspondence). — The functors FS ,E

and FS ,C respectively defined on objects and morphisms by :

FS ,E : (A(0),M (0), A(∞),M (∞)) ; (σqM
(0))A(0)(M (0))−1

= (σqM
(∞))A(∞)(M (∞))−1 =: A

(F, S(0), S(∞)) ; F

and by :

FS ,C : (A(0),M (0), A(∞),M (∞)) ; (A(0), (M (∞))−1M (0), A(∞))

= (A(0),M,A(∞))

(F, S(0), S(∞)) ; (S(0), S(∞))

are equivalences of categories from S to E and from S to C respectively. In
particular, E and C are equivalent.

Concretely, consider an object A of E of size n. Using shearing trans-

formations, one can prove that there exists R̃(0) ∈ GLn(C(z)) such that Ã :=

(σqR̃
(0))−1AR̃(0) belongs to GLn(C{z}) and satisfies Sp(Ã(0))∩qZ∗ Sp(Ã(0)) =

∅. Moreover, one can prove that there exists M̃ (0) ∈ In + zMn(C{z}) such

that (σqM̃
(0))−1ÃM̃ (0) = Ã(0). Then it is easily seen that M (0) := R̃(0)M̃ (0) ∈

GLn(M(C)) satisfies (σqM
(0))−1AM (0) = Ã(0). One can use a similar method

at ∞ in order to construct some M (∞) ∈ GLn(M(C∗ ∪ {∞})) satisfying sim-

ilar properties. Then (A(0),M,A(∞)) := (Ã(0), (M (∞))−1M (0), Ã(∞)) is an
object of C corresponding to A in the above equivalence.

4. The categories Ec and Cc, local isomorphy and rigidity

4.1. The categories Ec and Cc.—
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Definition 8 (Completely regular singular connection data)

We denote by Cc the full subcategory of C made of the objects (A(0),M,A(∞))
such that M has at most simple poles on C∗. The objects of Cc are called
completely regular singular connection data.

Proposition 9. — The category Cc is closed under isomorphism in C i.e.
any object of C isomorphic to an object of Cc is actually an object of Cc.

Proof. — Let (A(0),M,A(∞)) be an object of C isomorphic to some object

(B(0), N,B(∞)) of Cc. So there exist S(0), S(∞) ∈ GLn(C[z, z−1]) such that

M = (S(∞))−1NS(0). Since, for all s ∈ C∗, GLn(C[z, z−1]) ⊂ GLn(C{z − s}),
the previous equality shows that M has at most simple poles on C∗ and hence
(A(0),M,A(∞)) is an object of Cc.

Definition 10 (Completely regular singular q-difference systems)
We denote by Ec the full subcategory of E corresponding to Cc in the

Riemann-Hilbert correspondence (Theorem 7). The objects of Ec are called
completely regular singular q-difference systems.

Explicitly, an object A of E is actually an object of Ec if there exists an
object S of S with the property that A is isomorphic to FS ,E (S) and that
FS ,C (S) is an object of Cc.

Proposition 11. — The category Ec is closed under isomorphism in E i.e.
any object of E isomorphic to an object of Ec is actually an object of Ec.

Proof. — Immediate from the definition of Ec.

4.2. Local isomorphy and rigidity for Cc. —

Definition 12 (Local isomorphy for Cc). — Let C = (A(0),M,A(∞)), C ′ =

(B(0), N,B(∞)) be objects of Cc of size n.
We say that C and C ′ are locally isomorphic if the following properties hold :

(i) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C[z, z−1]) such that{

(σqS
(0)
0 )A(0) = B(0)S

(0)
0

(σqS
(∞)
∞ )A(∞) = B(∞)S

(∞)
∞ ;

(ii) ∀u ∈ C∗, ∃S(0)
u , S

(∞)
u ∈ GLn(C[z, z−1]) such that

(σqS
(0)
u )A(0) = B(0)S

(0)
u

(σqS
(∞)
u )A(∞) = B(∞)S

(∞)
u

S
(∞)
u (u)(ResuM) = (ResuN)S

(0)
u (u).

We say that C and C ′ are weakly locally isomorphic if the following prop-
erties hold :
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(i’) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C[z, z−1]) such that{

(σqS
(0)
0 )A(0) = B(0)S

(0)
0

(σqS
(∞)
∞ )A(∞) = B(∞)S

(∞)
∞ ;

(ii’) ∀u ∈ C∗, ∃S(0)
u , S

(∞)
u ∈ GLn(C[z, z−1]) such that

S(∞)
u (u)(ResuM) = (ResuN)S(0)

u (u);

i.e. rk ResuM = rk ResuN .

The proof of the following proposition is easy and left to the reader.

Proposition 13. — For any objects C,C ′ of Cc, we have

C isom. to C ′ ⇒ C locally isom. to C ′ ⇒ C weakly locally isom. to C ′.

Moreover, “being locally isomorphic” and “being weakly locally isomorphic”
are equivalence relations.

We have the following reformulation of Definition 12 :

Proposition 14. — Let C = (A(0),M,A(∞)), C ′ = (B(0), N,B(∞)) be objects
of Cc of size n.

Then C and C ′ are locally isomorphic if and only if the following properties
hold :

(α) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C[z, z−1]) such that{

(σqS
(0)
0 )A(0) = B(0)S

(0)
0

(σqS
(∞)
∞ )A(∞) = B(∞)S

(∞)
∞ ;

(β) M and N have the same set of poles on C∗; we let s1, ..., sm be the poles
of M on some fundamental domain of C∗ for the action by multiplication
by qZ;

(γ) ∀i ∈ {1, ...,m}, ∃S(0)
i , S

(∞)
i ∈ GLn(C[z, z−1]) such that

(σqS
(0)
i )A(0) = B(0)S

(0)
i

(σqS
(∞)
i )A(∞) = B(∞)S

(∞)
i

S
(∞)
i (si)(RessiM) = (Ressi N)S

(0)
i (si).

Moreover, C and C ′ are weakly locally isomorphic if and only if the following
properties hold :

(α′) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C[z, z−1]) such that{

(σqS
(0)
0 )A(0) = B(0)S

(0)
0

(σqS
(∞)
∞ )A(∞) = B(∞)S

(∞)
∞ ;
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(β′) M and N have the same set of poles on C∗; we let s1, ..., sm be the poles
of M on some fundamental domain of C∗ for the action by multiplication
by qZ;

(γ′) ∀i ∈ {1, ...,m}, rk RessiM = rk Ressi N .

Proof. — It is clear that if C and C ′ are locally isomorphic then properties
(α) to (γ) hold. Let us prove the converse implication. So, we assume that
C and C ′ satisfy properties (α) to (γ). Let us consider u ∈ C∗. In virtue of
property (β), u is either [not a pole of M and not a pole of N ] or [a pole of M
and a pole of N ]. In the fist case, we have ResuM = 0 = ResuN and hence,

if we set S
(0)
u = S

(0)
0 and S

(∞)
u = S

(∞)
∞ (given by property (α)), we have

(σqS
(0)
u )A(0) = B(0)S

(0)
u

(σqS
(∞)
u )A(∞) = B(∞)S

(∞)
u

S
(∞)
u (u)(ResuM) = (ResuN)S

(0)
u (u).

