

Improvement of the Hydrostatic Reconstruction Scheme to Get Fully Discrete Entropy Inequalities

Christophe Berthon¹ · Arnaud Duran² · Françoise Foucher³ · Khaled Saleh² · Jean De Dieu Zabsonré⁴

Received: 6 December 2018 / Revised: 3 April 2019 / Accepted: 20 April 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

This work is devoted to the derivation of an energy estimate to be satisfied by numerical schemes when approximating the weak solutions of the shallow water model. More precisely, here we adopt the well-known hydrostatic reconstruction technique to enforce the adopted Finite-Volume scheme to be well-balanced; namely to exactly preserve the lake at rest stationary solution. Such a numerical approach is known to get a semi-discrete (continuous in time) entropy inequality. However, a semi-discrete energy estimation turns, in general, to be insufficient to claim the required stability. In the present work, we adopt the artificial numerical viscosity technique to increase the desired stability and then to recover a fully discrete energy estimate. Several numerical experiments illustrate the relevance of the designed viscous hydrostatic reconstruction scheme.

Keywords Hyperbolic conservation laws \cdot Balance laws \cdot Well-balanced schemes \cdot Godunov-type schemes \cdot Discrete entropy inequalities

Mathematics Subject Classification 65N08 · 35L65 · 35L67

1 Introduction

The present work concerns the derivation of discrete entropy inequalities when adopting the well-known hydrostatic reconstruction technique introduced by Audusse et al [1]. This

Published online: 04 May 2019

⁴ LAMI, Institut Universitaire de Technologie, Université Nazi BONI, O1 BP 1091, Bobo-Dioulasso 01, Burkina Faso

Arnaud Duran arnaud.duran@univ-lyon1.fr

Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, France

Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France

³ Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Ecole Centrale de Nantes, 1 rue de la Noë, 44300 Nantes, France

numerical scheme was proposed to approximate the weak solutions of the shallow-water system in the context of Finite-Volume schemes. The model under consideration is governed by the following set of partial differential equations:

$$\begin{cases} \partial_t h + \partial_x h u = 0, \\ \partial_t h u + \partial_x \left(h u^2 + g \frac{h^2}{2} \right) = -g h \partial_x z, \end{cases}$$
 (1)

where $h \ge 0$ stands for the water height and $u \in \mathbb{R}$ denotes the water velocity. Here, g is the gravitational constant while z is a given smooth function to represent the bottom topography. For the sake of simplicity in the forthcoming notations, we set

$$w = \begin{pmatrix} h \\ hu \end{pmatrix}, \quad f(w) = \begin{pmatrix} hu \\ hu^2 + g\frac{h^2}{2} \end{pmatrix}, \quad \text{and} \quad S(w, z) = \begin{pmatrix} 0 \\ -gh\partial_x z \end{pmatrix}.$$

In addition, we introduce $\Omega \subset \mathbb{R}^2$ the set of physical admissible states given by

$$\Omega = \{ w \in \mathbb{R}^2; \ h > 0, \ hu \in \mathbb{R} \}.$$

From now on, we underline that this admissible state space contains dry areas characterized by h = 0. It is well-known that the system (1) is not correctly defined for dry solutions. However, some numerical simulations may contain dry zones which have to be correctly approximated. In order to deal with wet solutions, far away from dry areas, we also introduce

$$\Omega_0 = \{ w \in \mathbb{R}^2; \ h \ge h_0, \ hu \in \mathbb{R} \},\$$

with $h_0 > 0$ a given constant.

The first-order extracted system from (1) is well-known to be hyperbolic. As a consequence, the Cauchy problem associated with (1) may develop discontinuous solutions in finite time. The discontinuities, the so-called shock waves, are governed by the Rankine-Hugoniot conditions (see [14,20,21,36]) which do not ensure uniqueness of the solution. In order to rule out unphysical solutions, the system is endowed with entropy inequalities (see [14,35,50]). Considering the shallow-water model, the entropy inequalities read (see [7]):

$$\partial_t \eta(w) + \partial_x G(w) \le -ghu\partial_x z,$$
 (2)

where we have set

$$\eta(w) = h \frac{u^2}{2} + g \frac{h^2}{2} \quad \text{and} \quad G(w) = \left(\frac{u^2}{2} + gh\right) hu.$$
(3)

It is worth noticing that $\eta: \Omega_0 \to \mathbb{R}$ is a convex function.

In fact, since z does not depend on time, the above inequality equivalently (see [7]) recasts in an energy estimate as follows:

$$\partial_t \tilde{\eta}(w, z) + \partial_x \tilde{G}(w, z) \le 0,$$
 (4)

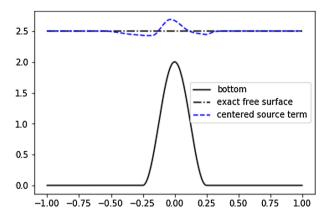
with

$$\tilde{\eta}(w,z) = \eta(w) + ghz$$
 and $\tilde{G}(w,z) = G(w) + ghuz.$ (5)

In addition, the system (1) admits solutions of particular interest; namely the steady state solutions. Since such solutions do not depend on time, they are easily shown to be defined by

$$hu = Q$$
 and $\mathcal{B}(w, z) = B$, (6)

Fig. 1 Failure in the lake at rest in the case of an approximation obtained by a HLL Godunov-type scheme to discretize the hyperbolic first-order terms and a centered scheme to discretize the topography source term



where $\mathcal{B}:\Omega\to\mathbb{R}$ stands for a Bernouilli-like relation given by

$$\mathcal{B}(w,z) = \frac{u^2}{2} + g(h+z). \tag{7}$$

In (6), Q and B are two real constants. Among all the possible steady state solutions, the lake at rest, defined by

$$u = 0 \quad \text{and} \quad h + z = H, \tag{8}$$

with H a given constant, turns out to be of prime importance when deriving numerical schemes to approximate the weak solutions of (1). Indeed, after the work by Bermudez and Vasquez [4], Greenberg and LeRoux [26] (see also [10,23,27,34]) or Goutal and Maurel [24,25], it is well-known that a numerical scheme may produce very large errors if it cannot accurately approximate the lake at rest. According to these pioneer works, a scheme able to exactly capture the lake at rest is called a well-balanced scheme.

During the three last decades, numerous strategies have been introduced to correct the failure coming from the non-well-balanced schemes as presented in Fig. 1. Among all these (well-balanced) numerical techniques, one is of strong interest, the so called hydrostatic reconstruction procedure introduced in[1]. Indeed, this numerical method can be understood as a very easy way to obtain a well-balanced scheme as soon as a conservative scheme is known to approximate the homogeneous first-order system, for flat topography with *z* a constant, extracted from (1). To fix the ideas, let us briefly recall the main ingredients in the derivation of the hydrostatic reconstruction.

First, we consider a suitable discretization of space and time. To make simple the presentation, the space discretization is assumed to be uniformly made of cells $(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}})$ with constant size Δx , so that $x_{i+\frac{1}{2}} = x_{i-\frac{1}{2}} + \Delta x$ for all i in \mathbb{Z} . Concerning the time discretization, we set $t^{n+1} = t^n + \Delta t$, where $\Delta t > 0$ stands for the time increment which has to be restricted according to a CFL-like condition [20,38,54]. Next, we assume known a numerical flux function $\mathcal{F}(w_L, w_R)$ to approximate the flux function f(w) at each interface $x_{i+\frac{1}{2}}$, which is assumed to be consistent as follows:

$$\mathcal{F}(w, w) = f(w) \quad \forall w \in \Omega.$$

We here do not detail the technique to reach such a numerical flux function and the reader is referred to [22,31,48,49] to get functions \mathcal{F} of Godunov-type, Roe-type, relaxation-type, kinetic-type, etc. In fact, let us emphasize that one of the main asset in the hydrostatic

reconstruction approach stays in the opportunity to select any numerical flux function. On each cell $(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}})$, we introduce water height reconstructions as follows:

$$h_{i-\frac{1}{2}}^+ = h_i^n + z_i - z_{i-\frac{1}{2}}^+$$
 and $h_{i+\frac{1}{2}}^- = h_i^n + z_i - z_{i+\frac{1}{2}}^-$, (9)

where $z_i - z_{i-\frac{1}{2}}^+ = \mathcal{O}(\Delta x)$ and $z_i - z_{i+\frac{1}{2}}^- = \mathcal{O}(\Delta x)$ are small perturbations. Here, $z_{i+\frac{1}{2}}^\pm$ approximates the topography function on each side of the interface $x_{i+\frac{1}{2}}$. Precise definition of these quantities will be given later on.

Equipped with water height reconstructions, we define the following reconstructed states:

$$w_{i-\frac{1}{2}}^{+} = \begin{pmatrix} h_{i-\frac{1}{2}}^{+} \\ h_{i-\frac{1}{2}}^{+} u_{i}^{n} \end{pmatrix} \quad \text{and} \quad w_{i+\frac{1}{2}}^{-} = \begin{pmatrix} h_{i+\frac{1}{2}}^{-} \\ h_{i+\frac{1}{2}}^{-} u_{i}^{n} \end{pmatrix} \quad \forall i \in \mathbb{Z}.$$
 (10)

Then, the hydrostatic reconstruction scheme reads

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{F}(w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+) - \mathcal{F}(w_{i-\frac{1}{2}}^-, w_{i-\frac{1}{2}}^+) \right) - g\Delta t \left(\frac{0}{h\partial_x z_i^n} \right), \tag{11}$$

where the source term discretization is in the following form:

$$\overline{h\partial_x z_i^n} = \overline{h\partial_x z_{i-\frac{1}{2}}^+} + \overline{h\partial_x z_{i+\frac{1}{2}}^-}, \tag{12}$$

for a suitable definition of $\overline{h\partial_x z_{i+\frac{1}{2}}}^{\pm}$ given by

$$\overline{h\partial_{x}z_{i-\frac{1}{2}}^{+}} = \frac{1}{2\Delta x} \left(h_{i}^{n} + h_{i-\frac{1}{2}}^{+} \right) \left(z_{i} - z_{i-\frac{1}{2}}^{+} \right),
\overline{h\partial_{x}z_{i+\frac{1}{2}}^{-}} = \frac{1}{2\Delta x} \left(h_{i}^{n} + h_{i+\frac{1}{2}}^{-} \right) \left(z_{i+\frac{1}{2}}^{-} - z_{i} \right).$$
(13)

In fact, the main idea in [1] is enforcing

$$z_{i+\frac{1}{2}}^- = z_{i+\frac{1}{2}}^+$$
 as soon as $h_i^n + z_i = h_{i+1}^n + z_{i+1}$, (14)

so that we get

$$h_{i+\frac{1}{2}}^{-} = h_{i+\frac{1}{2}}^{+}$$
 as soon as $h_{i}^{n} + z_{i} = h_{i+1}^{n} + z_{i+1}$. (15)

Independently from the choice of the numerical flux function \mathcal{F} , the above numerical approach is easily seen to be well-balanced; namely if $u_i^n = 0$ and $h_i^n + z_i = H$ for all $i \in \mathbb{Z}$, then $u_i^{n+1} = 0$ and $h_i^{n+1} + z_i = H$ for all $i \in \mathbb{Z}$.

