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Abstract. In the present work, we consider the numerical approximation of the weak solutions
of first-order system of evolution laws supplemented with entropy inequalities. The systems under
consideration are hyperbolic as soon as a conservation form is satisfied, but such stability property
may be lost for non-conservative systems. Here, we show that the robustness and the entropy stability
of any finite volume numerical scheme can be restored by introducing a suitable artificial numerical
viscosity.

1. Introduction. The present work concerns the stability of numerical schemes
to approximate the weak solutions of a N ×N evolution law systems in the following
form:

∂tw + ∂xf(w) +A(w)∂xw = 0, x ∈ R, t > 0, (1.1)

where (x, t) ∈ R+ × R 7→ w(x, t) denotes the unknown vector assumed to belong
to an open set Ω ∈ RN . Here, f : Ω → RN is a smooth enough flux function and
A : Ω→ RN ×RN denotes a given smooth matrix. From now on, it is worth noticing
that we do not impose the matrix ∇wf(w) + A(w) to be diagonalizable in R. As a
consequence, in this work, the system (1.1) is not necessarily hyperbolic over Ω.

Now, an important assumption must be put on the exact Riemann solutions of
(1.1), denoted Wex

(
x
t ;wL, wR

)
, for an initial data given by

w0(x) =

{
wL, if x < 0,

wR, if x > 0,

where wL and wR are two given constant states in Ω. Indeed, we assume the existence
of λ? > 0 such that the exact Riemann solution is in the form

Wex

(x
t

;wL, wR

)
= wL for all x < −λ?t,

Wex

(x
t

;wL, wR

)
= wR for all x > λ?t.

(1.2)

In fact, such an assumption is immediately satisfied by any hyperbolic system of
conservation laws and it is, in general, assumed for non-conservative systems with
real or complex eigenvalues.
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In addition, we assume the system (1.1) to be endowed with an entropy inequality
given by

∂tη(w) + ∂xG(w) ≤ 0, in the weak sense, (1.3)

where the entropy function η : Ω→ R is convex and the entropy flux function G : Ω→
R is defined by ∇wG(w) = ∇wη(w) · (∇wf(w) +A(w)). We recall that the existence
of entropy inequalities is strongly related to the hyperbolicity of the system as long as
(1.1) is in conservation form, namely A ≡ 0. However, by adopting a non-conservative
system, with A 6≡ 0, the system (1.1) may simultaneously get eigenvalues in C and
admit entropy inequalities.

These entropy inequalities are essential to correctly define the discontinuous shock
solutions (see [35, 44, 54, 55, 70]) as long as (1.1) is given in conservation form. Now,
after [10, 22, 36, 50, 57], it is well-known that entropy inequalities, in general, are
not sufficient to suitably define shock waves as long as the matrix ∇wf(w) + A(w)
never recasts as a Jacobian matrix. Indeed, because of the non-conservative product
A(w)∂xw, the system (1.1) presents a major difficulty because the discontinuous so-
lutions have no sense in the distributional framework. However, to give a sense to the
weak solutions, Dal Maso, LeFLoch and Murat [36] have introduced a suitable theory,
the so-called path-theory, to exhibit the existence of the entropy weak solutions for
system in non-conservative form (see [56, 58]). In addition, we mention that the en-
tropy inequalities are fully natural when considering viscous approach to characterize
the Riemann solution of hyperbolic systems in non-conservative form (for instance,
see [10,29]).

Now, for both conservative and non-conservative systems, the entropy inequalities
produce important estimations to be replaced by: since we get

∫
R η(w(x, t))dx ≤∫

R η(w0(x))dx, we obtain, in a sense to be prescribed, a weighted−L2 estimation of
w for all t > 0. Moreover, according to [10, 29], the entropy inequality (1.3) enforced
an additional control of the discontinuous solutions. Indeed, across a discontinuity
separating two constant states wL and wR and propagating with a velocity σ,from
(1.3) we have −σ(η(wR) − η(wL)) + (G(wR) − G(wL)) ≤ 0. Because of the natural
conservation form of (1.3), let us mention that the above entropy definition is free
from the selected path for systems in non-conservative form. Put in other words,
according to [36], a shock discontinuity depends on a path φ to get (wφL, w

φ
R;σφ).

But all the possible shocks, according to the choice of the path φ, satisfy the local
entropy inequality −σφ(η(wφR) − η(wφL)) + (G(wφR) − G(wφL)) ≤ 0. At this level, it
is thus essential to understand that the entropy inequality (1.3) does not solve the
well-known non-conservative product ambiguity but gives suitable estimations.

During the last half century, numerous numerical schemes have been designed
to approximate the weak solutions of (1.1). Clearly, it is not possible to give an
exhaustive bibliography, but the reader is referred to the pioneer work by Parés [65]
where a path-consistent scheme is derived in order to produce relevant approximations
of the weak solutions of (1.1) according to the path-theory [36] (see also [24,43,44,47,
53,57,61,76] and references therein for a review about the numerical approximation of
hyperbolic systems of conservation laws, balance laws and hyperbolic non-conservative
systems). In the present work, we focus our attention on the well-known 3-point finite
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volume explicit schemes. These numerical techniques read

wn+1
i = wni −

∆t

∆x

(
f∆(wni , w

n
i+1)− f∆(wni−1, w

n
i )
)

− ∆t

2∆x

(
AL∆(wni , w

n
i+1) · (wni+1 − wni ) +AR∆(wni−1, w

n
i ) · (wni − wni−1)

)
,

(1.4)
where f∆ : Ω × Ω → RN denotes the Lipschitz-continuous numerical flux function
such that f∆(w,w) = f(w) for all w in Ω. Moreover, AL,R∆ : Ω × Ω → RN × RN is

a matrix consistent with A(·), namely AL,R∆ (w,w) = A(w). Here, wni approximates
w(x, t) for all x in a cell (xi− 1

2
, xi+ 1

2
) of size ∆x at time tn. For the sake of simplicity

in the forthcoming developments, both space and time increments ∆x and ∆t are
constant, and we set xi = (xi− 1

2
+ xi+ 1

2
)/2 the middle of the cell (xi− 1

2
, xi+ 1

2
). We

underline that the definition of f∆ and AL,R∆ are free and the reader may refer to any
scheme derivation proposed in the literature.

Now, equipped with these numerical approximations, three natural questions
arise:

1. How is the time increment ∆t restricted?
2. Do the updated states (wn+1

i )i∈Z be in Ω as soon as wni ∈ Ω for all i ∈ Z?
3. How can we restore, at the numerical level, an entropy inequality (1.3)?

Concerning the first question, the well-known CFL restriction produces an inter-
esting response. Indeed, after [78], stability criterion can be imposed as follows:

∆t

∆x
max

i∈Z, 1≤`≤N
|λ`(wni )| ≤ 1

2
, (1.5)

where (λ`(w))1≤`≤N denote the eigenvalues of the matrix ∇wf(w)+A(w). According

to the definition of f∆(·, ·) and AL,R∆ (·, ·), such a time restriction may be insufficient
to ensure a stability condition in a sense to be prescribed. Moreover, in (1.5), the
eigenvalues are expected to be real. As a consequence, it is worth noticing that the
CFL-like condition (1.5) is suitable for hyperbolic systems with explicit eigenvalues.
Unfortunately, systems issuing from sophisticated physics do not necessarily admit
real eigenvalues. For instance, let us consider the bi-layer shallow water model [20–23,
27,28] or sediment transport model [26,34,46,64] for which the associated eigenvalues
do not have an explicit simple expression and belong to R or C.

Next, concerning the second question, this problem is frequently called realizabil-
ity or robustness of the scheme. This issue is, in general, tackled in the derivation of
a new scheme. Indeed, if the numerical robustness is lost, no longer the existence of
the numerical approximation can be ensured. As a consequence, the robustness (or
realizability) must be preserved to validate a scheme.