Let us now consider the case that u is a pole of M . There exist k ∈ Z and i ∈
{1, ...,m} such that u = qksi. The relation (σqM)A(0) = A(∞)M entails that

(σkqM)(A(0))k = (A(∞))kM and hence ResuM = qk(A(∞))k(RessiM)(A(0))−k.

Similarly, ResuN = qk(B(∞))k(Ressi N)(B(0))−k. We set S
(0)
u = S

(0)
i and

S
(∞)
u = S

(∞)
i (given by property (γ)). We have

(σqS
(0)
u )A(0) = B(0)S

(0)
u

(σqS
(∞)
u )A(∞) = B(∞)S

(∞)
u

S
(∞)
u (u)(ResuM) = S

(∞)
i (qksi)q

k(A(∞))k(RessiM)(A(0))−k

= qk(B(∞))kS
(∞)
i (si)(RessiM)(A(0))−k = qk(B(∞))k(Ressi N)S

(0)
i (si)(A

(0))−k

= qk(B(∞))k(Ressi N)(B(0))−kS
(0)
i (qksi) = (ResuN)S

(0)
u (u).

It is now clear that C and C ′ are isomorphic.
The case of weak local isomorphy is left to the reader.

The following result will be useful (it will allow us to work in GLn(C) rather
than in GLn(C[z, z−1])).

Proposition 15. — Let C = (A(0),M,A(∞)), C ′ = (B(0), N,B(∞)) be nor-
malized objects of Cc of size n.

Then C and C ′ are locally isomorphic if and only if the following properties
hold :

(α) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C) such that{

S
(0)
0 A(0) = B(0)S

(0)
0

S
(∞)
∞ A(∞) = B(∞)S

(∞)
∞ ;
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(β) M and N have the same set of poles on C∗; we let s1, ..., sm be the poles
of M on some fundamental domain of C∗ for the action by multiplication
by qZ;

(γ) ∀i ∈ {1, ...,m}, ∃S(0)
i , S

(∞)
i ∈ GLn(C) such that

S
(0)
i A(0) = B(0)S

(0)
i

S
(∞)
i A(∞) = B(∞)S

(∞)
i

S
(∞)
i (RessiM) = (Ressi N)S

(0)
i .

Moreover, C and C ′ are weakly isomorphic if and only if the following prop-
erties hold :

(α′) ∃S(0)
0 , S

(∞)
∞ ∈ GLn(C) such that{

S
(0)
0 A(0) = B(0)S

(0)
0

S
(∞)
∞ A(∞) = B(∞)S

(∞)
∞ ;

(β′) M and N have the same set of poles on C∗; we let s1, ..., sm be the poles
of M on some fundamental domain of C∗ for the action by multiplication
by qZ;

(γ′) ∀i ∈ {1, ...,m},
rk RessiM = rk Ressi N .

Proof. — Direct consequence of Proposition 2.

Definition 16 (Rigidity for Cc). — We say that an object C of Cc is rigid
(resp. strongly rigid) if any object of Cc locally isomorphic (resp. weakly locally
isomorphic) to C is actually isomorphic to C.

The proof of the following result is left to the reader.

Proposition 17. — For any objects C of Cc, we have :

C strongly rigid ⇒ C rigid.

The following result will be used later.

Proposition 18. — An object C = (A(0),M,A(∞)) of Cc is rigid (resp.

strongly rigid) if and only if any object of Cc of the form (A(0), N,A(∞)) lo-
cally isomorphic (resp. weakly locally isomorphic) to C is actually isomorphic
to C.

Proof. — The “only if” part of the proposition is obvious. We now prove
the “if” part of the proposition. Let (B(0), N,B(∞)) be an object of Cc
locally isomorphic (resp. weakly locally isomorphic) to C. Then there

exists S
(0)
0 , S

(∞)
∞ ∈ GLn(C[z, z−1]) such that (σqS

(0)
0 )A(0) = B(0)S

(0)
0 and

(σqS
(∞)
∞ )A(∞) = B(∞)S

(∞)
∞ . It follows that (B(0), N,B(∞)) is isomorphic
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to (A(0), (S
(∞)
∞ )−1NS

(0)
0 , A(∞)). So (A(0), (S

(∞)
∞ )−1NS

(0)
0 , A(∞)) is locally

isomorphic (resp. weakly isomorphic) to C and hence isomorphic to C.

Therefore (B(0), N,B(∞)) is isomorphic to C.

4.3. Local isomorphy and rigidity for Ec. —

Definition 19 (Local isomorphy for Ec). — Let A,B be objects of Ec and
let CA, CB be corresponding connection data in the Riemann-Hilbert corre-
spondence. We say that A and B are locally isomorphic (resp. weakly locally
isomorphic) if CA and CB are locally isomorphic (resp. weakly locally isomor-
phic).

A priori, the above definition depends on the choice of CA and CB. Consider
C ′A and C ′B alternative corresponding connection data. Then CA and C ′A are
isomorphic and CB and C ′B are isomorphic. Using Proposition 13, we get that
CA and CB are locally isomorphic (resp. weakly locally isomorphic) if and
only if the same property holds for C ′A and C ′B. Hence the above definition is
not ambiguous.

Definition 20 (Rigidity for Ec). — We say that an object A of Ec is rigid
(resp. strongly rigid) if any object of Ec locally isomorphic (resp. weakly locally
isomorphic) to A is actually isomorphic to A.

So, if CA is a connection data corresponding to A then A is rigid if and only
if CA is rigid.

5. Rigidity under the hypothesis qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅

5.1. Hypotheses and notations. — The following hypotheses and nota-
tions will be maintained in the whole section 5.

We let A(0), A(∞) be elements of GLn(C) such that

qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅.

We consider s = (s1, ..., sm) ∈ (C∗)m such that, for all (i, j) ∈ {1, ...,m}2,

i 6= j ⇒ si 6≡ sj mod. qZ.

We denote by C ′
s;A(0),A(∞) the C-vector space made of the matrices M ∈

Mn(M(C∗)) such that :
- M is analytic on C∗ \ ∪mi=1q

Zsi;
- M has at most simple poles on C∗;
- (σqM)A(0) = A(∞)M .



BIRKHOFF MATRICES, RESIDUES AND RIGIDITY 15

We set

Cs;A(0),A(∞) = C ′
s;A(0),A(∞) ∩GLn(M(C∗)).

Note that Cs;A(0),A(∞) is nothing but the set made of the matrices M ∈
Mn(M(C∗)) analytic on C∗ \ ∪mi=1q

Zsi such that (A(0),M,A(∞)) is an object
of Cc.

We consider

Rs;A(0),A(∞) = Im(Ress : Cs;A(0),A(∞) → Mn(C)m)

and

R′
s;A(0),A(∞) = Im(Ress : C ′

s;A(0),A(∞) → Mn(C)m)

where Ress is defined by

RessM = (Ress1 M, ...,RessmM).

It is clear that the set of poles of any M ∈ C ′
s;A(0),A(∞) is invariant by the

natural action of qZ on C∗. For this reason, we will only consider the poles of
M in some fundamental domain of C∗ for the action of qZ.

5.2. Theta functions. — For any X,Y ∈ GLn(C), for any U ∈ Mn(C), for
any s ∈ C∗, we consider the analytic function ΘX,Y ;U ;s : C∗ → Mn(C) defined
by

ΘX,Y ;U ;s(z) =
∑
k∈Z

(−1)kq
(k−1)k

2 Y −kUXk(z/s)k.

We have

(1) σqΘX,Y ;U ;s = −(z/s)−1YΘX,Y ;U ;sX
−1.