Now, let us suggest some definitions of the topography $z_{i+\frac{1}{2}}^{\pm}$ at each interface. For instance, in [1], the authors proposed

$$z_{i+\frac{1}{2}}^{-} = \min \left(h_i^n + z_i, \max(z_i, z_{i+1}) \right),$$

$$z_{i+\frac{1}{2}}^{+} = \min \left(h_{i+1}^n + z_{i+1}, \max(z_i, z_{i+1}) \right).$$
(16)

Next, let us emphasize that several recent works propose extensions of the original hydrostatic reconstruction defined by (16). For instance, in the work by Chen and Noelle [11], the authors suggest to consider

$$z_{i+\frac{1}{2}}^{-} = \max\left(z_{i}, \bar{z}_{i+\frac{1}{2}}\right)$$
 and $z_{i+\frac{1}{2}}^{+} = \max\left(z_{i+1}, \bar{z}_{i+\frac{1}{2}}\right)$

where we have set

$$\bar{z}_{i+\frac{1}{2}} = \min \left(\max(z_i, z_{i+1}), \min(h_i^n + z_i, h_{i+1}^n + z_{i+1}) \right).$$

The hydrostatic reconstruction, defined by (9), (10), (11) and (13), turns out to be very easy and fast to be implemented. This makes this procedure very attractive and numerous works apply this technique (for instance, see [3,6,15,17,39,40]).

Equipped with well-balanced schemes, an other important property to be satisfied by the scheme concerns the stability. In the present work, we focus on the entropy stability. Indeed, in order to rule out unphysical approximate solutions, it is important that the numerical solution satisfies, in addition, discrete entropy inequalities. We recall that the scheme is said entropy stable if the following strong energy estimation is verified:

$$\frac{1}{\Delta t} \left(\tilde{\eta}(w_i^{n+1}, z_i) - \tilde{\eta}(w_i^n, z_i) \right) + \frac{1}{\Delta x} \left(\tilde{\mathcal{G}}(w_{i+\frac{1}{2}}^-, z_i, w_{i+\frac{1}{2}}^+, z_{i+1}) - \tilde{\mathcal{G}}(w_{i-\frac{1}{2}}^-, z_{i-1}, w_{i-\frac{1}{2}}^+, z_i) \right) \le 0.$$
(17)

where $\tilde{\eta}$ is the entropy function defined by (5), and $\tilde{\mathcal{G}}(w_L, z_L, w_R, z_R)$ is the associated numerical entropy flux function consistent with the exact entropy flux, \tilde{G} , as follows:

$$\tilde{\mathcal{G}}(w, z, w, z) = \tilde{G}(w, z).$$

In fact, the discrete entropy inequality (17), according to the famous Lax-Wendroff Theorem [37], ensures a convergence to the entropy weak solutions of the system (1) (if the scheme converges).

The derivation of discrete entropy inequality is usually a very difficult task. For instance, in [7–9] for the shallow-water equations and in [12] for Euler equations in nozzles, relaxation schemes are derived to get entropy stable well-balanced schemes. But, in general, the authors do not address the delicate problem of the full discrete energy estimate (17).

To avoid these difficulties, some works suggest to consider weaker formulations of the entropy stability. For instance, recently in [5,43,44], extensions of the HLL scheme [31] produce entropy consistent schemes (in the sense where entropy inequality is reached up to $\mathcal{O}(\Delta x)$) able to exactly capture all the steady states (at rest or moving). In [1], the authors establish an entropy inequality satisfied by the semi-discrete (time continuous) scheme associated with the hydrostatic reconstruction (11). Unfortunately, it is well-known that semi-discrete entropy inequalities are not sufficient to obtain a suitable convergence to the entropy weak solution or to get relevant energy estimates. As a consequence, the main question we address here is:

Is it possible to exhibit the entropy inequality (17) for the hydrostatic reconstruction scheme (11)?

In fact, recently in [2], the authors give a negative response. As a consequence, in order to get the expected entropy inequality, the hydrostatic reconstruction scheme (11) must be improved. To address such an issue, we here suggest to consider relevant artificial viscosity. Indeed, tuning numerical viscosity of a conservative scheme is a well-known process to enforce stability. After the pioneer work by Neumann and Richtmyer [46], numerous authors have improved the numerical stability by designing suitable numerical viscosity (for instance, see [37,41,47,51,52,56], but this bibliography is clearly not exhaustive). The present work enters this general context.

The present paper is organized as follows. In the next section, we adopt an artificial viscosity technique as proposed in [13] (see also [51–53]). In fact, by involving additional

viscosity, we may expect to increase the stability of the scheme (see also [3,29,30] for similar techniques). Moreover, in this work, the required entropy stability is obtained by adopting the well-known entropy criterion introduced by Harten, Lax and van Leer (see Theorem 3.1 page 47 [31]). In order to apply this statement, we also present a Godunov-type reformulation of the derived viscous hydrostatic reconstruction scheme. Section 3 concerns the establishment of the discrete energy estimate (17). To address such an issue, we exhibit the optimal artificial viscosity to minimize the associated entropy dissipation rate. Moreover, we show that the interface topography reconstruction $z_{i+\frac{1}{2}}^{\pm}$ must be given a specific definition. Next, Sect. 4, we focus on the wet and dry transitions. Clearly, the energy estimate (4) is not well-defined within such a transition. As a consequence, in this section, we introduce an improvement of the derived hydrostatic reconstruction scheme able to deal with wet and dry transition, and preserving the entropy stability requirement far away from vacuum. The last section is devoted to some numerical experiments in order to illustrate the relevance of the herein proposed improvement of the hydrostatic reconstruction method.

2 Viscous Hydrostatic Reconstruction Scheme and Godunov-Type Reformulation

This section is devoted to an improvement of the hydrostatic reconstruction scheme (11), in order to obtain the required discrete entropy inequality (17). After the pioneer work by Tadmor [51–53] (see also [13,28]), we suggest to introduce artificial viscosity. Indeed, the artificial viscosity naturally increases the scheme stability and it turns out to be a suitable ingredient to establish the required entropy inequality (17). As a consequence, we here modify the numerical flux function $\mathcal{F}(w_L^+, w_R^-)$ by introducing

$$\mathcal{F}_{LR}^{\gamma} = \mathcal{F}(w_L^+, w_R^-) + \gamma \delta_{LR}, \tag{18}$$

where $\delta_{LR} = (\delta^h, \delta^q)^t \in \mathbb{R}^2$ stands for a nonlinear viscosity to be defined according to a correct control of the numerical entropy dissipation rate. The parameter $\gamma \geq 0$ governs the numerical artificial viscosity according to the CFL condition. In addition, in the above definition, w_L^+ and w_R^- stand for the reconstructed states at the interface according to (10). Put in other words, at an interface $x_{i+\frac{1}{2}}$, we set $w_L^+ = w_{i+\frac{1}{2}}^-$ and $w_R^- = w_{i+\frac{1}{2}}^+$. Let us underline that this new numerical flux function definition depends on both reconstructed values and cell values; namely $\mathcal{F}_{LR}^{\gamma} := \mathcal{F}_{LR}^{\gamma}(w_L, w_R, w_L^+, w_R^-)$. Now, instead of the numerical method (11), we consider the following scheme:

$$w_i^{n+1} = w_i^n - \frac{\Delta t}{\Delta x} \left(\mathcal{F}_{i+\frac{1}{2}}^{\gamma} - \mathcal{F}_{i-\frac{1}{2}}^{\gamma} \right) - g \Delta t \left(\frac{0}{h \partial_x z_i^n} \right), \tag{19}$$

which reads

$$w_{i}^{n+1} = w_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{F}(w_{i+\frac{1}{2}}^{-}, w_{i+\frac{1}{2}}^{+}) - \mathcal{F}(w_{i-\frac{1}{2}}^{-}, w_{i-\frac{1}{2}}^{+}) \right) + \gamma \frac{\Delta t}{\Delta x} \left(\delta_{i-\frac{1}{2}} - \delta_{i+\frac{1}{2}} \right) - g \Delta t \left(\frac{0}{h \partial_{x} z_{i}^{n}} \right).$$
 (20)

For the sake of simplicity in the notations, adopting (13), we set

$$S_{i+\frac{1}{2}}^{\pm} = \begin{pmatrix} 0 \\ -gh\partial_x z_{i+\frac{1}{2}}^{\pm} \end{pmatrix},\tag{21}$$

to write, after (12),

$$-g\left(\frac{0}{h\partial_{x}Z_{i}^{n}}\right) = S_{i-\frac{1}{2}}^{+} + S_{i+\frac{1}{2}}^{-}.$$

From now on, it is worth noticing that the adopted scheme (20) needs a specific definition of δ_{LR} to recover the expected well-balanced property. Indeed, as soon as the sequence $(w_i^n)_{i\in\mathbb{Z}}$ defines a lake at rest at time t^n , because of the hydrostatic reconstruction conditions (15), we immediately obtain

$$w_i^{n+1} = w_i^n + \gamma \frac{\Delta t}{\Delta x} \left(\delta_{i-\frac{1}{2}} - \delta_{i+\frac{1}{2}} \right).$$

As a consequence, we have to impose $\delta_{LR} = 0$ as soon as w_L and w_R define a lake at rest. Moreover, in order to preserve the consistency property of (20), we must have $\delta_{i+\frac{1}{2}} - \delta_{i-\frac{1}{2}} = \mathcal{O}(\Delta x^2)$.

Now, in order to prove the energy estimation (17), we suggest to reformulate the viscous hydrostatic reconstruction scheme (20) as a Godunov-type method. To address such an issue, we introduce the following approximate Riemann solver:

$$w^{\mathcal{R}}\left(\frac{x}{t}; w_{L}, w_{R}, w_{L}^{+}, w_{R}^{-}\right) = \begin{cases} w_{L} & \text{if } \frac{x}{t} < -(\lambda + \gamma), \\ \bar{w}_{L} & \text{if } -(\lambda + \gamma) < \frac{x}{t} < -\lambda, \\ w_{L}^{\star} & \text{if } -\lambda < \frac{x}{t} < 0, \\ w_{R}^{\star} & \text{if } 0 < \frac{x}{t} < \lambda, \\ \bar{w}_{R} & \text{if } \lambda < \frac{x}{t} < \lambda + \gamma, \\ w_{R} & \text{if } \frac{x}{t} > \lambda + \gamma, \end{cases}$$

$$(22)$$

where we have set

$$\bar{w}_L = w_L - \delta_{LR}$$
 and $\bar{w}_R = w_R + \delta_{LR}$ (23)

and

$$w_{L}^{\star} = w_{L} - \frac{1}{\lambda} \left(\mathcal{F}(w_{L}^{+}, w_{R}^{-}) - f(w_{L}) \right) + \frac{\Delta x}{\lambda} S_{L}^{+},$$

$$w_{R}^{\star} = w_{R} + \frac{1}{\lambda} \left(\mathcal{F}(w_{L}^{+}, w_{R}^{-}) - f(w_{R}) \right) + \frac{\Delta x}{\lambda} S_{R}^{-}.$$
(24)

In the above definition, S_L^+ and S_R^- denote the source term discretization at the interface according to (21); namely $S_L^+ = S_{i+\frac{1}{2}}^-$ and $S_R^- = S_{i+\frac{1}{2}}^+$ at each side of the interface $x_{i+\frac{1}{2}}$.

Concerning the wave speeds involved in (22), $\lambda > 0$ and $\gamma \geq 0$ will be fixed later on according to stability conditions to be prescribed. For the sake of simplicity in the forthcoming developments, γ is fixed to a constant value over the whole mesh while λ is defined locally interface per interface.