Finally, concerning the last question, the derivation of discrete entropy inequalities
remains a very difficult task. Indeed, to enforce the required entropy stability, the
updated states (wn+1

i )i∈Z, given by (1.4), are expected to satisfy for all i ∈ Z

η(wn+1
i ) ≤ η(wni )− ∆t

∆x

(
G∆(wni , w

n
i+1)−G∆(wni−1, w

n
i )
)
, (1.6)

where G∆(·, ·) is a numerical entropy flux function such that G∆(w,w) = G(w) for
all w in Ω. As long as N ≥ 2, up to our knowledge, very few schemes are entropy
preserving and satisfy a discrete entropy inequality in the form (1.6). The original
Godunov scheme [45] (see also [44,76]) and the HLL scheme [48] are proved to be en-
tropy preserving. The establishment of this stability property comes from the entropy
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inequality (1.3) satisfied by the exact solution. Some kinetic schemes [15, 52] and re-
laxation schemes [17–19, 30, 33], including the well-known HLLC scheme [17, 77], are
also proved to preserve the entropy stability, by adopting some convex minimization
principles. Several works propose more general conditions to get the expected discrete
entropy inequalities when considering conservative hyperbolic systems. For instance,
in [48], the authors introduce a local entropy condition per interface. Excepted for
the Godunov scheme and the one-intermediate state HLL scheme (see also [11]), this
condition is hardly reachable. We also mention the important work by Tadmor [74,75]
where, arguing the entropy variables, discrete entropy inequalities (1.6) are derived
according to a suitable control of the numerical viscosity. We also refer to the work by
Bouchut [16] where the discrete entropy inequalities (1.6) are obtained for hyperbolic
system of conservation laws by arguing a suitable kinetic reformulation. In fact, most
of the designed schemes perform good approximations, without spurious numerical
perturbations, so that they are certainly entropy preserving but the establishment of
the required entropy stability is not reachable. However, it is important to notice
that several schemes are entropy violating (for instance, see [38, 39, 62, 68]) and may
capture wrong shock solutions. In the literature [37,49], entropy corrections have been
introduced but fully discrete entropy inequalities (1.6) are, in general, not established
(see also [1, 3, 6]). From now on, as soon as A(.) 6≡ 0 in (1.1), we emphasize that the
well known non-conservative product ambiguity [36] is here not solved. According
to [5,9,22,50], an approximated shock solution may depend on the selected numerical
scheme; namely a dependence on the choice of of f∆(., .), AL∆(., .) and AR∆(., .). Since
the entropy inequality (1.3) does not solve the non-conservative product ambiguity, it
is worth noticing that the existence of a discrete entropy inequality never ensures the
convergence to the expected weak solution according to a selected path, at the dis-
crepancy of conservative systems with A(.) ≡ 0. As underline in [22,50] (see also [4]),
as soon as A(.) 6≡ 0 the approximate solution converges to a weak solution of (1.1) up
to a measure. Let us notice that a discrete entropy inequality cannot suitably control
such a wrong measure but gives a suitable L2 control of the approximated solution.

In order to overcome the difficulty of the convergence towards the correct solution,
one could use viscosity-free methods based on Random Choice (see [32,41,42]), front-
tracking methods (see [40, 67]) or methods based on a proper in-cell discontinuous
reconstruction (see [31,66] ) ; or controlled viscosity methods based on the equivalent
equation (see [8, 51]); or use methods that control the entropy losses across discon-
tinuities like nonlinear projection methods (see [14]); or methods based on kinetic
relations (see [10,60]), etc. The interested reader is referred to [59] and the references
therein for a detailed discussion on this topic.
Let us mention that, even in the case in which jump relations are explicitly given by
the physics of the problem, the design of numerical methods converging to the correct
weak solutions is still challenging: this is the case for the Kapila multiphase model
that has been discretized in [7] by a numerical method that is a hybridization of Roe
and Glimm schemes. Recent approaches to construct numerical methods that con-
verge to the correct weak solution for the non-conservative formulation of the pressure
based Euler equations can found in [2].

In the present work, we address the three asked questions by adopting artificial
viscosity. Following ideas introduced by Tadmor [71,73–75], and its generalization to
non-conservative systems in [25], the numerical viscosity is a essential tool to recover
the required entropy estimation (1.6). As a consequence, the scheme improved by
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artificial viscosity under consideration is here given by

wn+1
i = wni −

∆t

∆x

(
f∆(wni , w

n
i+1)− f∆(wni−1, w

n
i )
)

− ∆t

2∆x

(
AL∆(wni , w

n
i+1) · (wni+1 − wni ) +AR∆(wni−1, w

n
i ) · (wni − wni−1)

)
+
γ

2

∆t

∆x

(
wni+1 − 2wni + wni−1

)
,

(1.7)
where γ ≥ 0 is a parameter to be fixed according to the expected stability properties.
To judiciously control γ, we here suggest to derive a local Godunov-type reformulation
[12, 13, 48]. We adopt the local integral consistency stated by Harten, Lax and van
Leer [48, Theorem 3.1] to get the required control of the artificial viscosity and to
obtain the expected estimation (1.6) in the same spirit of Tadmor in [74] and its
generalization to non-conservative systems [25] . Moreover, this control of the artificial
viscosity comes with a relevant restriction of the time increment ∆t by exhibiting a
CFL-like criterion. In fact, the local Godunov-type reformulation of the scheme (1.4)
also leads to a condition to enforce the updated state wn+1

i to belong to Ω. This
condition is, once again, controlled by the artificial viscosity.

The present paper is organized as follows. In the next section, we present local
Godunov-type reformulations [12, 13, 48] and the introduction of judicious approxi-
mate Riemann solvers. We also give assumptions to be satisfied by the exact Rie-
mann solution for (1.1) in order to state our main result where we show a suitable
CFL condition to get the expected robustness and the discrete entropy inequalities.
Next, Section 3 and Section 4 are devoted to the establishment of the main result.
Both robustness (Section 3) and discrete entropy inequalities (Section 4) are obtained
by involving a relevant Godunov-type reformulation. The last section is devoted to
numerical experiments in order to illustrate the relevance of the proposed stability
enforcing technique. First, we perform numerical approximations of the solutions of
the isentropic gas dynamic model and the shallow water model. We show the ability
of the here designed technique to stabilize entropy violating schemes. Next, we con-
sider the bi-layer shallow-water model. Because the eigenvalues of the model remain
unknown, the interest of the stabilizing technique is twofold since, in addition to both
robustness and entropy preserving properties, we obtain a natural CFL-like condition.

2. Godunov-type reformulation and main results. We here reformulate the
viscous scheme (1.7) as a Godunov-type scheme. We address the reader to [24] and
the references therein for further detail. To do so, we first introduce an approximate
Riemann solver as follows:

W̄R
(x
t

;wni , w
n
i+1

)
=



wni , if x < −(λi+ 1
2

+ γ)t,

w̄i+ 1
2
, if − (λi+ 1

2
+ γ)t < x < −λi+ 1

2
t,

wL?i+ 1
2
, if − λi+ 1

2
t < x < 0,

wR?i+ 1
2
, if 0 < x < λi+ 1

2
t,

w̄i+ 1
2
, if λi+ 1

2
t < x < (λi+ 1

2
+ γ)t,

wni+1, if x > (λi+ 1
2

+ γ)t,

(2.1)
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where wL?
i+ 1

2

and wR?
i+ 1

2

are defined by

wL?i+ 1
2

= wni −
1

λi+ 1
2

(
f∆(wni , w

n
i+1)− f(wni )

)
− 1

2λi+ 1
2

AL∆(wni , w
n
i+1) · (wni+1 − wni ), (2.2)

wR?i+ 1
2

= wni+1 +
1

λi+ 1
2

(
f∆(wni , w

n
i+1)− f(wni+1)

)
− 1

2λi+ 1
2

AR∆(wni , w
n
i+1) · (wni+1 − wni ), (2.3)

where we have set

w̄i+ 1
2

=
1

2
(wni + wni+1). (2.4)

At this level, the wave speed parameter λi+ 1
2

is only imposed to be positive but
it must be selected according to forthcoming stability conditions.

Now, we are able to exhibit the expected Godunov-type reformulation.
Lemma 2.1. Under the CFL-like condition

∆t

∆x
max
i∈Z

(
λi+ 1

2
+ γ
)
≤ 1

2
, (2.5)

the viscous scheme (1.7) equivalently reformulates as follows:

wn+1
i =

1

∆x

∫ xi

x
i− 1

2

W̄R
(
x− xi− 1

2

∆t
;wni−1, w

n
i

)
dx

+
1

∆x

∫ x
i+ 1

2

xi

W̄R
(
x− xi+ 1

2

∆t
;wni , w

n
i+1

)
dx.

