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Abstract

Abstract

In this paper we analyze two numerical staggered schemes, one fully implicit, the other semi-

implicit, for the compressible Navier-Stokes equations with a singular pressure law; system which

degenerates towards the free-congested Navier-Stokes equations with the density constraint 0 ≤ ρ ≤ 1

as the intensity of the pressure, ε, tends to 0. The two schemes are shown to “preserve” the limit

ε → 0, in the following sense: via discrete energy and pressure estimates we control uniformly with

respect to ε the discrete density, velocity and pressure; and, as ε → 0, the limit pressure is shown to be

activated only in the congested region where the discrete limit density is maximal, equal to 1. Finally,

the semi-implicit scheme is implemented via the software CALIF3S on 1D and 2D test cases and the

numerical solutions are shown to capture well the transition between the congested regions {ρ = 1}
and the free regions {ρ < 1}.

Keywords: Compressible Navier-Stokes equations, singular limit, staggered discretization, finite volume - finite

element method, pressure correction scheme.

Keywords: 35Q30,65N12,76M10,76M12.

1 Introduction

The purpose of this paper is to present and analyze new numerical schemes for the following singular
compressible Navier-Stokes equations:

∂tρε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε) +∇pε(ρε)− div (τ (uε)) = f ,

(ρε, (ρεuε))|t=0 = (ρε0, q
ε
0)

(1.1a)

(1.1b)

(1.1c)

in the domain (0, T ) × Ω for T > 0 and Ω an open bounded subset of Rd, d = 2 or 3, with Lipschitz
boundary. The quantities ρ ≥ 0 and u = (u1, .., ud)

T are respectively the density and velocity of the fluid,
while f = (f1, .., fd)

T is an external force. System (1.1) is complemented with homogeneous Dirichlet
boundary conditions on the velocity:

u|∂Ω = 0. (1.2)
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The viscous stress tensor reads:

div (τ (uε)) = µ∆uε + (µ+ λ)∇(divuε) with µ > 0, µ+ λ > 0.

Finally, the pressure law depends on a parameter ε > 0 and is given by

pε(ρ) = ε
ργ

(1− ρ)β
, γ, β > 1. (1.3)

Due to the singularity, the pressure (1.3) plays the role of a barrier, it prevents the density to exceed the
critical value 1:

0 ≤ ρε(t,x) < 1 a.e. (t,x) ∈ (0, T )× Ω, (1.4)

provided that the constraint is satisfied initially. From the modeling point of view, pε can be seen as the
average of microscopic repulsion forces that prevent the overlapping of the microscopic components of the
fluid and the parameter ε represents the average intensity of these forces. As this latter decreases and
tends to 0, the range of action of the repulsive forces shrinks. Heuristically, as ε → 0, the pressure pε tends
to a limit potential p which is activated only when the density is maximal, equal to 1. Hence, the following
exclusion constraint holds: (1− ρ)p = 0. From another point of view, observing that in the congested (or
saturated) regions where ρ = 1 one must have div u ≥ 0 (otherwise the density could exceed 1 according
to the mass conservation equation), the limit potential p can be seen as a Lagrange multiplier associated
to the velocity constraint. Therefore, in the asymptotics ε → 0, solutions to the problem (1.1) should
converge towards solutions of the following hybrid system:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p− div (τ (u)) = f ,

0 ≤ ρ ≤ 1, (1 − ρ)p = 0, p ≥ 0,

(ρ, (ρu))|t=0 = (ρ0, q0),

(1.5a)

(1.5b)

(1.5c)

(1.5d)

which couples a free (compressible, pressureless) dynamics in {ρ < 1} with a congested (incompressible)
dynamics in {ρ = 1}, and will be consequently referred as the free-congested Navier-Stokes equations.
This limit system has important and various applications in physics, geophysics and biology. It has been
first derived by Bouchut et al. in [1] from biphasic liquid/gas equations through the formal asymptotic
r =

ρgas

ρliq
→ 0. In another domain, several recent works have been dedicated to wave-structure interactions

and floating body dynamics. In particular the reader is referred to [19], [13] (and the references given
therein) which present a formulation of the dynamics like a free-congested model similar to (1.5). Finally,
congestion models are used in the modelling of collective motions, see for instance [4], [22]-[25]. Note that
the approximation (1.1) is particularly relevant for collective motions, since the singular pressure pε (1.3)
models then the social (short-range) repulsive forces between the agents.