Next, arguing direct computations, the updated state w_i^{n+1} , given by (20), equivalently reformulates as follows:

$$w_{i}^{n+1} = \frac{1}{\Delta x} \int_{0}^{\frac{\Delta x}{2}} w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_{i-1}^{n}, w_{i}^{n}, w_{i-\frac{1}{2}}^{-}, w_{i-\frac{1}{2}}^{+} \right) dx + \frac{1}{\Delta x} \int_{-\frac{\Delta x}{2}}^{0} w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_{i}^{n}, w_{i+1}^{n}, w_{i+\frac{1}{2}}^{-}, w_{i+\frac{1}{2}}^{+} \right) dx,$$
 (25)

under a CFL-like condition given by

$$\frac{\Delta t}{\Delta x} \max_{i \in \mathbb{Z}} \left(\lambda_{i + \frac{1}{2}} + \gamma \right) \le \frac{1}{2}. \tag{26}$$

We recall that this CFL restriction imposes non-interaction of successive approximate Riemann solvers

$$w^{\mathcal{R}}\left(\frac{x-x_{i-\frac{1}{2}}}{\varDelta t};w_{i-1}^{n},w_{i}^{n},w_{i-\frac{1}{2}}^{-},w_{i-\frac{1}{2}}^{+}\right) \text{ and } w^{\mathcal{R}}\left(\frac{x-x_{i+\frac{1}{2}}}{\varDelta t};w_{i}^{n},w_{i+1}^{n},w_{i+\frac{1}{2}}^{-},w_{i+\frac{1}{2}}^{+}\right).$$

After (26), let us emphasize that the proposed viscous correction has a negative impact on the time step, which may be a threat for practical use. However, as confirmed by the numerical investigations, presented Sect. 5, even when large values of γ are locally needed, the global impact on the CFL condition is negligible, entailing a very slight increase of time iterations.

To conclude this section, we underline that the initial hydrostatic reconstruction scheme (11) is recovered as soon as $\gamma = 0$.

3 Discrete Entropy Inequality

Equipped with the improved hydrostatic reconstruction scheme (20) and the associated Godunov-type reformulation (25), we are now able to get the expected discrete energy estimate (17). Indeed, involving the work by Harten, Lax and van Leer [31], the Godunov-type scheme (25) is entropy preserving as soon as the approximate Riemann solver (22) satisfies the following interface entropy condition:

$$\frac{1}{\Delta x} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \tilde{\eta} \left(w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_L, w_R, w_L^+, w_R^- \right), z \right) dx$$

$$\leq \frac{1}{2} \left(\tilde{\eta}(w_L, z_L) + \tilde{\eta}(w_R, z_R) \right) - \frac{\Delta t}{\Delta x} \left(\tilde{G}(w_R, z_R) - \tilde{G}(w_L, z_L) \right), \tag{27}$$

with the entropy pair $(\tilde{\eta}, \tilde{G})$ defined by (5) and where we have set

$$z = \begin{cases} z_L & \text{if } x < 0, \\ z_R & \text{if } x > 0. \end{cases}$$

Indeed, since η , defined by (3), is a convex function, involving the well-known Jensen's inequality, we immediately obtain

$$\begin{split} \eta(w_i^{n+1}) & \leq \frac{1}{\Delta x} \int_0^{\frac{\Delta x}{2}} \eta\left(w^{\mathcal{R}}\left(\frac{x}{\Delta t}; w_{i-1}^n, w_i^n, w_{i-\frac{1}{2}}^-, w_{i-\frac{1}{2}}^+\right)\right) \, dx \\ & + \frac{1}{\Delta x} \int_{-\frac{\Delta x}{2}}^0 \eta\left(w^{\mathcal{R}}\left(\frac{x}{\Delta t}; w_i^n, w_{i+1}^n, w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+\right)\right) \, dx. \end{split}$$

Moreover, we have

$$h_i^{n+1} z_i = \frac{1}{\Delta x} \int_0^{\frac{\Delta x}{2}} h^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_{i-1}^n, w_i^n, w_{i-\frac{1}{2}}^-, w_{i-\frac{1}{2}}^+ \right) z_i dx + \frac{1}{\Delta x} \int_{-\frac{\Delta x}{2}}^0 h^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_i^n, w_{i+1}^n, w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+ \right) z_i dx,$$

so that, adding the above identities, by definition of $\tilde{\eta}$ given by (5), we get

$$\begin{split} \tilde{\eta}(w_i^{n+1}, z_i) &\leq \frac{1}{\Delta x} \int_0^{\frac{\Delta x}{2}} \tilde{\eta} \left(w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_{i-1}^n, w_i^n, w_{i-\frac{1}{2}}^-, w_{i-\frac{1}{2}}^+ \right), z_i \right) dx \\ &+ \frac{1}{\Delta x} \int_{-\frac{\Delta x}{2}}^0 \tilde{\eta} \left(w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_i^n, w_{i+1}^n, w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+ \right), z_i \right) dx. \end{split}$$

Next, arguing the inequality (27), a straightforward computation gives the expected entropy inequality (17) where the entropy numerical flux function is defined as follows:

$$\begin{split} \tilde{\mathcal{G}}(w_L, w_R, w_L^+, w_R^-, z_L, z_R) \\ &= \tilde{G}(w_R, z_R) - \frac{\Delta x}{2\Delta t} \tilde{\eta}(w_R, z_R) + \frac{1}{\Delta t} \int_0^{\frac{\Delta x}{2}} \tilde{\eta}\left(w^{\mathcal{R}}\left(\frac{x}{\Delta t}; w_L, w_R, w_L^+, w_R^-\right), z_R\right) dx. \end{split}$$

As a consequence, we have now to establish the interface entropy inequality (27). To obtain this estimation, we first introduce the following entropy dissipation rate:

$$\mathcal{E} = \frac{1}{\Delta t} \int_{-\frac{\Delta x}{2}}^{\frac{\Delta x}{2}} \tilde{\eta} \left(w^{\mathcal{R}} \left(\frac{x}{\Delta t}; w_L, w_R, w_L^+, w_R^- \right), z \right) dx - \frac{\Delta x}{2\Delta t} (\tilde{\eta}(w_L, z_L) + \tilde{\eta}(w_R, z_R)) + \left(\tilde{G}(w_R, z_R) - \tilde{G}(w_L, z_L) \right),$$
(28)

so that the estimation (27) immediately reformulates as $\mathcal{E} \leq 0$. Next, from (22) to define the approximate Riemann solver, a straightforward computation gives:

$$\mathcal{E} = \mathcal{E}_0 + \gamma \mathcal{D}$$
,

where we have set

$$\mathcal{E}_{0} = \lambda \left(\tilde{\eta}(w_{L}^{\star}, z_{L}) + \tilde{\eta}(w_{R}^{\star}, z_{R}) - \tilde{\eta}(w_{L}, z_{L}) - \tilde{\eta}(w_{R}, z_{R}) \right) + \left(\tilde{G}(w_{R}, z_{R}) - \tilde{G}(w_{L}, z_{L}) \right),$$

$$(29)$$

$$\mathcal{D} = \tilde{\eta}(\bar{w}_L, z_L) + \tilde{\eta}(\bar{w}_R, z_R) - \tilde{\eta}(w_L, z_L) - \tilde{\eta}(w_R, z_R). \tag{30}$$

We notice that \mathcal{E}_0 is nothing but the entropy dissipation rate of the initial hydrostatic reconstruction scheme (11), obtained by imposing $\gamma=0$ in (20). The quantity \mathcal{D} coincides with a viscous entropy dissipation rate associated with the artificial viscosity.

In fact, since the initial hydrostatic reconstruction scheme is not necessarily entropy preserving, the associated entropy dissipation rate \mathcal{E}_0 may be positive. As a consequence, we may have $\mathcal{E}_0 \geq 0$. Then, in order to recover $\mathcal{E} \leq 0$, necessarily we must have $\mathcal{D} < 0$ so that, with large enough value of $\gamma \geq 0$, we may expect a negative entropy dissipation \mathcal{E} . In fact, choosing the artificial viscosity as follows (for instance, see [13]):

$$\delta^h = \frac{1}{2}(h_L - h_R)$$
 and $\delta^q = \frac{1}{2}(h_L u_L - h_R u_R),$

we obtain

$$\bar{w}_L = \bar{w}_R = \frac{1}{2}(w_L + w_R).$$

With a flat topography, $z_L = z_R$, arguing the convexity of η , we immediately obtain $\mathcal{D} \leq 0$. Now, we have to extend such a viscosity definition in order to deal with non-flat topography.

Lemma 1 Let w_L and w_R be two constant states in Ω_0 . Assume the artificial viscosity δ_{LR} be given as follows:

$$\delta^h = \frac{1}{2}(h_L - h_R) + \frac{1}{2}(z_L - z_R),\tag{31}$$

$$\delta^{q} = \frac{1}{2}(h_{L}u_{L} - h_{R}u_{R}) - \frac{1}{2}\frac{h_{L}u_{L} + h_{R}u_{R}}{h_{L} + h_{R}}(z_{R} - z_{L}). \tag{32}$$

Then the viscous entropy dissipation rate \mathcal{D} reads

$$\mathcal{D} = -g(\delta^h)^2 - \frac{1}{2} \frac{h_L h_R}{h_L + h_R} (u_L - u_R)^2.$$
 (33)

Assume the interface topography reconstruction $z_{LR}^- = z_{LR}^+ = z_{LR}$ be defined such that

$$z_{LR} = \frac{1}{2}(z_L + z_R) + \lambda u(z_R - z_L)K_{LR},$$
(34)

as soon as $u_L = u_R = u$ and $h_L + z_L = h_R + z_R = H$ for given constants u and H. Moreover, in (34), λ is the wave speed involved in (22) and K_{LR} is a parameter, stated at each interface, such that

$$0 < u^2 K_{LR} < 1. (35)$$

In addition, assume h_L and h_R be large enough such that

$$\frac{1}{2}(h_L + h_R) \pm \frac{1}{2}(z_R - z_L) > 0, (36)$$

$$h_L + z_L - z_{LR} > 0$$
 and $h_R + z_R - z_{LR} > 0$. (37)

Then there exists $\lambda > 0$ and $\gamma \geq 0$ large enough such that the interface entropy inequality (27) is satisfied.

From now on, we underline that the condition (36) enforces the intermediate water heights \bar{h}_L and \bar{h}_R to be positive. Indeed, by definition of δ^h , now given by (31), we easily get

$$\bar{h}_L = \frac{1}{2}(h_L + h_R) - \frac{1}{2}(z_L - z_R)$$
 and $\bar{h}_R = \frac{1}{2}(h_L + h_R) + \frac{1}{2}(z_L - z_R)$.

As a consequence, as long as the solution stays far away from dry areas, with $h_L \ge h_0 > 0$ and $h_R \ge h_0 > 0$, and with a smooth topography function, both \bar{h}_L and \bar{h}_R remain positive for small enough Δx . Moreover, the condition (37) imposes that the reconstructed water heights h_L^- and h_R^+ remain positive. As a consequence, at the level of the scheme presentation, we assume to be far away from dry areas. In the next section, extensions of the interface topography z_{LR} are proposed in order to deal with wet and dry transitions.

In addition, it is worth noticing that the proposed improved hydrostatic scheme is now defined up to the parameter K_{LR} , involved in (34). The behavior of the approximated solution according to this parameter K_{LR} will be numerically studied.

Moreover, at this level, we are not able to establish that λ and γ are bounded. However, in Sect. 4, devoted to the numerical experiments, we will illustrate the good behavior of these two parameters.