(2.6)

From now on, let us remark that, as soon as γ = 0, the intermediate states
w̄i+ 1

2
no longer appear within the approximate Riemann solver (2.1) so that the

Godunov-type reformulation (2.6) coincides with the original scheme (1.4). Moreover,
we emphasize that the artificial viscosity involved in (1.7) is entirely contained in the
two intermediate states given by w̄i+ 1

2
. Such a splitting within the intermediate states

will allow to control the entropy dissipation rate issuing from the artificial viscosity
independently from the entropy dissipation rate of the initial scheme (1.4). Moreover,
it is important to notice that this splitting results from the introduction of the free
parameter λi+ 1

2
> 0. In fact, to establish the entropy preserving property, a lower

bound of λi+ 1
2

will be exhibited.
Now, we establish the scheme reformulation stated Lemma 2.1.
Proof. Direct computations give the following sequence of equalities:

1

∆x

∫ xi

x
i− 1

2

W̄R
(
x− xi− 1

2

∆t
;wni−1, w

n
i

)
dx =

1

∆x

∫ ∆x/2

0

W̄R
( x

∆t
;wni−1, w

n
i

)
dx,

=
1

2
wni + γ

∆t

∆x
(w̄i− 1

2
− wni ) + λi− 1

2

∆t

∆x
(wR?i− 1

2
− wni ),

1

∆x

∫ x
i+ 1

2

xi

W̄R
(
x− xi+ 1

2

∆t
;wni , w

n
i+1

)
dx =

1

∆x

∫ 0

−∆x/2

W̄R
( x

∆t
;wni , w

n
i+1

)
dx,

=
1

2
wni + γ

∆t

∆x
(w̄i+ 1

2
− wni ) + λi+ 1

2

∆t

∆x
(wL?i+ 1

2
− wni ).
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Arguing the definition of the intermediate states, given by (2.2), (2.3) and (2.4), the
updated state wn+1

i , defined by (1.7), rewrites as follows:

wn+1
i =

1

∆x

∫ ∆x
2

0

W̄R
( x

∆t
;wni−1, w

n
i

)
dx+

1

∆x

∫ 0

−∆x
2

W̄R
( x

∆t
;wni , w

n
i+1

)
dx.

Next, under the CFL restriction (2.5), two successive approximate Riemann solver,

namely W̄R
(
x−x

i− 1
2

∆t ;wni−1, w
n
i

)
and W̄R

(
x−x

i+ 1
2

∆t ;wni , w
n
i+1

)
, never interact. As a

consequence, the expected reformulation (2.6) is obtained by a change of variable in
the integrals. The proof is thus completed.

In fact, the Godunov-type reformulation is not unique. It will be convenient to
present a second reformulation based on the following approximate Riemann solver:

W̃R
(x
t

;wni , w
n
i+1

)
=



wni , if x < −(λi+ 1
2

+ γ)t,

w̃L?i+ 1
2
, if − (λi+ 1

2
+ γ)t < x < 0,

w̃R?i+ 1
2
, if 0 < x < (λi+ 1

2
+ γ)t,

wni+1, if x > (λi+ 1
2

+ γ)t,

(2.7)

where

w̃L?i+ 1
2

=

(
1−

λi+ 1
2

λi+ 1
2

+ γ

)
w̄i+ 1

2
+

λi+ 1
2

λi+ 1
2

+ γ
wL?i+ 1

2
, (2.8)

w̃R?i+ 1
2

=

(
1−

λi+ 1
2

λi+ 1
2

+ γ

)
w̄i+ 1

2
+

λi+ 1
2

λi+ 1
2

+ γ
wR?i+ 1

2
. (2.9)

Equipped with this second approximate Riemann solver, we now give a new equivalent
Godunov-type reformulation.

Lemma 2.2. Under the CFL-like condition (2.5), the viscous scheme (1.7) equiv-
alently reformulates as follows:

wn+1
i =

1

∆x

∫ xi

x
i− 1

2

W̃R
(
x− xi− 1

2

∆t
;wni−1, w

n
i

)
dx

+
1

∆x

∫ x
i+ 1

2

xi

W̃R
(
x− xi+ 1

2

∆t
;wni , w

n
i+1

)
dx.

(2.10)

The establishment of the above result is similar to Lemma 2.1 and the proof is left
to the reader.

We are now able to state our main result where we claim that the viscous scheme
(1.7) is robust and entropy satisfying as soon as λi+ 1

2
and γ are fixed large enough.

Theorem 2.3. Let (wni )i∈Z be given in Ω. Let wn+1
i be given by the viscous

scheme (1.7). Assume that

1

2

(
AL∆(wni , w

n
i+1) +AR∆(wni , w

n
i+1)

)
· (wni+1 − wni ) =

1

∆t

∫ ∆t

0

∫ λ
i+ 1

2
∆t

−λ
i+ 1

2
∆t

A
(
Wex

(x
t

;wni , w
n
i+1

))
∂xWex

(x
t

;wni , w
n
i+1

)
dx dt,

(2.11)
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Let λi+ 1
2
> λ?. Let us set

E0
i+ 1

2
= λi+ 1

2

(
η(wL?i+ 1

2
) + η(wR?i+ 1

2
)− η(wni )− η(wni+1)

)
+
(
G(wni+1)−G(wni )

)
,

(2.12)

Di+ 1
2

= 2η(w̄i+ 1
2
)− η(wni )− η(wni+1), (2.13)

and define γ as follows:

γ = max
i∈Z

(
0,−
E0
i+ 1

2

Di+ 1
2

)
. (2.14)

Let ∆t be restricted by the CFL-like condition (2.5). Assume that the Hessian matrix
∇2
wη(w) is positive definite. Then γ ≥ 0 is bounded and the viscous scheme (1.7) is

1. robust: wn+1
i ∈ Ω, as long as γ satisfies in addition

γ ≥ max

{
λi+ 1

2

ri+ 1
2

∥∥∥wL?i+ 1
2
− w̄i+ 1

2

∥∥∥− λi+ 1
2
,
λi+ 1

2

ri+ 1
2

∥∥∥wR?i+ 1
2
− w̄i+ 1

2

∥∥∥− λi+ 1
2

}
,

(2.15)
where ri+ 1

2
> 0 is such that the ball B(w̄i+ 1

2
, ri+ 1

2
) centered on w̄i+ 1

2
with

radius ri+ 1
2

is entirely contained within Ω.

2. entropy preserving: wn+1
i verifies the discrete entropy inequality (1.6).

The proof of this statement is the purpose of the two next sections. Before
going any further, it should be noted that γ given by condition (2.14) is bounded.
An estimate of this bound will be given later in the proof of Lemma (see estimate
(4.5)). At the practical level, γ is computed as the maximum in (2.14) and (2.15) at
the beginning of each time step and the time increment ∆t is defined according to
(2.5) afterwards. To conclude this section, let us comment the assumptions imposed
in the above result. First, by enforcing λi+ 1

2
to be large enough is a very natural

assumption. Formally, the condition λi+ 1
2
> λ? can be found in [48]. Indeed, as

long as the eigenvalues (λ`(w))1≤`≤N of the matrix ∇wf(w) + A(w) are known, the
assumption stated on λi+ 1

2
reads

λi+ 1
2
≥ max

1≤`≤N

(
|λ`(wni )|, |λ`(wni+1)|)

)
.

As a consequence, this parameter cannot be as small as we want and that is coherent
with the CFL-like restriction (2.5). Next, we emphasize that the assumption (2.11)
only concerns systems (1.1) in non-conservative form [22, 23, 26, 27, 65]. In addition,
let us mention that the entropies issuing from problems of physical interest admit, in
general, a positive definite Hessian matrix.

3. Artificial viscosity and robustness. In this section, we show that the
artificial viscosity may enforce the robustness of the numerical scheme.

Lemma 3.1. Assume Ω is convex. Let (wni )i∈Z be a given sequence in Ω. Let
wn+1
i be given by the viscous scheme (2.6). Let ∆t be restricted according to the

CFL-like condition (2.5). As soon as γ ≥ 0 is large enough according to (2.15), then
wn+1
i ∈ Ω for all i ∈ Z.

Proof. Since Ω is convex, in view of (2.10) and thanks to the CFL condition (2.5),
it is sufficient to prove that w̃L?

i+ 1
2

, w̃R?
i+ 1

2

∈ Ω whenever wni , w
n
i+1 ∈ Ω.
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Now, clearly the intermediate state w̄i+ 1
2
, given by (2.4), stays in Ω. Moreover,

since Ω is an open set, then there exists ri+ 1
2
> 0 such that

w ∈ Ω for every w satisfying
∥∥∥w − w̄i+ 1

2

∥∥∥ < ri+ 1
2
.

Therefore, it is a sufficient condition to have∥∥∥w̃L?i+ 1
2
− w̄i+ 1

2

∥∥∥ =
λi+ 1

2

λi+ 1
2

+ γ

∥∥∥wL?i+ 1
2
− w̄i+ 1

2

∥∥∥ < ri+ 1
2
,

∥∥∥w̃R?i+ 1
2
− w̄i+ 1

2

∥∥∥ =
λi+ 1

2

λi+ 1
2

+ γ

∥∥∥wR?i+ 1
2
− w̄i+ 1

2

∥∥∥ < ri+ 1
2
,

where wL?
i+ 1

2

and wR?
i+ 1

2

, defined by (2.8) and (2.9), do not depend on γ. As a conse-

quence, the condition (2.15) immediately imposes w̃L?
i+ 1

2

and w̃R?
i+ 1

2

to belong to Ω and

the proof is achieved.
Let us emphasize that the admissible states, here, belong to an open set. Ac-

cording to some particular physics, Ω is not necessarily open (for instance, see the
shallow-water model [12, 17, 63]). The transition from states in Ω to states in ∂Ω, in
general, needs a specific attention and it is not considered in the present work.