In the special case n = X = Y = U = s = 1, we get an usual Jacobi theta
function θ := Θ1,1;1;1 :

θ(z) =
∑
k∈Z

(−1)kq
(k−1)k

2 zk.

We recall the so-called Jacobi triple product formula

θ(z) = (q; q)∞ (z; q)∞ (q/z; q)∞

where we have used the usual notation for the q-Pochhammer symbol :

(a; q)∞ =

∞∏
k=1

(1− aqk−1).

For any s ∈ C∗, we will also use the short-hand notation θs := Θ1,1;1;s (so
θs(z) = θ(z/s)). The function θs is analytic on C∗, its set of zeros is qZs and
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its zeros are simple (these two last statements follow from the triple product
formula). Moreover, we have

(2) σqθs = −(z/s)−1θs.

The reason why we consider the above functions lies in the fact that, for all
U ∈ Mn(C), for all i ∈ {1, ...,m},

ΘA(0),A(∞);U ;si

θsi
∈ C ′

s;A(0),A(∞)

(this follows immediately from (1) and (2)).

5.3. Structure of sets of residues. — In this section, we study
Rs;A(0),A(∞) and R′

s;A(0),A(∞) .

Proposition 21. — The following properties hold :
i) the map

Ψ := ΨA(0),A(∞);s : Mn(C)m → C ′
s;A(0),A(∞)

U = (U1, ..., Um) 7→
m∑
i=1

ΘA(0),A(∞);Ui;si

θq;si

is a C-linear isomorphism;
ii) the map

Ress ◦Ψ : Mn(C)m → R′
s;A(0),A(∞)

is a C-linear isomorphism; in particular R′
s;A(0),A(∞) = Mn(C)m.

Proposition 22. — Rs;A(0),A(∞) a Zariski-dense open subset of R′
s;A(0),A(∞) =

Mn(C)m.

Before proceeding with the proofs of these propositions, we state and prove
a series of lemmas.

Lemma 23. — The C-linear morphism Ress : C ′
s;A(0),A(∞) → Mn(C)m is in-

jective.

Proof. — Let us consider M ∈ Ker(Ress : C ′
s;A(0),A(∞) → Mn(C)m). Then

M : C∗ → Mn(C) is analytic and such that (σqM)A(0) = A(∞)M . Hence,
denoting by M =

∑
j∈ZMjz

j the Taylor expansion of M on C∗, we have, for

all j ∈ Z, qjMjA
(0) = A(∞)Mj . Lemma 3 ensures that, for all j ∈ Z, Mj = 0

and hence M = 0.

Lemma 24. — For any diagonal matrices X = diag(x1, ..., xn), Y =
diag(y1, ..., yn) ∈ GLn(C), for any U = (ui,j)1≤i,j≤n ∈ Mn(C), for any

s ∈ C∗, ΘX,Y ;U ;s(z) = (ui,jθs(xiy
−1
j z))1≤i,j≤n.
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Proof. — Indeed, for all z ∈ C∗, we have :

ΘX,Y ;U ;s(z) =
∑
k∈Z

(−1)kq
(k−1)k

2 Y −kUXk(z/s)k

=
∑
k∈Z

(−1)kq
(k−1)k

2 (y−ki ui,jx
k
j )1≤i,j≤n(z/s)k

= (ui,j
∑
k∈Z

(−1)kq
(k−1)k

2 y−ki xkj (z/s)
k)1≤i,j≤n

= (ui,jθs(y
−1
i xjz))1≤i,j≤n.

We set

N = {(ni,j)1≤i,j≤n ∈ Mn(C) | ∀(i, j) ∈ [[1, n]]2, (j 6= i+ 1⇒ ni,j = 0)

and ∀i ∈ [[1, n− 1]], ni,i+1 ∈ {0, 1}}.

We denote by � the termwise multiplication of matrices i.e. for all U =
(ui,j)1≤i,j≤n ∈ Mn(C), for all V = (vi,j)1≤i,j≤n ∈ Mn(C),

U � V = (ui,jvi,j)1≤i,j≤n.

Lemma 25. — Let X,Y be elements of N and let K = (K(k, l))0≤k,l≤n be
a family of elements of Mn(C) such that the entries of K(0, 0) are non zero.
Then, the map

ΦK : Mn(C) → Mn(C)

U 7→
∑

0≤k,l≤n
Y k(K(k, l)� U)X l

is a C-linear automorphism.

Proof. — It is sufficient to prove that Ker ΦK = {0}. Let us consider U =
(ui,j)1≤i,j≤n ∈ Ker ΦK . In what follows, the symbols ∗ denote some complex
numbers. Note that :

Y k(K(k, l)� U)X l =



0 · · · 0 ∗uk+1,1 · · · ∗uk+1,n−l
...

...
...

...
...

...
0 · · · 0 ∗un,1 · · · ∗un,n−l
0 · · · · · · · · · · · · 0
...

...
...

...
...

...
0 · · · · · · · · · · · · 0


.
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So the fact that U = (ui,j)1≤i,j≤n ∈ Ker ΦK means that the n2 entries of U
satisfy a system of n2 linear equations of the formK(0, 0)i,jui,j +

∑
i≤k≤n
1≤l≤j

(k,l)6=(i,j)

∗uk,l


1≤i,j≤n

= 0.

Considering the first columns in this equality, we get

K(0, 0)n,1un,1 = K(0, 0)n−1,1un−1,1+∗un,1 = K(0, 0)n−2,1un−2,1+∗un−1,1+∗un,1 = · · ·
· · · = K(0, 0)1,1u1,1 + ∗u2,1 + · · ·+ ∗un−1,1 + ∗un,1 = 0.

So un,1 = un−1,1 = · · · = u1,1 = 0. Similarly, considering the last rows, we get
un,1 = un,2 = · · · = un,n = 0. So the entries of the first column and of the
last row of U are zero and its remaining (n − 1)2 entries satisfy a system of
(n− 1)2 linear equations of the formK(0, 0)i,jui,j +

∑
i≤k≤n−1
2≤l≤j

(k,l)6=(i,j)

∗uk,l


1≤i≤n−1,2≤j≤n

= 0.

The result follows clearly by induction.

Lemma 26. — For all s ∈ C∗, the map

Mn(C) → Mn(C)

U 7→ Ress
ΘA(0),A(∞);U ;s

θs
= (Ress 1/θs)ΘA(0),A(∞);U ;s(s)

is a C-linear automorphism.

Proof. — By Dunford-Jordan decomposition, we can clearly assume that
A(0) = D(0) + N (0) for some diagonal matrix D(0) ∈ GLn(C) and for

some N (0) ∈ N commuting with D(0) and that a similar decomposition
(A(∞))−1 = D(∞) + N (∞) holds. It is easily seen that there exists a family
(K(k, l))0≤k,l≤n,(k,l)6=(0,0) of elements of Mn(C) such that, for all U ∈ Mn(C) :

ΘA(0),A(∞);U ;s(s) = ΘD(0),(D(∞))−1;U ;s(s)+∑
0≤k,l≤n

(k,l)6=(0,0)

(N (∞))k(K(k, l)� U)(N (0))l.
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Since qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅, Lemma 24 implies that there exists
K(0, 0) ∈ Mn(C) with non zero entries such that, for all U ∈ Mn(C),
ΘD(0),D(∞);U ;s(s) = K(0, 0)� U . The result follows from Lemma 25.