Proof Arguing the definition of δ^h and δ^q , given by (31) and (32), after a laborious but straightforward computation, \mathcal{D} is now given by (33). As a consequence, $\mathcal{D} \leq 0$ with equality to zero if and only if (w_L, z_L) and (w_R, z_R) belong to

$$\Gamma_{(H,u)} = \{h_L + z_L = h_R + z_R = H \text{ and } u_L = u_R = u\}.$$

Moreover, we notice that \mathcal{D} and \mathcal{E}_0 do not depend on γ . Then, as long as $\mathcal{D} < 0$, there exists $\gamma \geq 0$ such that $\mathcal{E}_0 + \gamma \mathcal{D} \leq 0$.

Next, let us assume that (w_L, z_L) and (w_R, z_R) stay in $\Gamma_{(H,u)}$ so that $\mathcal{D}=0$. In order to obtain the required inequality (27), we have now to establish that $\mathcal{E}_0 \leq 0$. By definition of the hydrostatic reconstruction (15), since $h_L + z_L = h_R + z_R$ and $u_L = u_R$, we have $w_L^+ = w_R^-$ where

$$h_L^+ = H - z_{LR} = h_R^-.$$

Now, we are able to evaluate both intermediate states w_L^* and w_R^* given by (24). Concerning the intermediate water heights, we have the following sequence of equalities:

$$h_L^{\star} = h_L - \frac{1}{\lambda} \left(h_L^{+} u - h_L u \right) = h_L - \frac{u}{\lambda} \left(z_L - z_{LR} \right) ,$$

$$h_R^{\star} = h_R + \frac{1}{\lambda} \left(h_R^{-} u - h_R u \right) = h_R + \frac{u}{\lambda} \left(z_R - z_{LR} \right) .$$

Next, concerning the intermediate discharge, we have

$$h_L^{\star}u_L^{\star} = h_L u_L - \frac{1}{\lambda} \left(f^{hu}(w_L^+) - f^{hu}(w_L) \right) + \frac{g}{2\lambda} \left((h_L^+)^2 - h_L^2 \right),$$

$$h_R^{\star}u_R^{\star} = h_R u_R + \frac{1}{\lambda} \left(f^{hu}(w_R^-) - f^{hu}(w_R) \right) + \frac{g}{2\lambda} \left(h_R^2 - (h_R^-)^2 \right),$$

to get

$$\begin{split} h_L^{\star} u_L^{\star} &= h_L u - \frac{u^2}{\lambda} (z_L - z_{LR}), \\ h_R^{\star} u_R^{\star} &= h_R u + \frac{u^2}{\lambda} (z_R - z_{LR}). \end{split}$$

Plugging these intermediate states within \mathcal{E}_0 and adopting an interface topography z_{LR} given by (34), after a huge but direct computation, we obtain

$$\mathcal{E}_0 = u^2 g K_{LR} (z_R - z_L)^2 (u^2 K_{LR} - 1) \lambda^2 + \alpha_1 \lambda + \alpha_0,$$

where α_1 and α_0 do not depend on λ . As a consequence, as long as $u \neq 0$ and $z_L \neq z_R$, under the condition (35), \mathcal{E}_0 stands for a second-order polynomial function with respect to λ with a negative head coefficient. Hence, there exists $\lambda > 0$ large enough such that $\mathcal{E}_0 < 0$.

Finally, to conclude the proof, we underline that $\Gamma_{(H,0)}$ coincides with the lake at rest. Then, by definition of the hydrostatic reconstruction (15), we immediately obtain $w_L^{\star} = w_L$ and $w_R^{\star} = w_R$ so that $\mathcal{E}_0 = 0$ to get $\mathcal{E} = 0$. Moreover, if we restrict $\Gamma_{(H,u)}$ to $z_L = z_R$, then we enforce $w_L = w_R$. By definition of the entropy dissipation rate, once again we obtain $\mathcal{E} = 0$. The proof is thus completed.

We now conclude this section by stating our main result.

Theorem 1 Let $\mathcal{F}(w_L, w_R)$ be a consistent numerical flux function with the homogeneous shallow-water equations. Assume the topography function z be given by a smooth function.

Let $(w_i^n)_{i\in\mathbb{Z}}$ be a sequence in Ω_0 to approximate the solution of (1) at time t^n . Consider the updated state w_i^{n+1} given by the viscous hydrostatic reconstruction scheme (20) and (13) where the reconstructed water heights are given by (9) but for an interface topography defined by

$$z_{i+\frac{1}{2}}^{-} = z_{i+\frac{1}{2}}^{+} = z_{i+\frac{1}{2}}, \tag{38}$$

$$z_{i+\frac{1}{2}} = \frac{1}{2}(z_i + z_{i+1}) + \frac{\lambda}{2} \left(u_i^n + u_{i+1}^n \right) (z_{i+1} - z_i) K_{i+\frac{1}{2}}, \tag{39}$$

with $K_{i+\frac{1}{2}}$ a positive parameter such that

$$0 < \frac{K_{i+\frac{1}{2}}}{4} \left((u_i^n)^2 + (u_{i+1}^n)^2 \right) < 1.$$

Concerning the artificial viscosity $\delta_{i+\frac{1}{2}} = (\delta_{i+\frac{1}{2}}^h, \delta_{i+\frac{1}{2}}^q)^t$, we adopt

$$\delta_{i+\frac{1}{2}}^{h} = \frac{1}{2} \left(h_i^n - h_{i+1}^n \right) + \frac{1}{2} (z_i - z_{i+1}), \tag{40}$$

$$\delta_{i+\frac{1}{2}}^{q} = \frac{1}{2} \left(h_{i}^{n} u_{i}^{n} - h_{i+1}^{n} u_{i+1}^{n} \right) - \frac{1}{2} \frac{h_{i}^{n} u_{i}^{n} + h_{i+1}^{n} u_{i+1}^{n}}{h_{i}^{n} + h_{i+1}^{n}} (z_{i+1} - z_{i}). \tag{41}$$

Under the CFL-like restriction (26), there exists $\lambda_{i+\frac{1}{2}} > 0$ and $\gamma \geq 0$ large enough such that the scheme is

- (i) Consistent,
- (ii) Well-balanced for the lake at rest,
- (iii) Entropy preserving according to the discrete energy estimate (17).

It is worth noticing that the numerical flux function \mathcal{F} is not enforced to be associated with an entropy preserving scheme. Put in other words, the scheme (11), with a flat topography function, can be entropy violating. In fact, all the required entropy inequalities are contained within the numerical artificial viscosity.

Proof First, let us show that the scheme is consistent. Since the topography function is smooth, we immediately have the consistency of the interface topography $z_{i+\frac{1}{2}}$ up to $\mathcal{O}(\Delta x)$. As a consequence, the reconstruction states $w_{i+\frac{1}{2}}^{\pm}$ are consistent up to $\mathcal{O}(\Delta x)$. Then, $(\mathcal{F}(w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+) - \mathcal{F}(w_{i-\frac{1}{2}}^+, w_{i-\frac{1}{2}}^+))/\Delta x$ is naturally consistent with $\partial_x f(w)$ up to $\mathcal{O}(\Delta x)$. Next, concerning the artificial viscosity, we have

$$\begin{split} \delta_{i-\frac{1}{2}}^{h} - \delta_{i+\frac{1}{2}}^{h} &= \frac{1}{2} \left(h_{i+1}^{n} - 2h_{i}^{n} + h_{i-1}^{n} \right) + \frac{1}{2} (z_{i+1} - 2z_{i} + z_{i-1}), \\ \delta_{i-\frac{1}{2}}^{q} - \delta_{i+\frac{1}{2}}^{q} &= \frac{1}{2} \left((hu)_{i+1}^{n} - 2(hu)_{i}^{n} + (hu)_{i-1}^{n} \right) \\ &- \frac{1}{2} \left(\frac{(hu)_{i}^{n} + (hu)_{i+1}^{n}}{h_{i}^{n} + h_{i+1}^{n}} (z_{i+1} - z_{i}) - \frac{(hu)_{i-1}^{n} + (hu)_{i}^{n}}{h_{i-1}^{n} + h_{i}^{n}} (z_{i} - z_{i-1}) \right), \end{split}$$

to immediately obtain $\delta^h_{i+\frac{1}{2}} - \delta^h_{i-\frac{1}{2}} = \mathcal{O}(\Delta x^2)$ and $\delta^q_{i+\frac{1}{2}} - \delta^q_{i-\frac{1}{2}} = \mathcal{O}(\Delta x^2)$. As a consequence, the artificial viscosity is consistent with zero. Concerning the source term, the consistency is immediately recovered because of the consistency of the interface topography $z_{i+\frac{1}{2}}$.

Next, concerning the well-balanced property, since $z_{i+\frac{1}{2}}^-=z_{i+\frac{1}{2}}^+=z_{i+\frac{1}{2}}$, we have just to show that the artificial viscosity vanishes as soon as a lake at rest is considered. But, as soon as $h_i^n+z_i=h_{i+1}^n+z_{i+1}$, we get $\delta_{i+\frac{1}{2}}^h=0$. Moreover, with $\delta_{i+\frac{1}{2}}^h=0$, we have $\delta_{i+\frac{1}{2}}^q=0$ with $u_i^n=u_{i+1}^n=0$. Then, the considered scheme is well-balanced.

Finally, the discrete entropy inequality (17) is a direct consequence of Lemma 1. The proof is thus achieved.

4 Wet and Dry Transitions

We underline that, in the work by Audusse et al [1] (see also [11,45]), the hydrostatic reconstruction scheme remains relevant when considering wet and dry transitions. More precisely, the hydrostatic reconstruction technique preserves the water height nonnegative. Such a property is essential to perform numerical simulations of physical interest. Here, we propose to modify the water height reconstructions and the artificial viscosity in order to make relevant the derived numerical scheme within dry areas.

Concerning the water height reconstructions, we adopt the approach introduced by Audusse et al [1], by imposing on the cell $(x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}),\,h_{i-\frac{1}{2}}^+\geq 0$ and $h_{i+\frac{1}{2}}^-\geq 0$ but also $h_{i-\frac{1}{2}}^+=h_{i+\frac{1}{2}}^-=0$ if $h_i^n=0$. To address such an issue, we suggest

$$\begin{split} h_{i-\frac{1}{2}}^{+} &= \max \left(0, h_{i}^{n} + \alpha_{i-\frac{1}{2}}^{+} \left(z_{i} - z_{i-\frac{1}{2}} \right) \right), \\ h_{i+\frac{1}{2}}^{-} &= \max \left(0, h_{i}^{n} + \alpha_{i+\frac{1}{2}}^{-} \left(z_{i} - z_{i+\frac{1}{2}} \right) \right), \end{split}$$

with $z_{i+\frac{1}{2}}$ given by (39) and where we have set

$$\begin{split} \alpha_{i-\frac{1}{2}}^{+} &= \frac{h_{i}^{n}}{h_{i}^{n} + \left(|h_{i}^{n} + z_{i} - h_{i-1}^{n} - z_{i-1}| + |u_{i}^{n} - u_{i-1}^{n}|L_{0}/V_{0}\right) \Delta x^{k}/L_{0}^{k}}, \\ \alpha_{i+\frac{1}{2}}^{-} &= \frac{h_{i}^{n}}{h_{i}^{n} + \left(|h_{i+1}^{n} + z_{i+1} - h_{i}^{n} - z_{i}| + |u_{i+1}^{n} - u_{i}^{n}|L_{0}/V_{0}\right) \Delta x^{k}/L_{0}^{k}}, \end{split}$$

for a given $k \ge 1$ and where we have introduced L_0 and V_0 , respectively a reference length and a reference velocity stated to the unit value, in order to make consistent the involved dimensions.