In addition to this general result, a constructive method can be proposed in the
particular case where Ω is of the form:

Ω =
{
w ∈ Rd , pj(w) > 0 , j = 1 , · · · , L

}
, (3.1)

where (pj)j=1 ,··· ,L are smooth functions. According to the convexity of Ω, we recall
that a sufficient condition to have robustness is to enforce the quantities (2.8), (2.9) to

belong to Ω, which means that pj(w̃
L,∗
i+1/2) > 0 and pj(w̃

R,∗
i+1/2) > 0 for j = 1 , · · · , L.

Note that wni , w
n
i+1 ∈ Ω ⇒ pj(w̃i+1/2) > 0 for j = 1 , · · · , L, and lim

γ→+∞
w̃L,∗i+1/2 =

lim
γ→+∞

w̃R,∗i+1/2 = w̄i+1/2. According to the continuity of the functions pj , this implies

the existence of a γ large enough such that pj(w̃
L,∗
i+1/2) > 0 and pj(w̃

R,∗
i+1/2) > 0 for all

j = 1, · · ·L, which ensures the robustness property and is consistent with the previous
Lemma. Of course, this limit value of γ may depend on the functions (pj)j=1,··· ,L
involved in the definition of Ω. However, an explicit treshold can be exhibited under
some additional regularity hypothesis. More precisely, let us assume that the functions
pj admit local Taylor expansions at order Nj ∈ N∗ such that:∣∣∣∣∣∣pj(x+ h)−

pj(x) +

Nj∑
k=1

1

k!
dpkj,x(h)

∣∣∣∣∣∣ ≤ Mj

(Nj + 1)!
‖h‖Nj+1 , ∀x, h ∈ Rd ,

with Mj > 0 and where dpkj,x(h) is the k-th order differential of pj at point x. Note
that, as will be illustrated later, all the models considered in this paper enter this
frame.
In what follows we will drop the subscript “j” for simplification purposes. Also, when
no confusion is possible, we will drop the subscript “i+ 1/2” and rewrite (2.8), (2.9)
as:

w̃∗ = w̄ + ν δw , (3.2)
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where ν =
λ

λ+ γ
and (w̃∗, δw) being either equal to (w̃L,∗i+1/2, w

L,∗
i+1/2 − w̄i+1/2) or

(w̃R,∗i+1/2, w
R,∗
i+1/2 − w̄i+1/2). Then, according to (3.2), we have:∣∣∣∣∣p(w̃∗)−

(
p(w̄) +

N∑
k=1

1

k!
νkdpkw̄(δw)

)∣∣∣∣∣ ≤ M

(N + 1)!
|ν|N+1‖δw‖N+1 , (3.3)

from which we deduce a sufficient condition to have p(w̃∗) > 0:

p(w̄) +

N∑
k=1

1

k!
νkdpkw̄(δw)− M

(N + 1)!
|ν|N+1‖δw‖N+1 > 0 . (3.4)

Recalling that λ ≥ 0 and γ ≥ 0, we set µ = λ + γ > 0. Then, multiplying (3.4) by
µN+1, we can express the previous condition through the positivity of a polynomial
of order N + 1 in µ:

Q(µ) := µQ1(µ)− M

(N + 1)!
|λ|N+1‖δw‖N+1 > 0 , (3.5)

where

Q1(µ) = µNp(w̄) +

N∑
k=1

1

k!
λkµN−kdpkw̄(δw). (3.6)

Note that the polynomial (3.5) only depends on w̄ and δw, which are explicit interface
quantities independent from γ, according to (3.2). From this, we remark that the
dominant term of Q is µN+1p(w̄) ≥ 0, so that the study of the roots of Q will allow
to identify a real value µ+ such that Q(µ) > 0 for all µ > µ+, or in an equivalent way,
for all γ ≥ 0 satisfying:

γ > µ+ − λ . (3.7)

We have thus established the following result:
Lemma 3.2. Assume that Ω is under the form (3.1), and consider (wni )i∈Z a given

sequence in Ω. Let wn+1
i be given by the viscous scheme (2.6). Let ∆t be restricted

according to the CFL-like condition (2.5). Then, if the viscous constant γ ≥ 0 satisfies
the condition:

γ > max
i∈Z

(
max

j=1,··· ,L

(
µ+
j − λi+1/2

))
,

where µ+
j is the largest root of the polynomial Q defined in (3.5), we have wn+1

i ∈ Ω
for all i ∈ Z.

Remark 1. Example of the Shallow Water equations :
We have Ω =

{
w ∈ Rd , p(w) > 0

}
with p(w) = h and d = 2, 3. We have (3.3) with

N = 1 and M = 0:

p(w̃∗) = p(w̄) + νδw.∇p = h̄+ νδh ,

Since M = 0, the sufficient condition (3.5) reduces to Q1(µ) > 0, that is:

(λ+ γ) h̄+ λδh > 0 ,
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from which we deduce the condition:

γ > −λh
∗

h̄
, (3.8)

with h∗ = δh + h̄. One may remark that if the original scheme is robust, i.e. the
intermediate states hL,∗i+1/2, h

R,∗
i+1/2 given by (2.2), (2.3) are positive, then h∗ > 0 and

there is no condition on γ.

Remark 2. Let us also remark that the case of isentropic gas dynamics, similar
to what we previously said for shallow water, would not pose problems in the case of
vacuum. Indeed, if a given intercell we have hi → 0+, hi+1 > 0, then we get

h̃L∗i+1/2 =
hi + hi+1

2
+

λ

λ+ γ

(
hL∗i+1/2 −

hi + hi+1

2

)
.

If h∗i+1/2 −
hi+hi+1

2 ≥ 0, then h̃L∗i+1/2 ≥ 0 and no additional restrictions are required
for γ. This would be for instance the case when the original scheme is robust.

If h∗i+1/2 −
hi+hi+1

2 < 0, then hL∗i+1/2 ≥ 0 provided that γ ≥ − 2λh∗
i+1/2

hi+hi+1
, which should

be enforced in order to have a robust scheme. Remark that the right hand side of the
inequality for the second case corresponds to (3.8) and remains bounded for hi → 0+.

In the general case, for compressible Euler equations, the phase state

Ω = {(ρ, ρu, ρE) st. ρ > 0 and ρE − (ρu2)/(2ρ) > 0}

is not convex. Hence, the procedure described in this section does not apply for a
numerical scheme expressed in the conservative variables w = (ρ, ρu, ρE). Moreover,
the technique would be applied to the conserved variables, but here we would have
an extra difficulty as the internal energy should remain positive as well. In practice,
we have checked for the double rarefaction test case that the Roe scheme computes
complex values of the speed of sound near vacuum (because of too small values of
the total enthalpy in the approximated Riemann solver), which cannot be corrected by
simply adding the γ-correction.

4. Artificial viscosity and discrete entropy inequalities. In order to get
the discrete entropy inequality (1.6), we apply for an entropy preserving sufficient con-
dition established by Harten, Lax and van Leer in [48]. For the sake of completeness,
we recall this result and the reader is referred to [48] for the proof.

Lemma 4.1 (Harten, Lax and van Leer [48]). Let wni and wni+1 be given in Ω.
Assume that the approximate Riemann solver satisfies

1

∆x

∫ ∆x/2

−∆x/2

η
(
W̄R

( x

∆t
;wni , w

n
i+1

))
dx ≤

1

2

(
η(wni ) + η(wni+1)

)
− ∆t

∆x

(
G(wni+1)−G(wni )

)
, (4.1)

for a given entropy pair (η,G). Then, the Godunov-type scheme (2.6) satisfies a
discrete entropy inequality (1.6) where the numerical entropy flux function reads as
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follows:

G∆(wni , w
n
i+1) = G(wni+1)− ∆x

2∆t
η(wni+1) +

1

∆x

∫ ∆x/2

0

η
(
W̄R

( x

∆t
;wni , w

n
i+1

))
dx,

= G(wni+1) + λi+ 1
2
η(wR?i+ 1

2
) + (λi+ 1

2
+ γ)(η(w̄i+ 1

2
)− η(wni+1)).