We now prove Proposition 21 and Proposition 22.

Proof of Proposition 21. — The fact that Ress ◦Ψ is an isomorphism is an
immediate consequence of Lemma 26 because

Ress ◦Ψ(U) =

(
Ress1

ΘA(0),A(∞);U1;s1

θs1
, ...,Ressm

ΘA(0),A(∞);Um;sm

θsm

)
.

But, in virtue of Lemma 23, Ress : C ′
s;A(0),A(∞) → Mn(C)m is injective. So Ψ

is an isomorphism.

Proof of Proposition 22. — Note that Ψ−1(C ′
s;A(0),A(∞) \ Cs;A(0),A(∞)) is a

Zariski-closed subset of Mn(C)m because it coincides with the inverse image
of 0 by the map

Mn(C)m → O(C∗)

U = (U1, ..., Um) 7→ det

 m∑
i=1

ΘA(0),A(∞);Ui;si

∏
j∈{1,...,m}\{i}

θsj


which is a polynomial with coefficients in O(C∗) in the entries of U (and
hence, by taking the Taylor expansions at 0 of the coefficients, we get that
Ψ−1(C ′

s;A(0),A(∞) \ Cs;A(0),A(∞)) is the zero locus of polynomials with complex

coefficients in the entries of U). So its image R′
s;A(0),A(∞) \ Rs;A(0),A(∞) by

the C-linear isomorphism Ress ◦Ψ is Zariski-closed in R′
s;A(0),A(∞) . The result

follows from the fact that Rs;A(0),A(∞) is non empty.

5.4. Numerical characterization of rigidity. — For all A ∈ GLn(C), we
denote by Z(A) the centralizer of A in GLn(C) :

Z(A) = {X ∈ GLn(C) | XA = AX}.
For all R ∈ Mn(C), we consider the complex linear algebraic group

G(R) = {(X,Y ) ∈ Z(A(0))× Z(A(∞)) | Y R = RX}.
For all A ∈ Mn(C), we denote by z(A) the centralizer of A in Mn(C) :

z(A) = {X ∈ Mn(C) | XA = AX}.
For all R ∈ Mn(C), we consider the complex Lie algebra

g(R) = {(X,Y ) ∈ z(A(0))× z(A(∞)) | Y R = RX}.
We have dim Z(A) = dim z(A) and dimG(R) = dim g(R).

We will need the following result.
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Proposition 27. — Let C = (A(0),M,A(∞)) be an irreducible object of Cc of
size n. Let s1, ..., sm be the poles of M on some fundamental domain of C∗
with respect to the action by multiplication of qZ and set, for all i ∈ {1, ...,m},
Ri = RessiM .

Then ∩mi=1g(Ri) = C(In, In).

Consider moreover an object C ′ = (A(0),M ′, A(∞)) of Cc of size n such
that the set of poles of M ′ is included in ∪i∈{1,...,m}qZsi and set, for all i ∈
{1, ...,m}, R′i = RessiM

′. If X ∈ Z(A(0)) and Y ∈ Z(A(∞)) are such that,
for all i ∈ {1, ...,m}, Y Ri = R′iX then either (X,Y ) = (0, 0) or ((X,Y ) ∈
GLn(C)×GLn(C) and C is isomorphic to C ′).

Proof. — We will use the map Ψ := ΨA(0),A(∞);s defined in Proposition 21.

Proposition 21 ensures that there exists U ∈ Mn(C)m such that Ψ(U) = M .
Let us consider (X,Y ) ∈ ∩mi=1g(Ri). We have Y Ress ◦Ψ(U)−Ress ◦Ψ(U)X =

0. But, using the fact that X commutes with A(0) and that Y commutes with
A(∞), it is easily seen that Y Ress ◦Ψ(U)−Ress ◦Ψ(U)X = Ress ◦Ψ(Y U−UX).
So Ress ◦Ψ(Y U − UX) = 0. Proposition 21 ensures that Y U − UX = 0 and
hence that YM−MX = YΨ(U)−Ψ(U)X = Ψ(Y U−UX) = 0. Hence (X,Y )
is an endomorphism of C. Schur’s Lemma ensures that X = Y ∈ CIn.

The proof of the second assertion is similar.

Theorem 28. — Let C = (A(0),M,A(∞)) be a normalized irreducible object

of Cc of size n such that qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅. Let s1, ..., sm be the
poles of M on some fundamental domain of C∗ with respect to the action by
multiplication of qZ and set, for all i ∈ {1, ...,m}, RessiM = Ri. Then :

i)
∑m

i=1 dimG(Ri) ≤ (m− 1)(dim Z(A(0)) + dim Z(A(∞))) + 1;

ii) C is rigid if and only if
∑m

i=1 dimG(Ri) = (m − 1)(dim Z(A(0)) +

dim Z(A(∞))) + 1.

Proof. — We first prove i). For any i ∈ {1, ...,m}, we consider the C-linear
map

ϕi : z(A(0))× z(A(∞)) → Mn(C)

(X,Y ) 7→ Y Ri −RiX

whose kernel is g(Ri) and hence whose rank is dim z(A(0)) + dim z(A(∞)) −
dim g(Ri). We also consider the C-linear map

ϕ = (ϕ1, ..., ϕm) : z(A(0))× z(A(∞)) → Mn(C)m

(X,Y ) 7→ (Y R1 −R1X, ..., Y Rm −RmX)
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whose kernel is, in virtue of Proposition 27, C(In, In) and hence whose rank is

dim z(A(0)) + dim z(A(∞))− 1. The inequality rkϕ ≤
∑m

i=1 rkϕi entails that

dim z(A(0)) + dim z(A(∞))− 1 ≤
m∑
i=1

(dim z(A(0)) + dim z(A(∞))− dim g(Ri))

and hence that

m∑
i=1

dim g(Ri) ≤ (m− 1)(dim z(A(0)) + dim z(A(∞))) + 1

as expected.
Let us now prove ii). In virtue of i), we must prove that C is rigid if and

only if

m∑
i=1

dimG(Ri) ≥ (m− 1)(dim Z(A(0)) + dim Z(A(∞))) + 1.

We first assume that C is rigid. Let us consider the complex affine algebraic
variety

V = Z(A(0))×

(
m∏
i=1

(Z(A(0))× Z(A(∞)))

)
× Z(A(∞)).

Proposition 22 ensures that

U = {(S(0)
0 , (S

(0)
1 , S

(∞)
1 ), ..., (S(0)

m , S(∞)
m ), S(∞)

∞ ) ∈ V |

(S
(0)
0 A(0)(S

(0)
0 )−1, S

(∞)
1 R1(S

(0)
1 )−1, ...

..., S(∞)
m Rm(S(0)

m )−1, S(∞)
∞ A(∞)(S(∞)

∞ )−1) ∈ Rs;A(0),A(∞)}

is a Zariski-dense open subset of V .