Adopting the notations introduced in (9), we get

$$h_{i-\frac{1}{2}}^{+} = h_{i}^{n} + z_{i} - z_{i-\frac{1}{2}}^{+}$$
 and $h_{i+\frac{1}{2}}^{-} = h_{i}^{n} + z_{i} - z_{i+\frac{1}{2}}^{-}$, (42)

where we have set

$$z_{i+\frac{1}{2}}^{-} = \min\left(h_i^n + z_i, z_i - \alpha_{i+\frac{1}{2}}^{-} \left(z_i - z_{i+\frac{1}{2}}\right)\right),$$

$$z_{i-\frac{1}{2}}^{+} = \min\left(h_i^n + z_i, z_i - \alpha_{i-\frac{1}{2}}^{+} \left(z_i - z_{i-\frac{1}{2}}\right)\right).$$
(43)

Next, let us focus on the artificial viscosity. We suggest to consider a similar cut-off technique by imposing the water height artificial viscosity $\delta^h_{i+\frac{1}{2}}$ such that $h^n_i - \delta^h_{i+\frac{1}{2}} \geq 0$ and $h^n_{i+1} + \delta^h_{i+\frac{1}{2}} \geq 0$. As a consequence, we propose

$$\delta_{i+\frac{1}{2}}^{h} = \max\left(-h_{i+1}^{n}, \min\left(h_{i}^{n}, \frac{1}{2}(h_{i}^{n} + z_{i}^{n} - h_{i+1}^{n} - z_{i+1})\right)\right). \tag{44}$$

In addition, in order to preserve the water heights nonnegative, as usual, we impose that the adopted numerical flux function $\mathcal{F}(w_L, w_R)$ is associated with a nonnegative preserving scheme over a flat topography (for instance, see [1,11]). Put in other words, we impose that

$$\mathcal{F}^{h}(w=0, w_{i+1}^{n}) - \mathcal{F}^{h}(w_{i-1}^{n}, w=0) \le 0, \tag{45}$$

for all states w_{i+1}^n in Ω .

We now show that the resulting scheme is nonnegative preserving and it preserves the stability property established Theorem 1.

Theorem 2 Let $(w_i^n)_{i\in\mathbb{Z}}$ be given in Ω , and $\mathcal{F}(w_L, w_R)$ be a consistent numerical flux function assumed to satisfy the nonnegative condition (45). Consider the viscous hydrostatic reconstruction scheme (20) and (13) with reconstructed water heights given by (42) and (43), and an artificial viscosity defined by (41) and (44).

- (i) The scheme is consistent.
- (ii) The scheme is well-balanced; namely if $h_i^n + z_i = H$ and $u_i^n = 0$ for all i in \mathbb{Z} , then $h_i^{n+1} + z_i = H$ and $u_i^{n+1} = 0$ for all i in \mathbb{Z} .
- (iii) Up to a more restrictive CFL-like condition, the scheme is nonnegative preserving; namely if $h_i^n \geq 0$ for all i in \mathbb{Z} , then $h_i^{n+1} \geq 0$ for all i in \mathbb{Z} .
- (iv) The scheme is entropy preserving according to the discrete entropy inequality (17) in Ω_0 at least for small enough Δx .

Proof Concerning the consistency of the scheme, it easily comes from the consistency of $z_{i+\frac{1}{2}}^{\pm}$ with the topography function z. We notice that $z_{i+\frac{1}{2}}$, defined by (39), is consistent with z while $\alpha_{i+\frac{1}{2}}^{\pm}$ is consistent with 1. As a consequence, $z_{i+\frac{1}{2}}^{\pm}$ is consistent with $\min(h+z,z)=z$ and the considered scheme is proved to be consistent.

Next, in order to prove (ii), let us consider a lake at rest; namely $h_i^n + z_i = H$ and $u_i^n = 0$ for all i in \mathbb{Z} . Arguing (41) and (44), we immediately get

$$\delta_{i+\frac{1}{2}}^h = 0 \quad \text{and} \quad \delta_{i+\frac{1}{2}}^q = 0.$$

Moreover, we get $\alpha_{i+\frac{1}{2}}^{\pm} = 1$. With the definition of the interface topography, given by (43), we have

$$z_{i+\frac{1}{2}}^{\pm} = \min\left(H, z_{i+\frac{1}{2}}\right),$$

so that $h_{i+\frac{1}{2}}^- = h_{i+\frac{1}{2}}^+$. Since $u_i^n = 0$ for all i in \mathbb{Z} , the numerical flux function reads for all i in \mathbb{Z}

$$\mathcal{F}\left(w_{i+\frac{1}{2}}^{-}, w_{i+\frac{1}{2}}^{+}\right) = f\left(h_{i+\frac{1}{2}}^{-}\right) = \begin{pmatrix} 0 \\ \frac{g}{2}\left(h_{i+\frac{1}{2}}^{-}\right)^{2} \end{pmatrix}.$$

After a direct computation, the scheme (20) now gives $w_i^{n+1} = w_i^n$ and the well-balanced property is stated.

Next, we turn establishing (iii). To address such an issue, we introduce the following two partial updated water heights:

$$\begin{split} h_i^{n+1,1} &= h_i^n - \frac{\Delta t}{\Delta x/2} \left(\mathcal{F}^h \left(w_{i+\frac{1}{2}}^-, w_{i+\frac{1}{2}}^+ \right) - \mathcal{F}^h \left(w_{i-\frac{1}{2}}^-, w_{i-\frac{1}{2}}^+ \right) \right), \\ h_i^{n+1,2} &= h_i^n + \gamma \frac{\Delta t}{\Delta x/2} \left(\delta_{i-\frac{1}{2}}^h - \delta_{i+\frac{1}{2}}^h \right), \end{split}$$

such that the updated water height defined by (20) now reformulates as follows:

$$h_i^{n+1} = \frac{1}{2} \left(h_i^{n+1,1} + h_i^{n+1,2} \right). \tag{46}$$

We recognize $h_i^{n+1,1}$ as the updated state given by a hydrostatic reconstruction scheme according to the work by Audusse et al [1]. Since $h_{i-\frac{1}{2}}^+ = h_{i+\frac{1}{2}}^- = 0$ as soon as $h_i^n = 0$, the nonnegative condition (45) to be satisfied by the numerical flux function implies $h_i^{n+1} \ge 0$ (see [1,11] for more detail), under the CFL-like condition

$$\frac{\Delta t}{\Delta x/2} \max_{i \in \mathbb{Z}} \lambda_{i+\frac{1}{2}} \le \frac{1}{2}.$$

Next, concerning $h_i^{n+1,2}$, after a straightforward computation we get

$$h_i^{n+1,2} = \left(1 - 4\gamma \frac{\Delta t}{\Delta x}\right) h_i^n + 2\gamma \frac{\Delta t}{\Delta x} \left(h_i^n + \delta_{i-\frac{1}{2}}^h\right) + 2\gamma \frac{\Delta t}{\Delta x} \left(h_i^n - \delta_{i+\frac{1}{2}}^h\right).$$

According to the definition of $\delta^h_{i+\frac{1}{2}}$, given by (44), we have $h^n_i - \delta^h_{i-\frac{1}{2}} \ge 0$ and $h^n_i + \delta^h_{i+\frac{1}{2}} \ge 0$. As a consequence, under the CFL-like condition

$$\gamma \frac{\Delta t}{\Delta x} \le \frac{1}{4},$$

we get $h_i^{n+1,2} \ge 0$, to immediately obtain $h_i^{n+1} \ge 0$ according to (46).

To conclude the proof, we have to establish the discrete entropy inequality (17). In fact, it suffices to apply Lemma 1 for the new definition of the interface topography given by (43) and the new artificial viscosity (44). Since this stability property is considered in Ω_0 , with Δx small enough, the viscosity $\delta_{i+\frac{1}{2}}^h$ recovers the expected formulation given by (40). Next, we notice that $\alpha_{i+\frac{1}{2}}^{\pm}=1$ as soon as $h_i^n+z_i^n=h_{i+1}^n+z_{i+1}=H$ and $u_i^n=u_{i+1}^n$. As a

consequence, with Δx small enough, in Ω_0 we get

$$z_{i+\frac{1}{2}}^{\pm} = \min\left(H, z_{i+\frac{1}{2}}\right) = z_{i+\frac{1}{2}},$$

and thus the condition (34) is satisfied and Lemma 1 can be applied. The proof is thus achieved.

5 Numerical Experiments

In this section, we display several numerical experiments to illustrate the relevance of the derived viscous hydrostatic reconstruction scheme (20) and (13) with the water height reconstruction given by (42) and (43), and the artificial viscosity given by (41) and (44).

The numerical simulations are performed involving two distinct numerical flux functions. First, we adopt the numerical flux function for the Suliciu relaxation scheme [7] or equivalently the HLLC scheme [55]. From now on, we emphasize that this scheme is entropy preserving for flat topography. Next, the second numerical flux function we adopt is associated with the VF-Roe scheme [18,19,42]. This second considered scheme is well-known to be entropy violating. As a consequence, wrong shock discontinuities may appear in the approximated solutions. Some numerical methods have been proposed to correct such a failure, such as [16,32,33], but without ensuring fully discrete entropy inequalities. Here we chose to consider this solver under its non-entropic form to highlight the benefits brought by our stabilisation technique. To implement the scheme, we have to specify the parameters. Concerning $\lambda_{i+\frac{1}{2}}$, in order to be consistent with the entropy inequality satisfied by the Suliciu relaxation scheme, we adopt

$$\lambda_{i+\frac{1}{2}} = \left(1 + \frac{1}{10}\right) \max_{i \in \mathbb{Z}} \left(|u_i^n| + \sqrt{gh_i^n}\right). \tag{47}$$

Concerning $K_{i+\frac{1}{2}}$, involved in $z_{i+\frac{1}{2}}$, and k, involved in $\alpha_{i+\frac{1}{2}}^{\pm}$, we fix this parameters as follows:

$$K_{i+\frac{1}{2}} = \min\left(\frac{\Delta x^2}{L_0^2 V_0^2}, \left(\frac{2}{(u_i^n)^2 + (u_{i+1}^n)^2}\right)\right) \quad \text{and} \quad k = 2,$$
 (48)

where we have introduced L_0 and V_0 , respectively a reference length and a reference velocity stated to the unit value, in order to make consistent the involved dimensions. The influence of these parameters is tested later on.

Now, the main difficulty comes from the evaluation of γ to govern the artificial viscosity. In the simulations, we have decided to select one value of γ per time iteration. At time t^n , at each interface $x_{i+\frac{1}{2}}$, we evaluate $(\mathcal{E}_0)_{i+\frac{1}{2}}^n$ and $\mathcal{D}_{i+\frac{1}{2}}^n$, given by (29) and (30). Then, we fix γ^n such that $(\mathcal{E}_0)_{i+\frac{1}{2}}^n + \gamma^n \mathcal{D}_{i+\frac{1}{2}}^n \leq 0$.

Equipped with the values of $\lambda_{i+\frac{1}{2}}$ and γ^n , the time increment Δt^n is evaluated at each time iteration according to the CFL-like restriction (26) as follows:

$$\Delta t^n = \frac{\Delta x}{2 \max_{i \in \mathbb{Z}} \left(\lambda_{i+\frac{1}{2}} + \gamma \right)}.$$
 (49)

In the sequel, we present three sequences of numerical experiments respectively devoted to dam-breaks over a flat topography, stationary flows over a bump and wet/dry transitions.