Now, equipped with such a result, the expected discrete entropy inequality (1.6) is
obtained as soon as the inequality (4.1) is proved to be satisfied. Since the approximate
Riemann solver is given by (2.1), we easily get

1

∆x

∫ ∆x/2

−∆x/2

η
(
W̄R

( x

∆t
;wni , w

n
i+1

))
dx =

(
1

2
− (λi+ 1

2
+ γ)

∆t

∆x

)(
η(wni ) + η(wni+1)

)
+ 2γ

∆t

∆x
η(w̄i+ 1

2
) + λi+ 1

2

∆t

∆x

(
η(wL?i+ 1

2
) + η(wR?i+ 1

2
)
)
,

so that the inequality (4.1) recasts as follows:

E0
i+ 1

2
+ γDi+ 1

2
≤ 0, (4.2)

where the quantities E0
i+ 1

2

and Di+ 1
2

are defined by (2.12) and (2.13). It is worth

noticing that E0
i+ 1

2

is nothing but an entropy dissipation rate associated with the

original scheme (1.4) while E0
i+ 1

2

+ γDi+ 1
2

stands for the entropy dissipation rate of

the viscous scheme (1.7). Since η is a convex function, we immediately get Di+ 1
2
≤ 0,

which coincides with an entropy dissipation rate associated with the artificial viscosity.
Now, we remark that E0

i+ 1
2

is non-positive for an entropy preserving scheme (1.4).

Then, the expected inequality (4.1) is immediately satisfied. But, as soon as the
original scheme (1.4) is entropy violating, we have E0

i+ 1
2

> 0. However, we notice

that neither E0
i+ 1

2

nor Di+ 1
2

depends on γ. As a consequence, the objective now is to

fix γ ≥ 0 large enough such that the required inequality (4.2) holds true. In fact, a
particular attention must be paid on a possible blow-up of γ. Indeed, after (2.14), γ
may eventually go to infinity as Di+ 1

2
goes to zero. In the next statement, we establish

that γ remains bounded.
Lemma 4.2. Let (wni )i∈Z be given in Ω. Let wn+1

i be given by the viscous scheme
(2.6), or equivalently (1.7). Assume that the discretization of the non-conservation
product A(w)∂xw satisfies (2.11). Assume λi+ 1

2
> λ?. Let ∆t be restricted according

to the CFL-like restriction (2.5). Moreover, let the Hessian matrix ∇2
wη(w) be positive

definite. Then, γ ≥ 0, given by (2.14), is bounded and the discrete entropy inequality
(1.6) is satisfied.

Proof. After Lemma 4.1, the expected discrete entropy inequality (1.6) holds as
soon as (4.2) is verified. As a consequence, the proof is completed when the quantity
−E0

i+ 1
2

/Di+ 1
2

is proved to be bounded for E0
i+ 1

2

≥ 0. Since η is a convex function with

∇2
wη(w) a positive definite matrix, Di+ 1

2
= 0 if and only if wni = wni+1. We now study

the behavior of −E0
i+ 1

2

/Di+ 1
2

near wni = wni+1. To address such an issue, let us first

introduce

wHLLi+ 1
2

=
1

2λi+ 1
2
∆t2

∫ ∆t

0

∫ λ
i+ 1

2
∆t

−λ
i+ 1

2
∆t

Wex

( x

∆t
;wni , w

n
i+1

)
dx dt. (4.3)
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In fact, this specific sate, introduced in [48], plays an essential role in the derivation of
discrete entropy inequalities. Since Wex

(
x

∆t ;w
n
i , w

n
i+1

)
is solution of (1.1), it satisfies

∂tWex + ∂xf(Wex)+A(Wex)∂xWex = 0.

The integration of the above relation over (−λi+ 1
2
∆t, λi+ 1

2
∆t) × (0,∆t), with λi+ 1

2

large enough and according (1.2), gives

1

2λi+ 1
2
∆t2

∫ ∆t

0

∫ λ
i+ 1

2
∆t

−λ
i+ 1

2
∆t

Wex

( x

∆t
;wni , w

n
i+1

)
dx dt =

1

2
(wni + wni+1)− 1

2λi+ 1
2

(
f(wni+1)− f(wni+1)

)
− 1

2λi+ 1
2
∆t

∫ ∆t

0

∫ λ
i+ 1

2
∆t

−λ
i+ 1

2
∆t

A
(
Wex

(x
t

;wni , w
n
i+1

))
∂xWex

(x
t

;wni , w
n
i+1

)
dx dt.

Arguing (2.11), we obtain

wHLLi+ 1
2

=
1

2
(wni + wni+1)− 1

2λi+ 1
2

(
f(wni+1)− f(wni+1)

)
− 1

4λi+ 1
2

(
AL∆(wni , w

n
i+1) +AR∆(wni , w

n
i+1)

)
· (wni+1 − wni ).

Now, let us notice that

wHLLi+ 1
2

=
1

2

(
wL?i+ 1

2
+ wR?i+ 1

2

)
, (4.4)

where wL,R?
i+ 1

2

are given by (2.2) and (2.3).

Moreover, sinceWex, is defined as an exact solution of (1.1), necessarily it satisfies
the entropy inequality (1.3) so that we have

∂tη(Wex) + ∂xG(Wex) ≤ 0.

Once again, integrating the above inequality over (−λi+ 1
2
∆t, λi+ 1

2
∆t) × (0,∆t), be-

cause of (1.2), we get

1

2λi+ 1
2
∆t

∫ λ
i+ 1

2
∆t

−λ
i+ 1

2
∆t

η
(
Wex

(x
t

;wni , w
n
i+1

))
dx ≤

1

2

(
η(wni ) + η(wni+1)

)
− 1

2λi+ 1
2

(
G(wni+1)−G(wni )

)
.

Arguing the well-known Jensen’s inequality, from (4.3) the above inequality reads

η(wHLLi+ 1
2

) ≤ 1

2
(wni + wni+1)− 1

2λi+ 1
2

(
G(wni+1)−G(wni )

)
.

Next, with E0
i+ 1

2

defined by (2.12), we obtain the following estimation:

E0
i+ 1

2
≤ λi+ 1

2

(
η(wL?i+ 1

2
) + η(wR?i+ 1

2
)− 2η(wHLLi+ 1

2
)
)
,
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to write according to (2.13)

0 ≤ −
E0
i+ 1

2

Di+ 1
2

≤ λi+ 1
2

η(wL?
i+ 1

2

)− η(wR?
i+ 1

2

)− 2η
(

1
2 (wL?

i+ 1
2

+ wR?
i+ 1

2

)
)

η(wni )− η(wni+1)− 2η
(

1
2 (wni + wni+1)

)
.

(4.5)

Now, arguing the definition of wL?
i+ 1

2

and wR?
i+ 1

2

, given by (2.2) and (2.3), an usual

asymptotic expansion in the neighbourhood of wni = wni+1 easily gives

η(wL?
i+ 1

2

)− η(wR?
i+ 1

2

)− 2η
(

1
2 (wL?

i+ 1
2

+ wR?
i+ 1

2

)
)

η(wni )− η(wni+1)− 2η
(

1
2 (wni + wni+1)

)
.

= O(1),

and the proof is achieved.

5. Numerical experiments. In this section we present several examples to il-
lustrate the efficiency of the proposed stability enforcing technique. First, we perform
numerical approximations of the solutions of the isentropic gas dynamic model. We
show the ability of the here designed technique to stabilize entropy violating schemes.
Next, we present an application of the proposed technique to the numerical approx-
imation of the one layer shallow-water system with flat bathymetry to correct the
VF-Roe scheme and, finally, an application to the bi-layer shallow-water model.

5.1. Compressible Euler equations. We consider the 1-D evolution of a com-
pressible inviscid fluid of density ρ, velocity u, pressure p and specific total energy E
and we denote by e = E− 1

2u
2 the specific internal energy. This evolution is governed

by the 1-D Euler equations which read: ∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p(ρ, e)) = 0,
∂t(ρE) + ∂x(ρEu+ p(ρ, e)u) = 0.

(5.1)

The pressure function is given by an ideal gas equation of state: p(ρ, e) = (Γ − 1)ρe
where the heat capacity ratio is Γ = 1.4. Denoting w = (ρ, ρu, ρE)T and f(w) =
(ρu, ρu2 + p(ρ, e), ρEu+ p(ρ, e)u)T system (5.1) can be written:

∂tw + ∂xf(w) = 0. (5.2)

This system admits a family of entropy/entropy flux functions given by

η(w) = ρϕ(p/ρΓ), G(w) = η(w)u,

where ϕ is a smooth function which satisfies the restrictions derived in [48] (see also
in [72]). In the following, we will consider the entropies ηi(w) = ρϕi(p/ρ

Γ) given by
the following three functions:

ϕ1(θ) = ln(θ), ϕ2(θ) = −θ1/(Γ+1), ϕ3(θ) = θ−
2
Γ .