The singular limit ε → 0 and the convergence of (weak) solutions of (1.1)-(1.3) towards (weak) so-
lutions of the free-congested system (1.5) has been proved in [30]. As explained in Section 2 below, the
convergence result relies on energy and pressure estimates combined with refined weak compactness argu-
ments specific to the compressible Navier-Stokes equations. In particular, it can be rigorously shown that
the incompressibility constraint divu = 0 is satisfied inside the congested domain {ρ = 1}. We can thus
connect the limit ε → 0 with the famous low Mach number limit which classically formalizes the transition
between the compressible regime and the incompressible regime. The important difference between the
two singular limits lies in fact that the convergence towards the incompressible regime in (1.1)-(1.3) is not
only local but also depends on the solution itself, which is not the case for the low Mach limit where the
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speed the sound in the material is supposed to tend to +∞ (relatively to the characteristic speed of the
flow) uniformly in the whole domain.

From the numerical standpoint, it seems that only few numerical schemes have been proposed for the
limit system (1.5), the difficulty associated to that free boundary problem being that no information is
available on the interface (no explicit dynamics, no transmission conditions imposed). Let us mention the
study [1] which presents in one dimension a numerical scheme based on a “sticky blocks” approximation of
the dynamics of (1.5), and [23], [29] (restricted to 1D) which rely on a projection of the dynamics onto a
set of admissible trajectories. Nevertheless, these three papers can only deal with inviscid flows µ = λ = 0.

The studies [4] and [13] adopt a “pseudo-compressibility” strategy by approximating the compressible-
incompressible system (1.5) (with zero viscosity) by a fully compressible system. For Degond et al. [4] the
approximated system is the inviscid counterpart of (1.1), while in [13] Godlewski et al. relax the constraint

by replacing the incompressible pressure p by pλ(ρ) =
(ρ−1)+

λ and let λ → 0. In both cases, ε → 0 or λ → 0,
one faces numerical difficulties similar to the low Mach number limit. First, one observes that the CFL
condition associated to a fully explicit scheme degenerates as ε → 0 (resp. λ → 0) in the dense regions.
Indeed, the CFL, which is associated to the speed of propagation of acoustic waves cε =

√

p′ε(ρε), blows
up as ε → 0 and ρε → 1 (resp. cλ ∝ λ−1 for ρλ > 1). On the other hand, the schemes for the compressible
case usually use a collocated arrangement of the unknowns, and the diffusion operator appearing in the
pressure wave equation is unstable, since collocated approximations do not satisfy a form of the so-called
discrete inf-sup condition. Hence, we expect that an additional stabilization mechanism will be required
as ε → 0 (or λ → 0) in the dense regions whose dynamics is nearly incompressible. To remedy to these
problems, one can either adapt the classical compressible methods via preconditionning techniques [32], or
extend the incompressible methods to compressible regimes by adapting pressure-correction schemes [15].
The authors of [6] propose a finite volume (Rusanov) scheme where the pressure is split into a bounded
part, which is treated explicitly in time, and an implicit part which carries the singularity close to 1. This
technique allows to circumvent the degeneracy of the CFL condition in the dense regimes. An analysis of
the L1−error is performed on the numerical solutions for several 1D inviscid test cases based on Riemann
problems. Physical viscosity is taken into account in the more recent study [5] (which also deals with a
variable congestion constraint), keeping a fully finite volume space discretization. In the study [13], the
authors implement a Centered-Potential Regularization scheme (see also [27]) which ensures the consistency
the incompressible regime but also the well-balanced property (in the wave-structure interaction context,
topography may be taken into account and numerical schemes are required to preserve the lake at rest
solution). Nevertheless, the analysis of these schemes is quite far from the analysis of the underlying
continuous equations performed in [30], in particular no uniform control of the discrte pressure (wrt to ε
or λ) seems available in [4],[13].