5.1 Dam-Breaks over a Flat Topography

Here, the simulation domain is made of the interval [0, 25] where the topography function is fixed to z(x) = 0. The initial data for the first dam-break is given by

$$h(x,0) = \begin{cases} 1.5 & \text{if } x < 12.5, \\ 0.5 & \text{if } x > 12.5, \end{cases} \text{ and } u(x,0) = 0.$$
 (50)

The exact solution is made of a rarefaction wave and a shock wave. Since the Suliciu relaxation scheme is entropy preserving over a flat topography, the evaluation of the viscosity parameter imposes $\gamma^n = 0$ for all n > 0 in this simulation. Concerning the approximation given by the VF-Roe scheme, we also obtain $\gamma^n = 0$ for all n > 0. In fact, for such a Riemann problem,

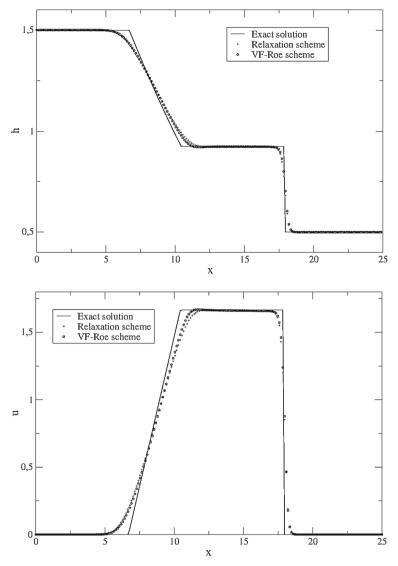


Fig. 2 Numerical simulation obtained for the first dam-break given for the initial data (50) at time t = 1.5 with 200 cells

the VF-Roe scheme does not involve entropy fix and we obtain the expected approximate solution. The numerical results for this first dam-break are displayed Fig. 2.

The second simulated dam-break is obtained by considering the following initial data:

$$h(x,0) = \begin{cases} 2.0 & \text{if } x < 12.5, \\ 0.1 & \text{if } x > 12.5, \end{cases} \text{ and } u(x,0) = 0.$$
 (51)

Once again, the Suliciu relaxation scheme is entropy preserving and we obtain a good approximation of the solution made of a rarefaction wave and a shock wave. Now, the situation turns

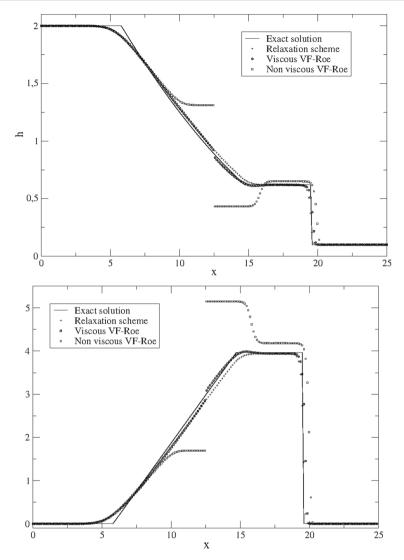


Fig. 3 Numerical simulation obtained for the second dam-break given for the initial data (51) at time t = 1.5 with 200 cells

out to be drastically different concerning the VF-Roe scheme. Indeed, the VF-Roe scheme produces a strong entropy violating shock wave as displayed Fig. 3.

Nevertheless, as soon as the artificial viscosity is activated, the entropy stability is recovered and the approximated solution becomes in a good agreement when compared to the exact solution.

In Fig. 4, we present the evolution of γ^n versus time obtained during the simulation. It is clear that the values of γ^n do not restrict the CFL condition and do not perturb the order of accuracy as presented Table 1.

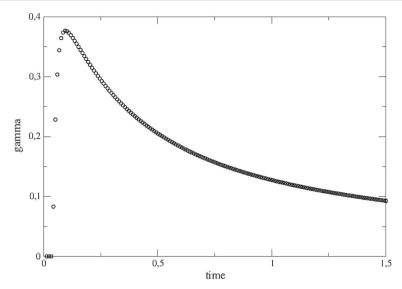


Fig. 4 Second dam-break given for the initial data (51) at time t = 1.5 with 200 cells, evolution of the viscous parameter γ^n versus time

 Cells
 L^2 water height error
 L^2 discharge error

 200
 1.6197E-2
 4.8550E-2

 400
 9.1830E-3
 2.7253E-2

 800
 5.4305E-3
 1.6455E-2

Table 1 Errors evaluation of viscous VF-Roe scheme for the second dam-break with initial data (51)

3.0831E-3

5.2 Stationary Solutions

1600

Now, we focus on simulations of stationary solutions. Here, the domain of simulation is given by [0, 25] while the topography contains a bump as follows:

$$z(x) = \max(0, 0.2 - 0.05(x - 10)^{2}).$$
(52)

First, we simulate the well-known lake at rest. Then, the initial data is given by

$$h(x, 0) = \max(0, 0.5 - z(x))$$
 and $u(x, 0) = 0.$ (53)

As presented Fig. 5, since the scheme is well-balanced, the initial data is preserved by both Suliciu scheme and VF-Roe scheme with errors equal to $\mathcal{O}(10^{-15})$. Of course, since the steady solution is exactly captured, the artificial viscosity remains equal to zero during the simulation.

Next, the second simulation is devoted to a subcritical flow with an initial data given by

$$h(x, 0) = 2 - z(x)$$
 and $u(x, 0) = 0$. (54)

In this simulation, the boundary conditions are imposed as follows:

$$h(0, t)u(0, t) = h(25, t)u(25, t) = 4.42$$
 and $h(25, t) = 2$

8.8137E-3

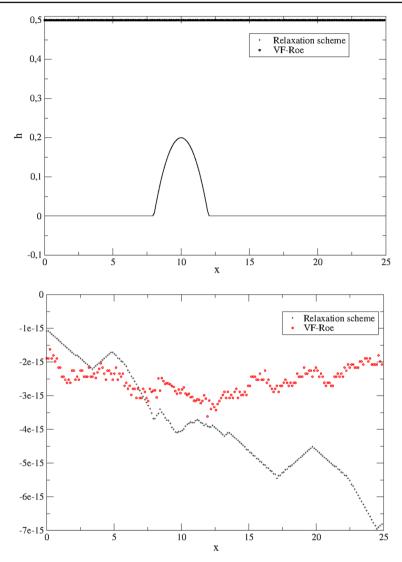


Fig. 5 Numerical simulation obtained for the lake at rest given for the initial data (53) at time t = 100 with 200 cells

while h(0, t) is given by an usual Neumann condition.

The obtained numerical results are displayed Fig. 6. Here, we present the results obtained by adopting the original version of the Suliciu relaxation scheme and the VF-Roe scheme as well as the viscous extension according to the introduced artificial viscosity technique. The discharge error evaluations, given Tables 2 and 3, are clearly convincing. Because of the non vanishing topography function, the artificial viscosity is here active.

In Fig. 7, we display the obtained values of γ^n versus time. We notice that some values of γ^n are very large. However, these large values are only for some time iterations and not during all the simulation. As a consequence, it seems more relevant to introduce the time average of γ^n as follows:

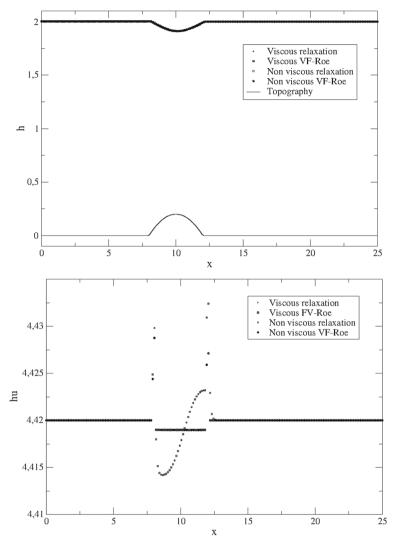


Fig. 6 Numerical simulation obtained for the subcritical flow at time t = 100 with 200 cells

$$\bar{\gamma} = \frac{1}{T} \sum_{n=0}^{N} \gamma^n \Delta t^n, \tag{55}$$

where N is the total number of time iteration performed by the simulation and T is the final time of the simulation.

In fact, once again, the artificial viscosity does not seem to impose a restrictive CFL condition. Such an assertion is confirmed in both Tables 2 and 3 when exhibiting how much the artificial viscosity increases the number of time iterations. However, the percent of the increase of the number of iterations, presented Table 2, seems to become greater for a cell number from 200 to 1600. Hence, we have also performed a numerical simulation with 10000 cells and we notice that the percent of increase is less than 5% while this percent is larger

Cells	Non viscous	relaxation		Viscous relaxation			
	L^2 -error	$max(\mathcal{E}_0)$	N	L^2 -error	$\max_{n>0} \gamma^n$	$\bar{\gamma}$	N (increase)
200	7.0821E-4	5.6105	11899	7.0822E-4	761.51	0.1055	12057 (1%)
400	3.0611E-4	5.6105	23883	3.0611E-4	839.24	0.1606	24377 (2%)
800	1.4219E-4	5.6105	47863	1.4218E-4	2089.60	0.3018	49745 (3%)
1600	6.8524E-5	5.6105	95843	6.8517E-5	197463.81	0.4054	100921 (5%)
10000	1.0649E-5	5.6105	599794	1.0648E-5	25405.12	0.3641	628536 (5%)

Table 2 Subcritical flow at time t = 100 with the relaxation scheme

Evolution with respect to the cell number of the discharge L^2 -error, the dissipation rate \mathcal{E}_0 , the number of time iterations N and the percent increasing, the maximum value of γ^n and the average in time of γ^n

Table 3 Subcritical flow at time t = 100 with the VF-Roe scheme

Cells	Non viscous VF-Roe			Viscous VF-Roe			
	L^2 -error	$max(\mathcal{E}_0)$	N	L^2 -error	$\max_{n>0} \gamma^n$	$\bar{\gamma}$	N (increase)
200	2.8502E-4	1.9294	11880	2.8502E-4	825.92	0.2213	12231 (3%)
400	7.3086E-5	1.9294	23826	7.3086E-5	526.77	0.6017	25744 (8%)
800	1.8496E-5	1.9294	47718	1.8496E-5	2809.42	0.1962	48970 (2%)
1600	4.6518E-6	1.9294	95504	4.6518E-6	23790.89	0.2119	98214 (3%)

Evolution with respect to the cell number of the discharge L^2 -error, the dissipation rate \mathcal{E}_0 , the number of time iterations N and the percent increasing, the maximum value of γ^n and the average in time of γ^n

than 5% with 1600 cells. This indicates that the increase of the iteration number is not in correlation with the number of cells. This remark will be confirmed by all the following numerical simulations.

In addition, we notice that the artificial viscosity does not modify the numerical error. Moreover, let us emphasize that the non viscous schemes violate the entropy condition since the entropy dissipation rate \mathcal{E}_0 may be positive. In this simulation, we notice that the maximum value of \mathcal{E}_0 is independent of the mesh refinement.

The third stationary solution concerns the transcritical flow without shock. This simulation is obtained by adopting the following initial data:

$$h(x, 0) = 0.66 - z(x)$$
 and $u(x, 0) = 0.$ (56)

The boundary conditions are given by:

$$h(0,t)u(0,t) = h(25,t)u(25,t) = 1.53$$
 and $h(25,t) = 0.66$

while h(0, t) is given by an usual Neumann condition.