The adopted initial scheme (1.6) is given by the VF-Roe method [38] which is known
to be entropy violating for some test-cases. The corrected scheme (1.7) is obtained by
defining the numerical viscosity parameter γ ensuring a discrete entropy inequality
for the entropy η1(w) = ρϕ1(p/ρΓ). Consequently, an interesting issue is to know
whether the entropy inequality for the other two entropies is satisfied or not.
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5.1.1. A smooth solution. We consider the smooth initial data given by:

u0(x) = 1, p0(x) = 1, ρ0(x) =

{
1 + exp

(
− 1

1−x2

)
, |x| ≤ 1,

1, |x| ≥ 1.

for which the exact solution is smooth and given by: u(x, t) = 1, p(x, t) = 1, ρ(x, t) =
ρ0(x−t). The computations have been run on the time interval [0, 0.5] with grids given
by the following space steps : ∆x = 2/N with N = 100 × 2j with j ∈ {0, .., 5}. For
this smooth solution, the VF-Roe scheme is entropy satisfying. Hence the corrected
scheme rigorously coincide with the original scheme, the artificial viscosity γ is always
zero and the discrete entropy (in)equalities are satisfied for all the entropies ηi(w)
for i = 1, 2, 3. Figure 5.1 displays the density at the final time and the numerical
convergence of the L1-norm of the error between the numerical solution and the exact
solution. We observe a first order (with respect to ∆x) convergence which is what is
expected for this smooth solution.
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Fig. 5.1: Left: space variations of the density at the final time t = 0.5. Mesh size:
100 cells. Right: L1-error with respect to ∆x.

5.1.2. A Riemann problem. We consider the Riemann problem given by the
following initial data:

ρ0(x) =

{
1.0, x < 0,
0.25, x > 0.

u0(x) = 0.0, p0(x) =

{
1.0, x < 0,
0.1, x > 0.

The computations have been run on the time interval [0, 0.2] with grids given by the
following space steps : ∆x = 1/N with N = 100 × 2j with j ∈ {0, .., 5}. For this
Riemann-type solution, the VF-Roe scheme is still expected to be entropy satisfying.
In practice, we observe that, for all mesh sizes, the artificial viscosity is activated only
in the first two time steps near the initial discontinuity. On the first time step, the
maximum value of γ is γmax = 1.53 and the ratio γ/λi+ 1

2
satisfies (γ/λi+ 1

2
)max = 0.75.

On the second time step, we have respectively γmax = 0.48 and (γ/λi+ 1
2
)max = 0.26,

and these values do not depend on the mesh size. For all the following time steps,
we observe that γ = 0 and that the VF-Roe scheme is entropy satisfying not only for
η1 but also for η2 and η3. Figure 5.2 displays the density, velocity and pressure at
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the final time and the numerical convergence of the L1-norm of the error for these
variables. We observe a convergence with an order slightly larger than 0.5 (with
respect to ∆x) which is the expected order of convergence for this solution with a
contact discontinuity.
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Fig. 5.2: Space variations at the final time t = 0.2 of the density (upper-left), velocity
(upper-right) and pressure (lower-left). Mesh size: 100 cells. Lower-right: L1-error
with respect to ∆x.

5.1.3. A Riemann problem with a sonic rarefaction wave. We consider
the Riemann problem given by the following initial data:

ρ0(x) =

{
1.0, x < 0,
0.25, x > 0.

u0(x) = 0.0, p0(x) =

{
1.0, x < 0,
0.01, x > 0.

The computations have been run on the time interval [0, 0.25] with grids given by
the following space steps : ∆x = 1/N with N = 100 × 2j with j ∈ {0, .., 10}. For
this Riemann-type solution, the VF-Roe scheme is known to produce a steady non
entropic discontinuity at the sonic point of the rarefaction wave. This discontinuity
generates a production of (mathematical) entropy at the discrete level which can be
balanced thanks to the artificial viscosity term in the corrected scheme.
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Figure 5.3 displays the density, velocity and pressure at the final time for the
VFRoe scheme with and without correction and for a Suliciu relaxation scheme (which
is very similar to the HLLC scheme and is known to be entropy-satisfying, referred
to as Relax in the figure). We also display the numerical convergence of the L1-norm
of the error for these variables, for the VFRoe scheme with and without correction .
We observe that without the artificial viscosity correction, the VF-Roe scheme does
not converge because of the steady non-entropic discontinuity at x = 0. When the
scheme is corrected with the artificial viscosity, the amplitude of the non entropic
discontinuity gets smaller as the mesh is refined enabling the approximate solution
to converge towards the exact solution with an order slightly larger than 0.5. For a
fixed mesh however, the relaxation scheme performs slightly better than the corrected
VFRoe scheme since it displays no artificial discontinuity in the rarefaction wave.

Contrary to the previous test-case (with no sonic point in the rarefaction wave),
we observe here that the artificial viscosity correction is regularly activated during
the whole computation. However, the maximum values of γ and γ/λi+ 1

2
are obtained

at the second time step with γmax = 0.6 and (γ/λi+ 1
2
)max = 0.28 and these maxi-

mum values do not depend on the mesh size. It is to be noted that the algorithmic
complexity of the corrected scheme is comparable to that of the entropy-satisfying
relaxation scheme. Indeed, for 800 cells, the computation lasts 6s with the relaxation
scheme, while it lasts 7s with the corrected VFRoe scheme.

By construction, the numerical method is entropy-satisfying for η1. However, one
can check that the approximate solution also satisfies discrete entropy inequalities for
η2 and η3. In Table 5.1 we present the value of the L1-norm of the positive part of
the entropy budget, defined as the left hand side of inequality (1.6), obtained with
both the original VF-Roe scheme and with the corrected scheme. We can see that,
even for η2 and η3, while the VF-Roe scheme produces entropy, the corrected scheme
preserves a local discrete entropy inequality.

Mesh size η1 η2 η3

100 1.05e-06 < e-14 4.40e-07 < e-14 1.49e-06 < e-14
400 3.29e-07 < e-14 1.37e-07 < e-14 4.69e-07 < e-14
1600 3.43e-08 < e-14 1.43e-08 < e-14 4.901e-08 < e-14
6400 4.33e-09 < e-14 1.80e-09 < e-14 6.20e-09 < e-14
25600 1.53e-09 < e-14 6.38e-10 < e-14 2.19e-09 < e-14
102400 1.24e-09 < e-14 5.14e-10 < e-14 1.77e-09 < e-14

Table 5.1: L1-norm of the positive part of the entropy budget for the three mathe-
matical entropies η1, η2, η3. Left columns: VF-Roe scheme. Right columns: VF-Roe
scheme with artificial viscosity.

5.2. Shallow-water equations. We now consider the well-known shallow water
equations on a flat bottom:


∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

1

2
gh2

)
= 0 ,

(5.3)



18 C. Berthon, M. J. Castro Dı́az, A. Duran, T. Morales de Luna, K. Saleh

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

VFRoe + AV

Relax

VFRoe

Exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.4 -0.2  0  0.2  0.4

VFRoe + AV

Relax

VFRoe 

Exact

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

VFRoe

VFRoe + AV

Relax

Exact

10
-5

10
-4

10
-3

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

∆x

∆x
1/2

 ρ
 u
 p

 ρ with AV
u with AV
p with AV

Fig. 5.3: Space variations at the final time t = 0.2 of the density (upper-left), velocity
(upper-right) and pressure (lower-left). Mesh size: 100 cells. Lower-right: L1-error
with respect to ∆x. In the legend, Relax refers to the Suliciu relaxation scheme.

where h = h(x, t) and q = q(x, t) refer to the water height and discharge respectively.
Gathering the flow variables in the vector w = (h, q)T and setting f(w) = (q, q2/h+
gh2/2)T , the system can be written on the form (5.2). We recall that the mechanical

energy η(w) =
1

2
hu2 +

1

2
gh2 plays the role of a mathematical entropy associated to

the entropy flux G(w) =

(
η(w) +

1

2
gh2

)
u.

5.2.1. Dam-break problems. As previously, we consider the entropy-violating
VF-Roe scheme to exhibit the regularizing virtues of the proposed methodology. We
first consider the following dam-break problem:

h(x, 0) =

{
1.5, x < 12.5,
0.02, x > 12.5,

u(x, 0) = 0.0 ,

on the computational domain [0, 25] with ∆x = 0.0025m, with a final time T = 0.1 s.
As in Test-case 5.1.3, this initial condition leads to an entropy-violating discontinuity
at the level of the rarefaction wave.
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This phenomenon can be observed in Figure 5.4, which displays the water height
and velocity profiles associated with the original VF-Roe scheme and the corrected
version of the scheme, together with the energy budget, computed on the basis of
(1.6). We observe that without correction the VF-Roe scheme produces an entropy-
violating solution characterized by a sudden growth of entropy at the sonic point
x = 12.5m. As expected, the artificial viscosity is able to correct this failure.