In this paper, we consider a numerical scheme which is implemented in the industrial software CALIF3S
[2] developed by the french Institut de Radioprotection et de Sûreté Nucléaire (IRSN, a research center
devoted to nuclear safety). This scheme falls in the class of staggered discretizations in the sense that
the scalar variables (density, pressure) are associated with the cells of a primal mesh M while the vec-
torial variables (velocity, external force) are associated with the set E of faces of the primal mesh. Such
decoupling, associated here with a Crouzeix-Raviart or Rannacher-Turek finite element discretization [3]
(but other non-conforming finite elements are possible, such as the Rannacher-Turek discretization [31] on
quadrangles (2D) or hexahedra (3D)) of the viscous stress tensor, provides a discrete pressure estimate,
thanks to the so-called discrete inf-sup stability condition (see for instance [12]). This condition, which
is also satisfied by the MAC scheme (see [14], [15], [16]) on structured grids, ensures the unconditional
stability of the scheme in almost incompressible regimes (for instance in the low Mach regime, see [10]
and [18]). A finite element discretization for the viscous stress tensor is here coupled with finite volume
discretizations of the convective terms which allow, thanks to standard techniques, to obtain discrete con-
vection operators satisfying maximum principles (e.g. [20]). The discrete mass convection operator is a
standard finite volume operator defined on the cells of the primal mesh M while the discrete momentum
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convection operator is also a finite volume operator written on dual cells, i.e. cells centered at the location
of the velocity unknowns, namely the faces E . A difficulty implied by such staggered discretization lies in
the fact that, as in the continuous case, the derivation of the energy inequality needs that a mass balance
equation be satisfied on the same (dual) cells, while the mass balance in the scheme is naturally written
on the primal cells. A procedure is therefore needed to define the density on the dual mesh cells and the
mass fluxes through the dual faces from the primal cell density and the primal faces mass fluxes, which
ensures a discrete mass balance on dual cells (see Section 3).
We address in this paper, two different time discretizations: a purely implicit one, a pressure correction
scheme. Both are unconditionally stable, and, associated to the previously described space discretization,
they both provide discrete energy and pressure estimates that allow us to extract converging subsequences
as ε → 0 and recover a discrete counterpart of (1.5). Although the pressure correction scheme is the
only implemented scheme in practice, we present an analysis of the fully implicit scheme to emphasize the
correspondence between the estimates associated to the discrete equations and the ones of the continuous
problem.

The paper is organized as follows. First, we summarize in Section 2 the main ideas of the analysis
of (1.1) and the singular limit ε → 0 towards (1.5). Next, in Section 3 we introduce the tools and notions
associated to the spatial (staggered) discretization that is common to both schemes. The two schemes are
then presented and analyzed separately in Section 4 (implicit scheme) and Section 5 (pressure correction
scheme). Numerical 1D and 2D simulations associated to the pressure correction scheme are presented in
the final Section 6.

2 Continuous setting

The aim of the section is to recall the theoretical results obtained in [30] concerning the existence of
solutions to (1.1) and their asymptotic behavior as ε → 0. We also provide the main tools used in the
proof of these results, tools that will be adapted in the next sections to the discrete setting.

First of all, let us introduce the free energy Hε associated to the pressure pε which is such that

H ′
ε(r)r −Hε(r) = pε(r). (2.1)

Our choice of pressure (1.3), with γ > 1, ensures that the function r 7→ Hε(r) is convex. We assume that
f ∈ L2(R+ × Ω). Initially, we assume that (ρ0ε, q

0
ε = ρ0εu

0
ε) is such that:

0 ≤ ρε0 < 1, m(ρ0ε) :=
1

|Ω|

∫

Ω

ρε0(x) dx ≤ ρ⋆ < 1 a.e. in Ω, (2.2)

q0
εX{ρ0

ε=0} = 0 a.e. in Ω,

∫

Ω

[

|qε
0|

2

2ρε0
+Hε(ρ

ε
0)

]

≤ E0, (2.3)

for some ρ⋆, E0 > 0 independent of ε.

Theorem 2.1 (Perrin & Zatorska [30]). Assume the pressure law (1.3) with β > 3. Assume initially
(2.2)-(2.3).

• For any ε > 0, there exists a global weak solution (ρε,uε) to (1.1)-(1.2) with finite energy;

• For ε → 0, there exists a subsequence (ρε,uε, pε(ρε))ε converging to (ρ,u, p) a global weak solution
to (1.5)-(1.2). More precisely: ρε → ρ strongly in Lq

(

(0, T )×Ω
)

for all 1 ≤ q < +∞, uε → u weakly

in L2(0, T ;H1
0(Ω)), pε(ρε) → p weakly in M+

(

(0, T )× Ω
)

.
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Remark 2.1. As shown by Feireisl et al. in [8], the condition β > 3 can be relaxed to β > 5
2 . This

condition is required for the construction of (ρε,uε) at ε fixed, but not used for the singular limit ε → 0.
We will see in the next sections that no such condition, except β > 1, is needed in the discrete setting. We
would expect to need this assumption if we wanted show the convergence of the discrete numerical solutions
towards global weak solutions of (1.1) as the mesh size tends to 0, but this convergence is beyond the scope
of this study.