Let (S
(0)
0 , (S

(0)
1 , S

(∞)
1 ), ..., (S

(0)
m , S

(∞)
m ), S

(∞)
∞ ) be an element of U and con-

sider C ′ = (A(0), N,A(∞)) where N is the unique element of Cs;A(0),A(∞)

such that, for all i ∈ {1, ...,m}, Ressi N = S
(∞)
i Ri(S

(0)
i )−1. Then C and

C ′ are clearly locally isomorphic and hence isomorphic because C is rigid. Let
(S(0), S(∞)) ∈ GLn(C) × GLn(C) be an isomorphism from C to C ′ (the fact
that this isomorphism has coefficients in C follows from Proposition 6). We
have 

S(0)A(0) = A(0)S(0)

S(∞)A(∞) = A(∞)S(∞)

S(∞)M = NS(0)
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so (the third assertion is obtained by taking residues)
S(0) ∈ Z(A(0))

S(∞) ∈ Z(A(∞))

∀i ∈ {1, ...,m}, S(∞)Ri = S
(∞)
i Ri(S

(0)
i )−1S(0)

i.e. ((S(0))−1S
(0)
i , (S(∞))−1S

(∞)
i ) ∈ G(Ri).

Hence, setting T (0) = (S(0))−1 ∈ Z(A(0)), T (∞) = (S(∞))−1 ∈ Z(A(∞)), T
(0)
0 =

In ∈ Z(A(0)), T
(∞)
∞ = In ∈ Z(A(∞)), (T

(0)
i , T

(∞)
i ) = ((S(0))−1S

(0)
i , (S(∞))−1S

(∞)
i ) ∈

G(Ri), we have :

(3)


S(0) = (T (0))−1T

(0)
0

S(∞) = (T (∞))−1T
(∞)
∞

∀i ∈ {1, ...,m}, (S(0)
i , S

(∞)
i ) = ((T (0))−1T

(0)
i , (T (∞))−1T

(∞)
i ).

This has the following consequence in terms of action of groups. We denote
by K the complex algebraic group which is the quotient of

Z(A(0))× Z(A(0))×

(
m∏
i=1

G(Ri)

)
× Z(A(∞))× Z(A(∞))

by the central subgroup

C∗(In, In, (In, In), ..., (In, In), In, In).

We define a right action of K on Mn(C)2(m+1) by letting the class k ∈ K of

(T (0), T
(0)
0 , (T

(0)
1 , T

(∞)
1 ), ..., (T (0)

m , T (∞)
m ), T (∞)

∞ , T (∞))

act on

S = (S
(0)
0 , (S

(0)
1 , S

(∞)
1 ), ..., (S(0)

m , S(∞)
m ), S(∞)

∞ ) ∈ Mn(C)2(m+1)

as follows :

Sk = ((T (0))−1S
(0)
0 T

(0)
0 , ((T (0))−1S

(0)
1 T

(0)
1 , (T (∞))−1S

(∞)
1 T

(∞)
1 ), ...

..., ((T (0))−1S(0)
m T (0)

m , (T (∞))−1S(∞)
m T (∞)

m ), (T (∞))−1S(∞)
∞ T (∞)

∞ ).

But (3) shows that U is contained in the orbit of (In, (In, In), ..., (In, In), In)
under the action of K. So dimK ≥ dimU i.e.

2 dim Z(A(0)) +

m∑
i=1

dimG(Ri) + 2 dim Z(A(∞))− 1

≥ (m+ 1)(dim Z(A(0)) + dim Z(A(∞)))

whence the result.
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Assume conversely that

m∑
i=1

dimG(Ri) = (m− 1)(dim Z(A(0)) + dim Z(A(∞))) + 1

and let us prove that C is rigid. Let us consider an object C ′ = (A(0),M ′, A(∞))
of C locally isomorphic to C and set, for all i ∈ {1, ...,m}, RessiM

′ = R′i.

So, for all i ∈ {1, ...,m}, there exists (S
(0)
i , S

(∞)
i ) ∈ Z(A(0)) × Z(A(∞)) such

that R′i = (S
(∞)
i )−1RiS

(0)
i . For all i ∈ {1, ...,m}, we introduce the C-linear

morphism

ψi : z(A(0))× z(A(∞)) → Mn(C)

(X,Y ) 7→ Y Ri −R′iX.

Note that

Kerψi = {(X,Y ) ∈ z(A(0))× z(A(∞)) | (S
(∞)
i Y )Ri −Ri(S(0)

i X) = 0}

and hence

dim Kerψi = dim{(X,Y ) ∈ z(A(0))× z(A(∞)) | Y Ri −RiX = 0}
= dim g(Ri).

So
m∑
i=1

dim Kerψi =
m∑
i=1

dim g(Ri) = (m− 1)(dim Z(A(0)) + dim Z(A(∞))) + 1

> (m− 1) dim(z(A(0))× z(A(0)))

hence ∩mi=1 Kerψi 6= {0} (here, we use the elementary fact that if E is a
finite dimensional vector space and if F1, ..., Fm are subspaces of E such that∑m

i=1 dimFi > (m − 1) dimE then ∩ni=1Fi 6= {0}). Let us consider a non

zero (S(0), S(∞)) ∈ ∩mi=1 Kerψi. So, for all i ∈ {1, ...,m}, S(∞)Ri = R′iS
(0).

Proposition 27 ensures that (S(0), S(∞)) belongs to GLn(C)×GLn(C) and that
C and C ′ are isomorphic. This concludes the proof in virtue of Proposition
18.

5.5. Numerical characterization of strong rigidity. — For all R ∈
Mn(C), we consider the complex linear algebraic group

H(R) = {(X,Y ) ∈ GLn(C)×GLn(C) | Y R = RX}.

For all R ∈ Mn(C), we consider the Lie algebra

h(R) = {(X,Y ) ∈ Mn(C)×Mn(C) | Y R = RX}.

We have dimH(R) = dim h(R).
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Theorem 29. — Let C = (A(0),M,A(∞)) be a normalized irreducible object

of Cc of size n such that qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅. Let s1, ..., sm be the
poles of M on some fundamental domain of C∗ with respect to the action by
multiplication of qZ and set, for all i ∈ {1, ...,m}, RessiM = Ri. Then :

i)
∑m

i=1 dimH(Ri) ≤ 2mn2 − (dim Z(A(0)) + dim Z(A(∞))) + 1;

ii) C is strongly rigid if and only if
∑m

i=1 dimH(Ri) = 2mn2−(dim Z(A(0))+

dim Z(A(∞))) + 1.

Proof. — The proof is similar to the proof of Theorem 28. For this reason,
we just explain how to modify this proof.

Considering, for all i ∈ {1, ...,m}, the C-linear morphism

ϕi : Mn(C)×Mn(C) → Mn(C)

(X,Y ) 7→ Y Ri −RiX
and the C-linear morphisms

ϕ0 : Mn(C)×Mn(C) → Mn(C)

(X,Y ) 7→ XA(0) −A(0)X

and
ϕ∞ : Mn(C)×Mn(C) → Mn(C)

(X,Y ) 7→ Y A(∞) −A(∞)Y

and setting ϕ = (ϕ0, ϕ1, ..., ϕm, ϕ∞) the proof of i) is similar to the proof of
the assertion i) of Theorem 28.

Considering the affine algebraic variety

V = Z(A(0))×

(
m∏
i=1

(GLn(C)×GLn(C))

)
× Z(A(∞))

and the complex algebraic group K which is the quotient of

Z(A(0))× Z(A(0))×

(
m∏
i=1

H(Ri)

)
× Z(A(∞))× Z(A(∞))

by the central subgroup C∗(In, In, (In, In), ..., (In, In), In, In), the proof of the
“only if” part of ii) is similar to the proof of the “only if” part of ii) of Theorem
28.