Concerning convergence analysis, depicted in Figure 5.4 (bottom right), compu-
tations have been run on a series of regular meshes with space step ∆x = 1/N with
N = 100 × 2j with j ∈ {0, .., 8}. We clearly see that the VF-Roe scheme does not
converge and that the introduction of artificial viscosity allows to recover a proper
convergence for both flow variables.

The time evolution of the ratio (γ/λi+ 1
2
)max is proposed in Figure 5.5 for ∆x =

0.0025m. It can be observed that it is especially during the first iterations that artifi-
cial viscosity must be introduced to ensure entropy stability, while a small correction
is still required throughout the simulation. Nevertheless, the maximum value of this
ratio is around 6.935e-02 and induces a minor increase of the computational time, ac-
cording to the time step restriction (2.5). Note that this time behavior do not depend
on the space resolution, which is in accordance with the previous test-cases.

Next, we propose to analyze more specifically the robustness property of the
scheme, in particular the condition (2.15), which resumes to (3.8) in the case of
Shallow Water equations. To this purpose we consider now the same left initial state
but impose h(x) = 0 if x > 12.5. Computations are run on a mesh of 1000 elements,
with a purely centered scheme. The numerical stability comes therefore only from
the viscous terms carried by the constant γ issuing from conditions (2.14), (2.15),
which time evolution is given in Figure 5.6. Note that the robustness condition (2.15)
is regularly dominant in this case and thus mainly controls the calibration of the
numerical viscosity. Here again, the resulting value of γ is relatively low compared
to the maximum wave speed λ. We can observe on Figure 5.6 the velocity and water
height profiles at final time T = 0.8s, which show that we are able to recover a quite
stable simulation in spite of a non-positive and entropy-violating basis scheme.
Nevertheless, we would like to mention here that the procedure to guarantee the
robustness should be used with caution. In some case indeed it can lead to very large
(but still bounded) values of gamma, making the strategy unworkable. This problem
appears to be dependant of the choice of model parameters and remains sensitive to
the cutoff strategies used to discriminate dry cells. The goal here is to illustrate that
artificial viscosity can indeed be used to guarantee the robustness of the schemes, but
further analytical work needs to be done to ensure a robust systematic procedure.

5.2.2. Double rarefaction wave in the presence of vacuum. We now show
that the proposed method is compatible with occurrence of dry states. To that purpose
we use the test case employed in [76] consisting of a Riemann problem which solution
is composed of two rarefaction waves, with a dry zone occurring between the two
waves. This test case stands for a relevant benchmark to highlight the difficulty for
solvers to deal with vacuum (see for instance [61]), and [17] [39] for an adaptation of
this test to non trivial topography. Considering the computational domain [−10, 10],
the initial condition is the following:

h(x, 0) = 10 , u(x, 0) =

{
−35, x < 0,
35, x > 0.
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Fig. 5.4: Space variations at the final time T = 0.1s of the water height (upper-
left), energy budget (upper-right) and velocity (lower-left). Mesh size: 10 000 cells.
Lower-right: L1-error with respect to ∆x.

Neumann boundary conditions are imposed at the boundaries. Numerical results
obtained with the Roe solver supplemented by artificial viscosity are given in Figure
5.8 at final time T = 0.125s.

We observe a proper propagation of the rarefaction waves, implying a water height
close to zero at the center of the domain as expected. Based on the space distribution
of the local ratio γ/λ, we note that a subsequent amount of viscosity is needed to
ensure stability, notably at the reconnection points with the initial constant states. It
should be mentioned also that the minimum value of h during the simulation is about
1.e-04, which is not sufficiently small to threaten the stability of the scheme: the
positivity condition (2.15) is not activated for this test. Note that without correction
the scheme is unstable and did not provide any exploitable result. Similar observations
were made with the VFRoe and HLL schemes.

5.3. Bi-layer shallow-water system. We consider the homogeneous bi-layer
1-D shallow water system (see [21]):
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Fig. 5.5: Time evolution of the maximum ratio γ/λ.

Fig. 5.6: Time evolution of the quantities λ and γ given by the conditions (2.14) and
(2.15) for the dam break problem with dry front.



∂th1 + ∂xq1 = 0,

∂tq1 + ∂x

(
q2
1

h1
+

1

2
gh2

1

)
= −gh1∂xh2,

∂th2 + ∂xq2 = 0,

∂tq2 + ∂x

(
q2
2

h2
+

1

2
gh2

2

)
= −ρ1

ρ2
gh2∂xh1.

(5.4)

Index 1 refers to the upper layer while index 2 refers to the lower layer. This
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Fig. 5.7: Velocity and water height profiles at time T = 0.8s for the dam break
problem with dry front.

system uses the following notation:
• hj = hj(x, t) ≥ 0 is the thickness of the j-th layer at the section of coordinate
x at time t.

• qj = qj(x, t) is the discharge of the j-th layer at the section of coordinate x at
time t and is related with the averaged velocity at each layer by the following
relation: qj = ujhj , j = 1, 2.

• g is the gravitational constant.
• ρj refers to the constant density of the j-th layer with ρ1 < ρ2.

The bottom is assumed to be flat. This system can be written in the form

∂tw + ∂xf(w) +A(w)∂xw = 0, (5.5)

where

w =


h1

q1

h2

q2

 , f(w) =



q1

q2
1

h1
+

1

2
gh2

1

q2

q2
2

h2
+

1

2
gh2

2


,

A(w) =


0 0 0 0
0 0 gh1 0
0 0 0 0

grh2 0 0 0

 ,

with r = ρ1/ρ2.
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Fig. 5.8: Space variations at the final time T = 0.125s of the velocity height (upper-
left), energy budget (upper-right) and water height (lower-left), together with the
ratio γ/λ (lower-right) Mesh size: 10 000 cells.

An entropy-entropy flux pair for the bi-layer shallow water system is given by

η(w) =

2∑
j=1

ρj

(
hj
u2
j

2
+ g

h2
j

2

)
+ gρ1h1h2 (5.6a)

G(w) =

2∑
j=1

ρj

(
hj
u2
j

2
+ gh2

j

)
uj + ρ1gh1h2(u1 + u2). (5.6b)

The wave speeds are the eigenvalues of A(w) = J(w) +A(w) = ∇wf(w) +A(w),
that is, the roots of the characteristic polynomial:

p(λ) = (λ2 − 2u1λ+ u2
1 − gh1)(λ2 − 2u2λ+ u2

2 − gh2)− rgh1gh2. (5.7)
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When r ∼= 1, first order approximations of the eigenvalues were given in [69]:

λ±ext =
u1h1 + u2h2

h1 + h2
±
√
g(h1 + h2), (5.8)

λ±int =
u1h2 + u2h1

h1 + h2
±

√
g′

h1h2

h1 + h2

(
1− (u1 − u2)2

g′(h1 + h2)

)
, (5.9)

where g′ = (1− r)g.
The exact expression of the eigenvalues can be obtained by using Ferrari’s method

to find an analytical solution for quartic equations. For each eigenvalue λ, an associ-
ated eigenvector is given by:

Ri =


1
λ
µ
λµ

 , (5.10)

where:

µ =
(λ− u1)2

gh1
− 1.

An important difficulty of system (5.4) is related to the loss of hyperbolicity: for r ∼= 1
this situation occurs approximately when the following inequality is satisfied:

F2
r =

(u1 − u2)2

g′(h1 + h2)
> 1. (5.11)

This loss of hyperbolicity is related to the appearance of shear instabilities that may
lead, in real flows, to intense mixing of the two layers. While, in practice, this mixture
partially dissipates the energy, in numerical experiments these interface disturbances
may grow and overwhelm the solution. Obviously, a simple model based on two layer
of immiscible fluids is not able to simulate the mixing processes due to the development
of shear instabilities: a more complex multilayer model or a continuously stratified
model would be required. In [28] authors propose a simple strategy consisting on
adding an extra friction term in order to get rid of the related instabilities and go
beyond of them by reaching again the hyperbolic character.