Sketch of the proof. For the construction of global weak solutions (ρε,uε) at ε > 0 fixed, the first step is the
definition of an approximate, non-singular, problem. For that purpose, we introduce a cut-off parameter
δ ∈ (0, 1) and the approximate pressure pε,δ such that

pε,δ(ρ) =

{

pε(ρ) if 0 ≤ ρ ≤ 1− δ,

εδ−βργ if ρ > 1− δ.
(2.4)

At δ > 0 fixed, the existence of global weak solutions (ρε,δ,uε,δ) is ensured by the classical theory developed
by Lions and Feireisl (see for instance the book [26]). The solutions satisfy the energy inequality:

sup
t∈[0,T ]

∫

Ω

[

ρε,δ|uε,δ|
2

2
+Hε,δ(ρε,δ)

]

dx

+

∫ T

0

∫

Ω

[µ

2
|∇uε,δ|

2 + (λ+ µ)(divuε,δ)
2
]

dx dt ≤ C
(

1 + ‖f‖
2
L2([0,T ]×Ω)

)

,

for some positive constant C depending on the initial datum and the viscosity, but independent of ε and
δ. In particular we control the internal energy Hε,δ associated with the truncated pressure pε,δ:

‖Hε,δ(ρε,δ)‖L∞([0,T ];L1(Ω)) ≤ C for some C > 0 independent of ε, δ.

Classical arguments based on the weak compactness of the effective flux enable to pass to the limit δ → 0 in
the (weak formulation of) equations by ensuring the strong convergence of the sequence (ρε,δ)δ>0 towards
a limit ρε. The sequence (pε,δ(ρε,δ))δ>0 is proved to be equi-integrable under the condition β > 3 and it
converges (strongly) in L1((0, T ) × Ω) towards pε(ρε). Finally, coming back to the control of the energy
Hε,δ, one proves that

meas {ρε,δ ≥ 1− δ} ≤ C(ε)δβ−1.

As a consequence of this inequality, one ensures the maximal density constraint on the limit ρε: 0 ≤ ρε < 1
a.e. in (0, T )×Ω. The second step of the proof consists in passing to the limit with respect to the parameter
ε. Thanks to the energy inequality:

sup
t∈[0,T ]

∫

Ω

[

ρε|uε|
2

2
+Hε(ρε)

]

dx

+

∫ T

0

∫

Ω

[µ

2
|∇uε|

2 + (λ+ µ)(divuε)
2
]

dx dt ≤ C
(

1 + ‖f‖2L2([0,T ]×Ω)

)

, (2.5)

we control (uε)ε>0 in L2(0, T ;H1(Ω)), while the sequence of densities (ρε)ε>0 is automatically controlled
in L∞

(

(0, T ) × Ω
)

thanks to the maximal density constraint. The control of the pressure pε(ρε) follows
from the use of the Bogovskii operator which is basically an inverse of the divergence operator (see [26]
Chapter 3) Using vε = B(ρε−m(ρε)) ∈ W1,q

0 (Ω), 1 ≤ q < +∞, as a test function in the weak formulation
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of (1.1b), one gets

−

∫ T

0

∫

Ω

ρεuε · B(∂tρε) dx dt−

∫ T

0

∫

Ω

ρεuε ⊗ uε : ∇vε dx dt

+ µ

∫ T

0

∫

Ω

∇uε : ∇vε dx dt+ (λ+ µ)

∫ T

0

∫

Ω

divuε div vε dxdt

+

∫ T

0

∫

Ω

f · vε dx dt =

∫ T

0

∫

Ω

pε(ρε)
(

ρε −m(ρε)
)

dxdt.

Thanks to the continuity properties of the Bogovskii operator ([26], Lemma 3.17), the energy inequality
and the control of the density ensure that the left-hand side of the above equality is bounded and therefore:

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

pε(ρε)
(

ρε −m(ρε)
)

dx dt

∣

∣

∣

∣

∣

≤ C for some C > 0 independent of ε.

Splitting this integral into two parts according to the value of ρε and using assumption (2.2), we have:

C ≥

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

pε(ρε)
(

ρε −m(ρε)
)

X{ρε≥(1+ρ⋆)/2} dx dt

∣

∣

∣

∣

∣

≥

(

1 + ρ⋆

2
−m(ρ0ε)

)
∫ T

0

∫

Ω

pε(ρε) X{ρε≥(1+ρ⋆)/2} dx dt

≥
1− ρ⋆

2

∫ T

0

∫

Ω

pε(ρε) X{ρε≥(1+ρ⋆)/2} dx dt.