The obtained numerical results are displayed Fig. 8. We notice that the numerical solution, obtained by the original (non viscous) VF-Roe scheme, contains a strong shock discontinuity violating the entropy stability.

We remark that the artificial viscosity technique clearly increases the stability of the scheme, in particular the VF-Roe scheme which now gives a correct approximate solution (see Table 5). Moreover, the expected entropy stability is reached with a neglecting amount of supplementary time iterations. Indeed, after Table 4 the entropy stability is get by adding a few percent of supplementary time iterations. Concerning the VF-Roe scheme, since it does not give a correct approximation with a vanishing viscosity, the comparison between

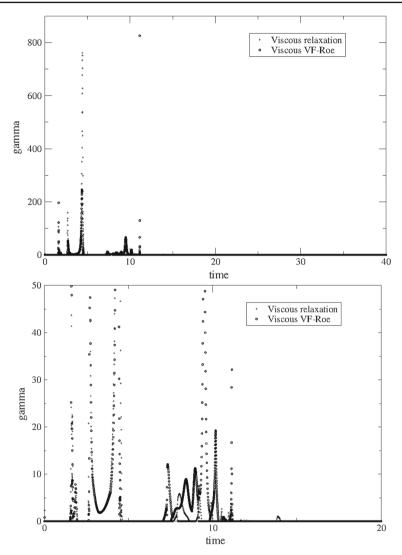


Fig. 7 Evolution of γ^n versus time (left) and a zoom (right) obtained for the subcritical flow at time t = 100 with 200 cells

viscous and non viscous approach is not relevant. However, we notice that the number of time iterations for the viscous VF-Roe scheme is very similar to the number of time iterations for the viscous Suliciu relaxation scheme. Once again, all these comments make the artificial viscosity technique very attractive.

The last stationary solution we simulate is the transcritical flow with shock. This numerical experiment is obtained by adopting the following initial data:

$$h(x, 0) = 0.33 - z(x)$$
 and $u(x, 0) = 0.$ (57)

The boundary conditions are given by

$$h(0, t)u(0, t) = h(25, t)u(25, t) = 0.18$$
 and $h(25, t) = 0.33$

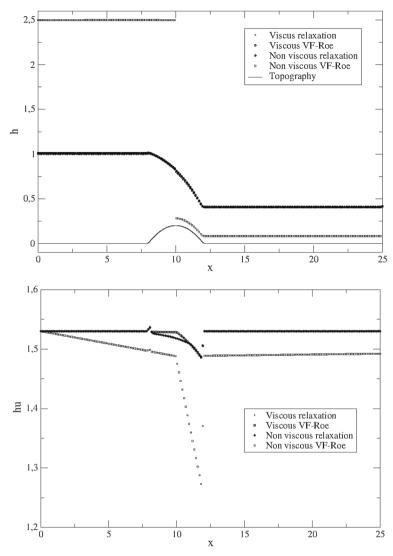


Fig. 8 Numerical simulation obtained for the transcritical flow without shock at time t = 200 with 200 cells

while h(0, t) is given by an usual Neumann condition.

The obtained numerical results are displayed Fig. 9. Once again, we notice that the artificial viscosity increases the stability of the scheme, in particular the VF-Roe scheme which now gives a correct approximate solution (see Table 5). Moreover, the expected entropy stability is reached with a neglecting amount of supplementary time iterations as shown Tables 6 and 7. Once again, this makes the artificial viscosity technique very attractive.

To conclude the steady state simulations, we adopt this last numerical experiment devoted to the transcritical flow with shock, to evaluate the behavior of the scheme with respect to the definition of the parameters $K_{i+\frac{1}{2}}$ and k, currently fixed by (48). In Tables 8 and 9 we present the discharge L^2 -error for several values of these parameters. We immediately

Table 4 Transcritical flow without shock at time t = 200 with the relaxation scheme

Cells	Non viscous relaxation	cation		Viscous relaxation			
	L^2 -error	$max(\mathcal{E}_0)$	N	L^2 -error	$\max_{n>0} \gamma^n$	$ar{\mathcal{V}}$	N (increase)
200	2.4698E-3	1.5090E-3	20276	2.4698E-3	33732.41	0.4498	21655 (6%)
400	1.2152E-3	4.3561E-4	40816	1.2152E-3	58.95	0.1016	41429 (1%)
800	6.0196E-4	1.2171E-4	81893	6.0196E-4	123.75	6.3029E-2	82654 (0.9%)
1600	2.9948E-4	3.2614E-5	164047	2.9948E-4	3924.33	4.5342E-2	165154 (0.6%)

Evolution with respect to the cell number of the discharge L^2 -error, the dissipation rate \mathcal{E}_0 , the number of time iterations N and the percent increasing, the maximum value of γ^n and the average in time of γ^n

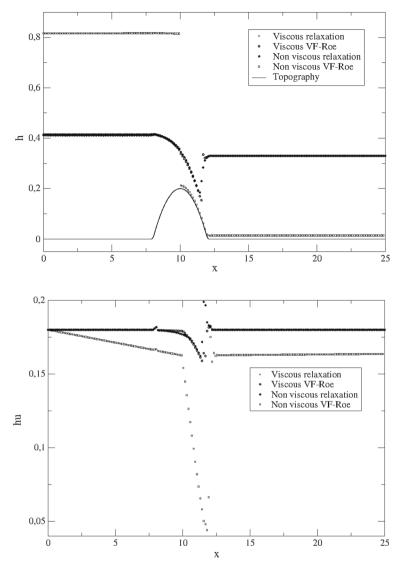


Fig. 9 Numerical simulation obtained for the transcritical flow with shock discontinuity at time t = 200 with 200 cells

Table 5 Transcritical flow without shock at time t = 200 with the viscous VF-Roe scheme

Cells	L^2 -error	$\max_{n>0} \gamma^n$	$\bar{\gamma}$	N
200	1.8791E-3	1473.34	0.2038	21018
400	8.8806E-4	793.23	0.1330	41778
800	4.3061E-4	334.02	8.5518E-2	83156
1600	2.1189E-4	13041.94	5.7416E-2	165818

Evolution with respect to the cell number of the discharge L^2 -error, the maximum value of γ^n and the average in time of γ^n

Table 6	Transcritical	flow with	shock at time t	= 200 with	the relaxation	scheme
i abie o	Transcriucai	now with	i shock at time ι	= 200 with	uic iciaxauoii	SCHOL

Cells	Cells Non viscous relaxation			Viscous relaxation			
	L^2 -error	$max(\mathcal{E}_0)$	N	L^2 -error	$\max_{n>0} \gamma^n$	$ar{\gamma}$	N (increase)
200	8.7526E-4	9.2310E-3	10304	8.7526E-4	2307.32	5.3771E-3	10320 (0.1%)
400	4.9291E-4	9.2310E-3	21526	4.9291E-4	135.05	3.8418E-3	21550 (0.1%)
800	2.6938E-4	9.2310E-3	44271	2.6938E-4	37.66	1.9463E-3	44295 (0.05%)
1600	1.3965E-4	9.2310E-3	89571	1.3965E-4	37.61	1.9499E-3	89619 (0.05%)

Evolution with respect of the cell number of the discharge L^2 -error, the dissipation rate \mathcal{E}_0 , the number of time iterations N and the percent increasing, the maximum value of γ^n and the average in time of γ^n

Table 7 Transcritical flow with shock at time t = 200 with the viscous VF-Roe scheme

Cells	L ² -error	$\max_{n>0} \gamma^n$	$\bar{\gamma}$	N
200	8.4623E-4	80.86	6.7037E-2	10804
400	4.0205E-4	75.24	3.4464E-2	22114
800	2.1277E-4	106.62	1.7206E-2	44722
1600	1.080E-4	528.53	9.4965E-3	90001

Evolution with respect to the cell number of the discharge L^2 -error, the maximum value of γ^n and the average in time of γ^n

Table 8 Transcritical flow with shock at time t = 200 with 400 cells

$K_{i+\frac{1}{2}}$	Discharge L^2 -error	
2	Viscous relaxation	Viscous VF-Roe
$\min\left(1, \left(\frac{2}{u_i^n + u_{i+1}^n}\right)^2\right)$	2.2790E-3	2.2574E-3
$\min\left(10, \left(\frac{2}{u_i^n + u_{i+1}^n}\right)^2\right)$	3.1749E-3	3.1874E-3
$\min\left(\frac{\Delta x^2}{L_0^2 V_0^2}, \left(\frac{2}{u_i^n + u_{i+1}^n}\right)^2\right)$	4.9291E-4	4.0205E-4
$\min\left(\frac{\Delta x^4}{L_0^2 V_0^2}, \left(\frac{2}{u_i^n + u_{i+1}^n}\right)^2\right)$	4.9291E-4	4.0205E-4

Discharge L^2 -error versus the definition of $K_{i+\frac{1}{2}}$

Table 9 Transcritical flow with shock at time t = 200 with 400 cells

k	Discharge L^2 -error	
	Viscous relaxation	Viscous VF-Roe
1	4.8110E-4	3.6097E-4
2	4.9291E-4	4.0205E-4
3	4.9367E-4	4.0431E-4
4	4.9371E-4	4.0445E-4

Discharge L^2 -error versus the definition of k involved in $\alpha_{i+\frac{1}{2}}$

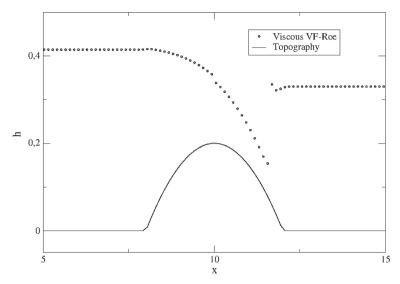


Fig. 10 Numerical simulation of the hydraulic jump (zoom of the transcritical flow with shock discontinuity) at time t = 200 with 200 cells for the viscous VF-Roe scheme

notice that the approximate solution depends very weakly on the parameter k. Similarly, the dependence on the definition of $K_{i+\frac{1}{2}}$ is not crucial. However, we have a better approximation with a minimum value near zero. Moreover, here, we want to emphasize the very good approximation we obtain within the hydraulic jump as presented Fig. 10. Indeed, it is worth noticing that the hydraulic jump is approximated with only one point for a nonpositive entropy dissipation rate \mathcal{E} .

To conclude this section devoted to the approximation of well-known steady solutions, we notice that the designed numerical viscosity technique supplemented with a relevant reconstruction gives numerical simulations with similar accuracy than usual numerical schemes [1,7,11,23,34,40]. In the present work, the main improvement stays in the entropy stability since the discrete energy estimate (17) is now preserved.

5.3 Wet and Dry Transitions

In the two last simulations, we test the relevance of the viscosity technique when approximating wet and dry transitions. In the first simulation, we consider a dam-break over a flat topography. Then, we have fixed z(x) = 0. Here, the domain of computation is [-10, 20]. The numerical results are displayed Fig. 11.

Since the Suliciu relaxation scheme is entropy stable over a flat topography, the artificial viscosity stays inactive during the simulation and we get $\gamma^n=0$. In Table 10, we exhibit the evolution of the L^2 -error versus the number of cells. Concerning the non viscous VF-Roe scheme, once again, it is entropy violating and generates a wrong shock discontinuity. In Table 11, we give the evolution of the L^2 -error, of the maximum value of γ^n and the average $\bar{\gamma}^n$. We notice that the needed number of time iterations if similar for both viscous schemes which indicates that the the artificial viscosity does not increase the time iterations. It is worth noticing that the suggested artificial viscosity approach is relevant to deal with dry areas over a flat topography to make it very attractive.