Considering, for all i ∈ {1, ...,m}, the C-linear morphism

ψi : Mn(C)×Mn(C) → Mn(C)

(X,Y ) 7→ Y Ri −R′iX
and the C-linear morphism

ψ0,∞ : Mn(C)×Mn(C) → Mn(C)×Mn(C)

(X,Y ) 7→ (XA(0) −A(0)X,Y A(∞) −A(∞)Y ),
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the proof of the proof of the “if” part of ii) is similar to the proof of the “if”
part of ii) of Theorem 28.

5.6. Calculation of dimH(R) and dim Z(A). —

Lemma 30. — Let R ∈ Mn(C) whose rank is denoted by r. We have
dimH(R) = r2 + 2n2 − 2nr.

Proof. — It is clearly sufficient to treat the case that R = diag(1, ..., 1, 0, ...0).
In this case an elementary calculation shows that

H(R) =
{((

A 0
B C

)
,

(
A F
0 G

)) ∣∣∣ A ∈ GLr(C), C ∈ GLn−r(C),

G ∈ GLn−r(C), B ∈ Mn−r,r(C), F ∈ Mr,n−r(C)
}
.

So dimH(R) = r2 + 2(n− r)2 + 2r(n− r) = r2 + 2n2 − 2nr.

The following result is classical.

Lemma 31. — Let us consider A ∈ GLn(C). Let P1, ..., Pr ∈ C[X] be the
invariant factors of A (i.e. P1, ..., Pr ∈ C[X] are monic polynomials of degree
≥ 1 such that P1| · · · |Pr and such that A is conjugate to diag(CP1 , ..., CPr)
where CPi is the companion matrix for Pi). Then dim Z(A) =

∑r
m=1(2r −

2m+ 1) degPm.

Lemma 32. — Let us consider A ∈ GLn(C). Then dim Z(A) ≥ n and the
equality holds if and only if A is conjugate to some companion matrix. In
particular, if dim Z(A) = n then the eigenspaces of A have dimension 1.

Proof. — Indeed, we have dim Z(A) =
∑r

m=1(2r − 2m + 1) degPm =∑r
m=1(2r − 2m) degPm +

∑r
m=1 degPm = (

∑r
m=1(2r − 2m) degPm) + n.

Therefore, dim Z(A) ≥ n and the equality holds if and only if
∑r

m=1(2r −
2m) degPm = 0 if and only if r = 1.

6. Generalized q-hypergeometric equations

6.1. Generalized q-hypergeometric objects of E and C . — We denote
by C(z)〈σq,σ−1q 〉 the non commutative algebra of non commutative polynomi-
als with coefficients in C(z) satisfying to the relation σqz = qzσq. The gener-
alized q-hypergeometric operator Lq(a; b;λ) with parameters a = (a1, ..., an) ∈
(C∗)n, b = (b1, ..., bn) ∈ (C∗)n and λ ∈ C∗ is the regular singular q-difference
operator given by :

(4) Lq(a; b;λ) =

n∏
j=1

(
bj
q
σq − 1)− zλ

n∏
i=1

(aiσq − 1) ∈ C(z)〈σq,σ−1q 〉.
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We denote by f0, ..., fn ∈ C[z] be the coefficients of the generalized q-
hypergeometric operator Lq(a; b;λ) :

Lq(a; b;λ) = f0σ
n
q + f1σ

n−1
q + · · ·+ fn.

Note that f0, f1, ..., fn are degree one polynomials with complex coefficients

and that f0 =
∏n
j=1

bj
q − zλ

∏n
i=1 ai and fn = (−1)n(1− λz).

The generalized q-hypergeometric system with parameters a, b and λ is the
object A of E given by :

(5) A =



0 0 0 · · · 0 −fn
f0

1 0 0 · · · 0 −fn−1

f0

0 1 0 · · · 0 −fn−2

f0
...

...
...

...
...

...

0 0 0 · · · 1 −f1
f0



−1

∈ GLn(C(z)).

Definition 33. — An object of E is q-hypergeometric with parameters a, b
and λ if it is isomorphic to (5).

An object of C is q-hypergeometric with parameters a, b and λ if it corre-
sponds to the generalized q-hypergeometric system with parameters a, b and λ
in the Riemann-Hilbert correspondence.

We know (Proposition 7 and Proposition 8 in [12]) that a generalized q-
hypergeometric object with parameters a, b and λ is irreducible if and only if,
for all i, j ∈ {1, ..., n}, we have ai/bj 6∈ qZ.

6.2. Rigidity and characterizations of the generalized q-hypergeo-
metric equations. —

Lemma 34. — Let C = (A(0),M,A(∞)) be an object of C of size n. If M is
analytic on C∗ then :

- M belongs to GLn(C[z, z−1]);

- C is isomorphic to (A(∞), In, A
(∞)) and, hence, is reducible.

Proof. — Let M(z) =
∑+∞

k=−∞Mkz
k be the Taylor expansion of M on C∗.

Since (σqM)A(0) = A(∞)M , we have, for all k ∈ Z, qkMkA
(0) = A(∞)Mk.

Lemma 3 implies that, for |k| large enough, we have Mk = 0 and hence M ∈
Mn(C[z, z−1]). So M−1 ∈ Mn(C({z})) and arguing as above we get M−1 ∈
Mn(C[z, z−1]). Whence the first part of the lemma. It is immediate that

(M, In) is an isomorphism in C form (A(0),M,A(∞)) to (A(∞), In, A
(∞)).

Definition 35 (Property H(a, b, z0)). — Let us consider a = (a1, ..., an) ∈
(C∗)n, b = (b1, ..., bn) ∈ (C∗)n and z0 ∈ C∗. We say that an object C =

(A(0),M,A(∞)) of C satisfies the condition H(a, b, z0) if :
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1) the poles of M on C∗ are simple;
2) the set of poles of M is a subset of qZz0;
3) rk Resz0 M = 1;
4) a = (a1, ..., an) and b = (b1, ..., bn) are the lists of eigenvalues (repeated

with algebraic multiplicity) of A(∞) and qA(0) respectively.

Proposition 36. — Let C = (A(0),M,A(∞)) and C ′ = (B(0), N,B(∞)) be
isomorphic normalized irreducible objects of C of size n. Then C satisfies
H(a, b, z0) if and only if C ′ satisfies H(a, b, z0).

Proof. — Let (S(0), S(∞)) be isomorphism from C to C ′. Proposition 6 ensures

that (S(0), S(∞)) ∈ GLn(C)×GLn(C). So, we have :
S(0)A(0) = B(0)S(0)

S(∞)A(∞) = B(∞)S(∞)

S(∞)M = NS(0).

The result is now clear.

Theorem 37 (Rigidity and “monodromic” characterization of the
q-hypergeometrics)

Let C = (A(0),M,A(∞)) be a normalized irreducible object of C such that

qZ Sp(A(0)) ∩ qZ Sp(A(∞)) = ∅.
If C satisfies H(a, b, z0) then :

- the eigenspaces of A(0) and A(∞) are one dimensional;
- C is strongly rigid.
We let a = (a1, ..., an) and b = (b1, ..., bn) be the lists of eigenvalues (repeated

with algebraic multiplicity) of A(∞) and qA(0) respectively. The following prop-
erties are equivalent :

i) C satisfies H(a, b, z0);

ii) C is q-hypergeometric with parameters a, b and λ = (
∏n
j=1

bj
q )(z0

∏n
i=1 ai)

−1.