Here, we consider a standard path-conservative Roe solver for system (5.5) based
on the family of straight segments

Φ(s;wL, wR) = wL + s(wR − wL)

described in [21]. The numerical scheme reads as follows:

wn+1
i = wni −

∆t

∆x

(
f∆(wni , w

n
i+1)− f∆(wni−1, w

n
i )
)

− ∆t

2∆x

(
AL∆(wni , w

n
i+1) · (wni+1 − wni ) +AR∆(wni−1, w

n
i ) · (wni − wni−1)

)
,

(5.12)
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where the numerical flux is given by

f∆(wni , w
n
i+1) =

1

2

(
f(wni ) + f(wni+1)

)
− 1

2
|An∆| · (wni+1 − wni ), (5.13)

where An∆ is a Roe matrix according to the choice of segment-path and is defined as
follows

A∆ =


0 1 0 0

gh∆,1 − u2
∆,1 2u∆,1 gh∆,2 0

0 0 0 1
rgh∆,1 0 gh∆,2 − u2

∆,2 2u∆,2

 , (5.14)

where we have dropped the time dependency for simplicity. In (5.14), h∆,j and u∆,j ,
j = 1, 2 are the Roe averages and are defined as

h∆,j =
hi,j + hi+1,j

2
, u∆,j =

√
hi,jui,j +

√
hi+1,jui+1,j√

hi,j +
√
hi+1,j

, j = 1, 2.

As usual, |An∆| is the matrix that has the same eigenvectors than matrix An∆ and
whose eigenvalues are the absolute value of those of An∆. Finally,

AL∆(wni , w
n
i+1) = AR∆(wni , w

n
i+1) =


0 0 0 0
0 0 gh∆,1 0
0 0 0 0

grh∆,2 0 0 0

 . (5.15)

When A∆ has complex eigenvalues, this matrix is no more a Roe linearization in
the usual sense. Nevertheless, the numerical scheme (5.12)-(5.15) can still be applied
by redefining A∆. Following [28], we consider the real Jordan decomposition of A∆,
that is,

A∆ = K∆ · L∆ · K−1
∆ ,

where L∆ is a block diagonal matrix whose diagonal blocks are either the real eigen-
values or 2× 2 blocks of the form: [

α β
−β α

]
(5.16)

associated to every pair of conjugate complex eigenvalues α ± iβ. K∆ is the real
matrix corresponding to the change of basis. Now, |A∆| can be formally defined by
setting |L∆| as the diagonal matrix obtained from the Jordan matrix by taking the
absolute values of the real eigenvalues and by replacing the diagonal blocks (5.16)
corresponding to a pair of conjugate complex eigenvalues by the diagonal block:[ √

α2 + β2 0

0
√
α2 + β2

]
.

5.3.1. Riemann problem. Let us consider the following Riemann problem:

h1(x, 0) =

{
0.95 if x < 0
0.05 otherwise,

h2(x, 0) = 1− h1(x, 0), u1(x, 0) = u2(x, 0) = 0,
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in the interval [−1, 1] with ∆x = 0.005 and CFL = 0.4. Open boundary conditions
are set and r = 0.2. We approximate the solution of this Riemann problem with the
usual Roe scheme and with Roe scheme with the artificial viscosity method described
in this paper.

Figure 5.9 shows the free surface and interface computed with both schemes at
times t = 1 and 2 s. At it can be observed, a non-entropic shock is created by Roe
scheme at x = 0, while it disappears when the artificial viscosity scheme is used.
Similar behaviour is observed when plotting the velocities (see Figure 5.10).

As we have done previously, we show the time evolution of the ratio (γ/λi+ 1
2
)max

in Figure 5.11 for ∆x = 0.005m. Again, one can observe that it is during the first
iterations that artificial viscosity must be introduced to ensure entropic stability, while
a small correction is still required throughout the simulation. The maximum value of
this ratio is around 0.0315.
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Fig. 5.9: Test 1: Free surface and interface: comparison between Roe scheme (blue
and green lines) and Roe with artificial viscosity (red and brown lines).

5.3.2. Non-hyperbolic regime. This test was inspired by Test 1 introduced
in [28]. It consists on the evolution of a perturbation of shear two-layer fluid that is
close to the unstable region (appearance of complex eigenvalues). The simulation is
carried out on a flat channel described by the interval [−5, 5]. The initial condition is
given by

h1(x, 0) = 0.4− 0.1e−16x2

, h2(x, 0) = 1.0− h1(x, 0),

u1(x, 0) = 0.15, u2(x, 0) = −0.15.

Free boundary conditions are imposed and the system is simulated during T = 10 s.
The CFL parameter is set to 0.4 and ∆x = 0.01 and r = 0.99. Note that

F2
r =

(u1 − u2)2

g′(h1 + h2)
≈ 0.917
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Fig. 5.10: Test 1: Velocities at each layers: comparison between Roe scheme (blue
and green lines) and Roe with artificial viscosity (red and brown lines).
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Fig. 5.11: Time evolution of the maximum ratio γ/λ.

at every point at time t = 0 s. Recall that values of F2
r close to 1 result in the

appearance of complex eigenvalues. Due to the perturbation on the interface, the
bi-layer system becomes unstable near the region where the perturbation is located.
On the one hand, these instabilities propagate along the channel if the previous Roe
solver is used and the numerical scheme drives towards a completely useless result.
On the other hand, adding properly some artificial viscosity to control the entropy
of the system, allows to perform a stable simulation. Of course, it is impossible to
properly simulate such complex fluid with a simple bi-layer shallow water system, but
the artificial viscosity allows to provide some stable simulation that could be seen as
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the best approximation that could be obtained with the bi-layer shallow-water system.
Figure 5.12 shows the free surface and the interface evolution at t = 5 and 10 s

obtained with Roe scheme previously described (left) and with the Roe scheme with
the artificial viscosity technique to control the entropy (right). As expected, the
initial perturbation grows in time when Roe scheme is applied, producing non-physical
waves, while the Roe scheme combined with the artificial viscosity technique is able
to produce stable simulations. Similar results can be observed for the velocities (see
Figure 5.13). Figure 5.14 shows the evolution of the stability number F2

r (5.11)
at the same time steps. It is clear that the strong oscillations obtained with the
Roe scheme are nonphysical, while the solution obtained with the Roe scheme with
artificial viscosity is the best approximation that one could obtain with the bi-layer
shallow-water system for such complex shear flows. In this case, the time evolution of
the ratio (γ/λi+ 1

2
)max in Figure 5.15 shows large values and it is present in the whole

simulation, although the maximum values occur during the initial iterations.

5.3.3. Comparison with unstable scheme. Let us now consider the Riemann
problem given by

h1(x, 0) =

{
0.8 if x < 0
0.2 otherwise,

h2(x, 0) = 1− h1(x, 0), u1(x, 0) = u2(x, 0) = 0,

in the interval [−5, 5] with ∆x = 0.002 and CFL = 0.5. Open boundary conditions are
set and r = 0.99. We consider the unconditional unstable central scheme (without any
numerical viscosity) and its correction with the artificial viscosity method described
in this paper.

As expected the central scheme blows up at finite time (t = 0.1005841 in this
test). Nevertheless, the artificial viscosity method is able to stabilize the scheme,
providing a good solution. Figure 5.16 show the comparison at time t = 0.05, before
the blow up. Figure 5.17 shows the final time t = 5.0 where the solution is compared
with a Roe scheme.
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Fig. 5.12: Test 2: Free surface and interface evolution. Roe scheme (left column).
Roe scheme with artificial viscosity (right column).
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Numerical Methods. In Rémi Abgrall and Chi-Wang Shu, editor, Handbook of Numerical
Analysis, volume 18 of Handbook of Numerical Methods for Hyperbolic ProblemsApplied
and Modern Issues, pages 131–175. Elsevier, 2017. DOI: 10.1016/bs.hna.2016.10.002.

[25] M.J. Castro, U. S. Fjordholm, S. Mishra, and C. Pares. Entropy conservative and entropy stable
schemes for nonconservative hyperbolic systems. SIAM Journal on Numerical Analysis,
51(3):1371–1391, 2013.

[26] M. Castro Dıaz, E. D. Fernández-Nieto, T. Morales de Luna, G. Narbona-Reina, and C. Parés.
A HLLC scheme for nonconservative hyperbolic problems. application to turbidity currents
with sediment transport. ESAIM: Mathematical Modelling and Numerical Analysis, 47:1–
32, 2013.

[27] M. J. Castro Dı́az, T. Chacón Rebollo, E. D. Fernández-Nieto, and C. Parés. On well-balanced
finite volume methods for nonconservative nonhomogeneous hyperbolic systems. SIAM
Journal on Scientific Computing, 29(3):1093–1126, 2007.

[28] M. J. Castro-Dı́az, E. D. Fernández-Nieto, J. M. González-Vida, and C. Parés-Madroñal. Nu-
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