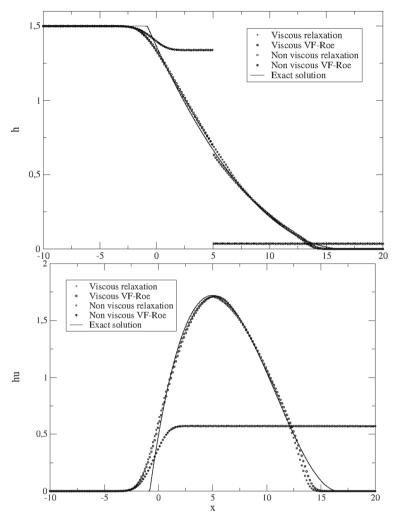


Fig. 11 Numerical simulation obtained for dam-break over a dry area at time t = 1.5 with 200 cells

Table 10 Dam-break over a dry area at time t = 1.5 with the relaxation scheme

Cells	water height L^2 -error	discharge L^2 -error	N
200	1.3978E-2	4.0196E-2	132
400	8.5398E-3	2.5132E-2	278
800	5.0803E-3	1.5307E-2	581
1600	2.9665E-3	9.1340E-3	1204

Evolution with respect to the cell number of both water height and discharge L^2 -error and the number of time iterations N

Table 11 Dam-break over a dry area at time t = 1.5 with the viscous VF-Roe scheme

Cells	L^2 -error	$\max_{n>0} \gamma^n$	$ar{\gamma}$	N
200	3.9049E-2	17.1792	0.1670	138
400	2.5349E-2	17.1792	0.1214	287
800	1.5729E-2	17.1792	8.1975E-2	592
1600	9.4474E-3	17.1792	5.2373E-2	1218

Evolution with respect to the cell number of the discharge L^2 -error, the maximum value of γ^n , the average in time of γ^n and the number of time iterations N

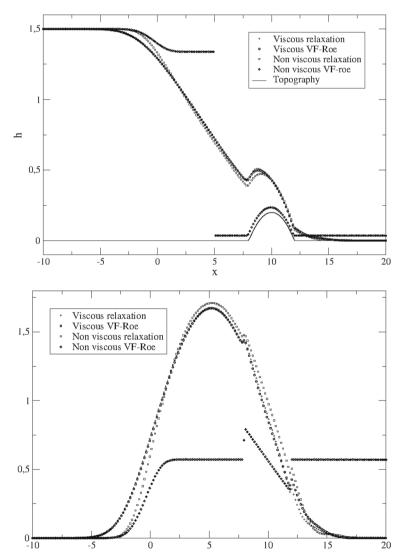


Fig. 12 Numerical simulation obtained for dam-break over a bump at time t = 1.5 with 200 cells

Cells	Viscous relaxation			Viscous VF-Roe		
	$\overline{\max(\mathcal{E}_0 + \gamma^n \mathcal{D})}$	$ar{\gamma}$	N	$\overline{\max(\mathcal{E}_0 + \gamma^n \mathcal{D})}$	$ar{\gamma}$	N
200	0.	9.3316	360	8.2667E-9	10.0568	323
400	3.8231E-8	4.9594	1228	7.2315E-9	12.5455	1021
800	1.7686E-5	6.0375	2094	1.4186E-6	24.9256	3279
1600	2.0661E-5	9.6409	5691	1.0098E-6	22.9878	7619

Table 12 Dam-break with dry area over a bump at time t = 1.5 with both viscous relaxation and VF-Roe schemes

Evolution of the entropy dissipation rate and the number of iteration versus the number of cells

The last simulation we propose concerns a dam-break over a topography containing a bump as displayed Fig. 12. Here the considered domain is [-10, 20] while the topography function z is defined by (52). Because of the bump in the dry area, according to Theorem 2, the discrete entropy inequality (17) is no longer satisfied in the wet and dry transition nor dry areas. In fact, the viscosity parameter γ^n cannot be evaluated relevantly. Indeed, in the wet and dry transition, it is not possible to evaluate $\gamma^n \geq 0$ bounded such that the entropy dissipation rate \mathcal{E} , defined by (28), stays nonpositive. However, in order to perform this numerical experiment, we impose $\gamma^n = 0$ as soon as $\mathcal{D} = 0$. As a consequence, in this simulation, we are not able to enforce the required entropy inequality. However, as presented Table 12, the violation of the entropy dissipation rate remains very small and we may expect a correct convergence.

Conclusion

In this work, we have introduced a modification of the well-known hydrostatic reconstruction scheme to get fully discrete entropy inequalities. The method employs an appropriate artificial viscosity technique, resulting from a slight adaptation of the Riemann solver implied in the numerical resolution. The efficiency of the method has been shown throught a series of numerical experiments. In particular, when applied to entropy-violating schemes such as VF-Roe, the viscous correction allows to recover stability. In has been observed numerically that the viscous stabilization does not bring a significant increase of time iterations. The question arises as to how extend the method to a more general class of Finite-Volume schemes, together with its adaptation to high-order reconstructions. This is subject of ongoing work.

Acknowledgements We would like to thank the "Fédération de Recherche Mathématiques des Pays de Loire" (FMPL) as well as the SHARK-FV Conference for helping to initiate this project.

References

- Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)
- Audusse, E., Bouchut, F., Bristeau, M.-O., Sainte-Marie, J.: Kinetic entropy inequality and hydrostatic reconstruction scheme for the saint-venant system. Math. Comput. 85(302), 2815–2837 (2016)
- Azerad, P., Guermond, J.-L., Popov, B.: Well-balanced second-order approximation of the shallow water equation with continuous finite elements. SIAM J. Numer. Anal. 55(6), 3203–3224 (2017)

- Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23(8), 1049–1071 (1994)
- Berthon, C., Chalons, C.: A fully well-balanced, positive and entropy-satisfying godunov-type method for the shallow-water equations. Math. Comput. 85(299), 1281–1307 (2016)
- Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30(5), 2587–2612 (2008)
- F. Bouchut.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and wellbalanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)
- Bouchut, F., de Luna, T.Morales: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48(5), 1733–1758 (2010)
- 9. Bouchut, F., de Luna, T.Morales: An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. M2AN Math. Model. Numer. Anal. **42**(4), 683–698 (2008)
- Cargo, P., Le Roux, A.-Y.: Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité.
 Comptes rendus de l'Académie des sciences. Série 1, Mathématique 318(1), 73–76 (1994)
- Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal. 55(2), 758–784 (2017)
- 12. Coquel, F., Saleh, K., Seguin, N.: A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles. Math. Models Methods Appl. Sci. **24**(10), 2043–2083 (2014)
- 13. Couderc, F., Duran, A., Vila, J.-P.: An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification. J. Comput. Phys. **343**, 235–270 (2017)
- Dafermos, C.M.: Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, (2010)
- Delestre, O., Lagrée, P.-Y.: A 'well-balanced' finite volume scheme for blood flow simulation. Internat. J. Numer. Methods Fluids 72(2), 177–205 (2013)
- Dubois, F., Mehlman, G.: A non-parameterized entropy correction for Roe's approximate Riemann solver. Numer. Math. 73, 169–208 (1996)
- 17. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: 2D granular flows with the $\mu(I)$ rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. **356**, 192–219 (2018)
- 18. Gallouët, T., Hérard, J.-M., Seguin, N.: Some recent finite volume schemes to compute Euler equations using real gas EOS. Int. J. Numer. Methods Fluids 39(12), 1073–1138 (2002)
- Gallouët, T., Hérard, J.-M., Seguin, N.: Some approximate Godunov schemes to compute shallow water equations with topography. Comput. Fluids 32(4), 479–513 (2003)
- Godlewski, E., Raviart, P.-A.: Hyperbolic systems of conservation laws, volume 3/4 of Mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris, (1991)
- Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation laws, Volume 118 of Applied Mathematical Sciences. Springer, New York (1996)
- Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271–306 (1959)
- Gosse, L.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39(9), 135–159 (2000)
- Goutal, N., Maurel, F.: Proceedings of the 2nd workshop on dam-break wave simulation. Electricité de France, Direction des études et recherches (1997)
- Goutal, N., Maurel, F.: Dam-break wave simulation. In: Proceedings of the First CADAM workshop, (1998)
- Greenberg, J.M., Leroux, A.-Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)
- Greenberg, J.M., Leroux, A.Y., Baraille, R., Noussair, A.: Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal. 34(5), 1980–2007 (1997)
- Grenier, N., Vila, J.-P., Villedieu, P.: An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows. J. Comput. Phys. 252, 1–19 (2013)
- Guermond, J.-L., Popov, B.: Viscous regularization of the euler equations and entropy principles. SIAM J. Appl. Math. 74, 284–305 (2014)
- Guermond, J.-L., Popov, B.: Invariant domains and second-order continuous finite element approximation for scalar conservation equations. SIAM J. Numer. Anal. 55, 3120–3146 (2017)
- Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)
- Harten, A., Hyman, J.M.: A self-adjusting grid for the computation of weak solutions of hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

- Helluy, P., Hérard, J.-M., Mathis, H., Müller, S.: A simple parameter-free entropy correction for approximate Riemann solvers. Comptes Rendus Mécanique 338(9), 493–498 (2010)
- Jin, S.: A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: Math. Model. Numer. Anal. 35(04), 631–645 (2001)
- Lax, P.D.: Shock waves and entropy. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pages 603–634. Academic Press, New York (1971)
- Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, vol. 11. SIAM, New Delhi (1973)
- 37. Lax, P.D., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)
- LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
- 39. Li, G., Xing, Y.: Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation. J. Comput. Phys. **352**, 445–462 (2018)
- 40. Liang, Q., Marche, F.: Numerical resolution of well-balanced shallow water equations with complex source terms. Adv. Water Resour. 32(6), 873–884 (2009)
- Maire, P.H., Abgrall, R., Breil, J., Ovadia, J.: A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007)
- Masella, J.-M., Faille, I., Gallouët, T.: On a rough godunov scheme. Int. J. for Comput. Fluid Dyn. 12(2), 133–150 (1999)
- Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallow-water equations with topography. Comput. Math. Appl. 72(3), 568–593 (2016)
- Michel-Dansac, V., Berthon, C., Clain, S., Foucher, F.: A well-balanced scheme for the shallow-water equations with topography or manning friction. J. Comput. Phys. 335, 115–154 (2017)
- Morales, T., Castro Díaz, M.J., Parés, C.: Reliability of first order numerical schemes for solving shallow water system over abrupt topography. Appl. Math. Comput. 219(17), 9012–9032 (2013)
- von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950)
- Noh, W.F.: Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux.
 J. Comput. Phys. 72, 78–120 (1987)
- Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)
- Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)
- Serre, D.: Systems of conservation laws. 1. Cambridge University Press, Cambridge, (1999). Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon
- Tadmor, E.: Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43(168), 369–381 (1984)
- Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)
- Tadmor, E.: Entropy stable schemes. Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, edited by R. Abgrall and C.-W. Shu (North-Holland, Elsevier, Amsterdam, 2017), 17:467–493 (2016)
- Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics, 3rd edn. Springer, Berlin (2009).
 A practical introduction
- Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1), 25–34 (1994)
- Xu, K., Martinelli, L., Jameson, A.: Gas-kinetic finite volume methods, flux-vector splitting and artificial diffusion. J. Comput. Phys. 120, 48–65 (1995)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