Proof. — Let us consider a normalized irreducible object C = (A(0),M,A(∞))

of C such that qZ Sp(A(0))∩qZ Sp(A(∞)) = ∅ satisfying H(a, b, z0). Lemma 34
ensures that M has a least one pole on C∗ and, hence, that the set of poles
of M on C∗ is qZz0. Using Lemma 30, we see that Theorem 29 i) can be
rewritten as follows

2n2 − 2n+ 1 ≤ 2n2 − (dim Z(A(0)) + dim Z(A(∞))) + 1.(6)

So

dim Z(A(0)) + dim Z(A(∞)) ≤ 2n.
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Since dim Z(A(0)) ≥ n and dim Z(A(∞)) ≥ n (Lemma 32), we get dim Z(A(0)) =

dim Z(A(∞)) = n and hence the eigenspaces of A(0) and A(∞) have dimension
1 (Lemma 32), whence i).

Moreover, we obtain that the inequality (6) is actually an equality. There-
fore, Theorem 29 ii) ensures that C is strongly rigid.

We shall now prove ii) ⇒ i). Since, by definition, two q-hypergeometric
objects with same parameters are isomorphic, Proposition 36 shows that it is
sufficient to prove this implication for a specific q-hypergeometric object with
parameters a, b and λ. We keep the notations of section 6.1 for the generalized
q-hypergeometric system with parameters a, b and λ. The eigenvalues of A(0)
and A(∞) (repeated with algebraic multiplicity) are respectively b/q and a and
hence the system is non resonant (terminology of [14], section 1.2.2). There
exists (see section 1.2.2 of [14])

(M (0),M (∞)) ∈ GLn(M(C))×GLn(M(P1
C \ {0}))

such that (σqM
(0))A(0) = AM (0) and (σqM

(∞))A(∞) = AM (∞). Hence

C = (A(0),M,A(∞)) := (A(0), (M (∞))−1M (0), A(∞))

is a normalized irreducible q-hypergeometric object of C with parameters a, b
and λ. We will prove the result for this specific q-hypergeometric object.

We have, for all k ∈ N∗ :

(7) M = (A(∞))k(σ−kq M (∞))−1(σ−kq A)−1 · · · (σ−1q A)−1A−1 · · ·

· · · (σk−1q A)−1(σkqM
(0))(A(0))k.

Let us consider s ∈ C∗ \ qZz0. For k ∈ N∗ large enough, σkqM
(0) ∈ GLn(C{z−

s}) and σ−kq M (∞) ∈ GLn(C{z − s}). Moreover, for any k ∈ Z, σkqA
−1 ∈

Mn(C{z − s}). Hence, (7) shows that M ∈ Mn(C{z − s}). So the set of poles
of M on C∗ is included in qZz0.

For k ∈ N∗ large enough, σkqM
(0) ∈ GLn(C{z − z0}) and σ−kq M (∞) ∈

GLn(C{z − z0}). Moreover A−1 = R
z−z0 mod. Mn(C{z − z0}) for some R ∈

Mn(C) with rank at most one and, for any k ∈ Z∗, σkqA−1 ∈ Mn(C{z − z0}).
Therefore, there exists R1 ∈ Mn(C) with rank at most one such that :

M =
R1

z − z0
mod. Mn(C{z − z0}).(8)

We claim that R1 6= 0. Indeed, if R1 = 0 then M would be analytic near z0
and, hence, it would be analytic near qZz0 (because of the functional equation

(σqM)A(0) = A(∞)M). Therefore, M would be analytic on C∗ and, hence, C
would be reducible in virtue of Lemma 34 : contradiction. So z0 is a simple
pole of M and rk Resz0 M = rkR1 = 1. Once again, the functional equation

(σqM)A(0) = A(∞)M implies that M has simple poles at any point of qZz0.
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Hence C satisfies H(a, b, z0) as expected.

It remains to prove i) ⇒ ii). Let C ′ = (B(0), N,B(∞)) be a normalized ir-
reducible q-hypergeometric object of C with parameters a, b and λ such that
a = (a1, ..., an) and b = (b1, ..., bn) are the lists of eigenvalues (repeated with

algebraic multiplicity) of B(∞) and qB(0) (we have seen during the proof of
ii) ⇒ i) that such an object exists). Then, the first assertion of the present

theorem ensures that A(0) and A(∞) are conjugated to B(0) and B(∞) respec-
tively. Moreover, the set of poles of M and that of N are equal to qZz0 and
rk Resz0 M = rk Resz0 N(= 1). Therefore, C and C ′ are weakly locally iso-
morphic and, hence, isomorphic because C is strongly rigid in virtue of the
first part of this Proposition.

Proposition 38. — Let C = (A(0),M,A(∞)) be a normalized irreducible ob-

ject of Cc such that qZ Sp(A(0))∩ qZ Sp(A(∞)) = ∅. If both A(0) and A(∞) have
n distinct eigenvalues then the following properties are equivalent :

- C is strongly rigid;
- C is q-hypergeometric.

Proof. — Let s1, ..., sm be the poles of M on some fundamental domain of C∗
with respect to the action by multiplication of qZ. We set, for all i ∈ {1, ...,m},
RessiM = Ri. In virtue of Theorem 29, C is strongly rigid if and only if

m∑
i=1

dimH(Ri) = 2mn2 − (dim Z(A(0)) + dim Z(A(∞))) + 1.

Using Lemma 30 and the fact that dim Z(A(0)) = dim Z(A(∞)) = n, we get
that this equality is equivalent to

m∑
i=1

rkRi(rkRi − 2n) = 1− 2n.

This equality holds if and only if m = 1 and rkR1 = 1. The result follows
from Theorem 37.

6.3. Description of the q-hypergeometric residues. — For all x =
(x1, ..., xκ) ∈ Cκ, we set :

ξ(x) =


x1 x2 x3 · · · xn
0 x1 x2 · · · xn−1
...

. . .
. . .

. . .
...

...
. . .

. . . x2
0 · · · 0 x1

 ∈ Mκ(C).
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For all x1 ∈ Cκ1 ,..., xr ∈ Cκr , we set

ξ(x1; ...;xr) = diag(ξ(x1), ..., ξ(xr)) ∈ Mκ1+···+κr(C).

For all κ1, ..., κr ∈ N∗, we set

Ξ(κ1, ..., κr) = {ξ(x1; ...;xr) | x1 ∈ C∗ × Cκ1−1, ...
..., xk ∈ C∗ × Cκk−1} ⊂ GLκ1+···+κr(C).

For all κ1, ..., κr ∈ N∗ and τ1, ..., τs ∈ N∗ such that κ1+· · ·+κr = τ1+· · ·+τs =
n, we set

(9) Rq−hyp(κ1, ..., κr; τ1, ..., τs) = {R = (ri,j)1≤i,j≤n ∈ Mn(C) | rkR = 1

and ∀(k, l) ∈ [[1, r]]× [[1, s]], rκ1+···+κk,τ1+···+τl 6= 0}.

Lemma 39. — Let R ∈ Mn(C) be a rank one matrix. Let us consider
κ1, ..., κr ∈ N∗ and τ1, ..., τs ∈ N∗ such that κ1 + · · ·+ κr = τ1 + · · ·+ τs = n.
We consider the map

η : Ξ(κ1, ..., κr)× Ξ(τ1, ..., τs) → Mn(C)

(X,Y ) 7→ XRtY.

The following conditions are equivalent :
(i) R ∈ Rq−hyp(κ1, ..., κr; τ1, ..., τs);
(ii) η−1(R) ⊂ C∗In × C∗In.
Moreover, if these conditions hold then Im(η) = Rq−hyp(κ1, ..., κr; τ1, ..., τs).

Proof. — Let U = (u1, ..., ur) ∈ Cκ1 × · · · × Cκr and V = (v1, ..., vs) ∈ Cτ1 ×
· · ·×Cτr be such that R = tUV. Then, for any X = ξ(x1; ...;xr) ∈ Ξ(κ1, ..., κr)
and Y = ξ(y1; ..; yτs) ∈ Ξ(τ1, ..., τs), we have

η(X,Y ) = (XtU)t(Y tV )

and we have

XtU = t(a1,1, ..., a1,κ1 , ..., ar,1, ..., ar,κr) where ai,k = xi,1ui,k+· · ·+xi,κi−k+1ui,κi

and

Y tV = t(b1,1, ..., b1,κ1 , ..., bs,1, ..., bs,τs) where bj,l = yj,1vj,l + · · ·+ yj,τj−l+1vj,τj .

Assume that (i) does not hold i.e. that R 6∈ Rq−hyp(κ1, ..., κr; τ1, ..., τs).
Either there exists i ∈ [[1, r]] such that ui,κi = 0 or there exists j ∈ [[1, s]] such
that vj,τj = 0. Suppose for instance that ui,κi = 0 for some i ∈ [[1, r]] (the
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other case is similar). Then η(X,Y ) = R with Y = In ∈ Ξ(τ1, ..., τs) and, if
κi ≥ 2,

X = ξ((1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκ1−1

; ...; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκi−1−1

; (1, 0, ..., 0, 1)︸ ︷︷ ︸
∈C∗×Cκi−1

; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκi+1−1

; ...

...; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκn−1

) ∈ Ξ(κ1, ..., κr)

and, if κi = 1,

X = ξ((1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκ1−1

; ...; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκi−1−1

; (2)︸︷︷︸
∈C∗

; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκi+1−1

; ...

...; (1, 0, ..., 0)︸ ︷︷ ︸
∈C∗×Cκn−1

) ∈ Ξ(κ1, ..., κr).

So condition (ii) does not hold.
Assume that (i) holds i.e. that R ∈ Rq−hyp(κ1, ..., κr; τ1, ..., τs). So, for

all i ∈ [[1, r]], ui,κi 6= 0 and, for all j ∈ [[1, s]], vj,τj 6= 0. Let us consider
X = ξ(x1; · · · ;xr) ∈ Ξ(κ1, ..., κr) and Y = ξ(y1; ..; ys) ∈ Ξ(τ1, ..., τs) such that
η(X,Y ) = R. This equality ensures that

ai,κibj,1 = ui,κivj,1
...

...
...

ai,κibj,τj−1 = ui,κivj,τj−1

ai,κibj,τj = ui,κivj,τj

i.e.

xi,1ui,κi(yj,1vj,1 + · · ·+ yj,τjvj,τj ) = ui,κivj,1

...
...

...

xi,1ui,κi(yj,1vj,τj−1 + yj,2vj,τj ) = ui,κivj,τj−1

xi,1ui,κiyj,1vj,τj = ui,κivj,τj .

Since ui,κi , vj,τj and xi,1 are non zero, we see that xi,1yj,1 = 1 and yj,2 =
· · · = yj,τj = 0. Similarly, xj,2 = · · · = xj,τj = 0. Note that the equalities,
for all (i, j) ∈ [[1, r]] × [[1, s]], xi,1yj,1 = 1 ensure that x1,1 = · · · = xr,1 and
y1,1 = · · · = ys,1. Hence X and Y belong to C∗In as expected and condition
(ii) holds.

Therefore, we have proved that (i) and (ii) are equivalent.
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Assume that (i) holds and hence that, for all i ∈ [[1, r]], ui,κi 6= 0 and, for
all j ∈ [[1, s]], vj,κj 6= 0. Then it is clear that both

Ξ(κ1, ..., κr) → (Cκ1−1 × C∗)× · · · × (Cκr−1 × C∗)
X 7→ t(XtU)

and

Ξ(τ1, ..., τs) → (Cτ1−1 × C∗)× · · · × (Cτs−1 × C∗)
Y 7→ t(Y tV )

are surjective. Therefore Im(ψR) = R(κ1, ..., κr; τ1, ..., τs).

Theorem 40. — Let C = (A(0),M,A(∞)) be a normalized irreducible q-
hypergeometric object of C with parameters a, b and λ. We set z0 =

(
∏n
j=1

bj
q )(λ

∏n
i=1 ai)

−1. Then

{Resz0 N | (A(0), N,A(∞)) q-hypergeometric with parameters a, b and λ}
= Q−1Rq−hyp(κ1, ..., κr; τ1, ..., τs)P

where :
- κ1,...,κr are the algebraic multiplicities of the eigenvalues of A(∞);
- τ1,...,τs are the algebraic multiplicities of the eigenvalues of A(0);
- P,Q ∈ GLn(C) are such that PA(0)P−1 ∈ tΞ(τ1, ..., τs) and QA(∞)Q−1 ∈

Ξ(κ1, ..., κr).

Proof. — Using the fact that (P,Q) ∈ GLn(C) × GLn(C) is an isomorphism

from C to (PA(0)P−1, QMP−1, QA(∞)Q−1), it is clearly sufficient to consider
the case P = Q = In.

Let N be such that (A(0), N,A(∞)) is q-hypergeometric with parameters
a, b and λ. We set R = Resz0 N . Theorem 28 i) ensures that dimG(R) =

dim g(R) ≤ 1 therefore {(X,Y ) ∈ z(A(0))× z(A(∞)) | Y R = RX} = C(In, In).
Let us consider (X,Y ) ∈ Ξ(κ1, ..., κr) × Ξ(τ1, ..., τs) such that XRtY = R

i.e. XR = R(tY )−1. Since X ∈ Ξ(κ1, ..., κr) ⊂ z(A(∞)) and (tY )−1 ∈
tΞ(τ1, ..., τs) ⊂ z(A(0)), we get that ((tY )−1, X) ∈ G(R) and, hence, X and Y
belong to C∗In. Lemma 39 ensures that R ∈ Rq−hyp(κ1, ..., κr; τ1, ..., τs). So
we have proved the inclusion

(10)

{Resz0 N | (A(0), N,A(∞)) q-hypergeometric with parameters a, b and λ}
⊂ Q−1Rq−hyp(κ1, ..., κr; τ1, ..., τs)P

Moreover, for all (X,Y ) ∈ Ξ(κ1, ..., κr) × Ξ(τ1, ..., τs), (A(0), N,A(∞)) :=

(A(0), XM tY,A(∞)) is q-hypergeometric with parameters a, b and λ (because

((tY )−1, X) is is an isomorphism between (A(0),M,A(∞)) and (A(0), N,A(∞))).
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We obviously have Resz0 N = X(Resz0 M)tY . Since Resz0 M belongs to
Rq−hyp(κ1, ..., κr; τ1, ..., τs) (in virtue of the inclusion (10)), the fact that the
inclusion (10) is actually an equality is a direct consequence of the last asser-
tion of Lemma 39.
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