This achieves to show that (pε(ρε))ε is controlled in L1
(

(0, T )×Ω
)

. There exist ρ,u and p such that ρε → ρ

weakly-* in L∞((0, T ) × Ω), uε → u weakly in L2(0, T ;H1
0(Ω)), pε(ρε) → p weakly in M+

(

(0, T ) × Ω
)

,
and (ρ,u, p) is a solution in the sense of distributions of the free-congested Navier-Stokes equations (1.5a)-
(1.5b). Then, one can show the strong convergence of (ρε)ε>0 in Lq

(

(0, T ) × Ω
)

∀ 1 ≤ q < +∞ using
the concepts of effective flux and renormalized solutions. We do not detail further this point which can
be found in classical books [26],[9]. Eventually, the justification of the exclusion relation (1 − ρ)p = 0 is
achieved in two steps. On the one hand, the strong convergence of (ρε)ε>0 yields:

(1− ρε)pε(ρε) −→ (1− ρ)p in D′

(see [30] for the sense given to the product ρp). On the other hand, one has

(1 − ρε)pε(ρε) = ε
1
β ρ

α
β
ε (pε(ρε))

β−1

β → 0 strongly in L
β

β−1 ((0, T )× Ω),

Hence, the limit (ρ, p) satisfies 0 ≤ ρ ≤ 1 a.e., (1− ρ)p = 0 in D′, p ∈ M+((0, T )× Ω).

3 Discrete setting

Meshes and unknowns Let Ω be an open bounded connected subset of Rd, d = 2 or 3. We assume
that Ω is polygonal if d = 2 and polyhedral if d = 3.

Definition 3.1 (Staggered mesh). A staggered discretization of Ω, denoted by D, is given by a pair
D = (M, E), where:
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nK,σ

K

L

M

Dσ

Dσ′

σ
=
K
|L

σ
′ =

K|M

ǫ
=

D
σ
|D

σ
′

Figure 1: Notations for primal cells (delimited with bold lines) and dual cells (in grey).

• M, the primal mesh, is a finite family composed of non empty simplices forming a partition of Ω :
Ω = ∪K∈MK. We denote by E the set of faces of the mesh, and we suppose that two neighboring
cells share a whole face: for all σ ∈ E, either σ ⊂ ∂Ω or there exists (K,L) ∈ M2 with K 6= L
such that K ∩ L = σ; we denote in the latter case σ = K|L. We denote Eext = {σ ∈ E , σ ⊂ ∂Ω}
and Eint = E \ Eext. For K ∈ M, E(K) stands for the set of faces of K. The unit vector normal to
σ ∈ E(K) outward K is denoted by nK,σ.

• We define a dual mesh associated with the faces σ ∈ E as follows. For K ∈ M and σ ∈ E(K), we
define DK,σ as the cone with basis σ and with vertex the mass center of K (see Figure 1). We obtain
a partition of K in m sub-volumes, where m is the number of faces of K, each sub-volume having
the same measure |DK,σ| = |K|/m. For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ

associated with σ by Dσ = DK,σ ∪DL,σ. For σ ∈ Eext ∩ E(K), we define Dσ = DK,σ. We denote by

Ẽ(Dσ) the set of faces of Dσ, and by ǫ = Dσ|Dσ′ the face separating two diamond cells Dσ and Dσ′ .
We denote by Ẽint the set of dual faces included in the domain and by Ẽext the set of dual faces lying
on the boundary ∂Ω.

Eventually, we define the size of the discretization as hM = max
K∈M

hK .

Relying on Definition 3.1, we now define a staggered space discretization.

Definition 3.2. Let D = (M, E) be a staggered discretization of Ω. We denote LM(Ω) the space of scalar
functions that are constant on each primal cell K ∈ M. For ρ ∈ LM(Ω) and K ∈ M, we denote ρK the
constant value of ρ on K. We denote LM,0(Ω) the subspace of LM(Ω) composed of zero average functions
over Ω. We denote HM(Ω) the space of functions u such that u|K ∈ P1(K) for all K ∈ M and such that:

1

|σ|

∫

σ

[u]σ dσ(x) = 0, ∀σ ∈ Eint, (3.1)

where [u]σ is the jump of u through σ which is defined on σ = K|L by [u]σ = u|L − u|K . We define
HM,0(Ω) ⊂ HM(Ω) the subspace of HM(Ω) composed of functions the degrees of freedom of which are zero
over ∂Ω, i.e. the functions u ∈ HM(Ω) such that 1

|σ|

∫

σ u dσ(x) = 0 for all σ ∈ Eext. Finally, we denote

HM(Ω) := HM(Ω)d and HM,0(Ω) := HM,0(Ω)
d. For a discrete velocity field u ∈ HM(Ω) and σ ∈ E, the

degree of freedom associated with σ is given by:

uσ =
1

|σ|

∫

σ

udσ(x). (3.2)
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3.1 Discrete operators

Mass convection operator Given discrete density and velocity fields ρ ∈ LM(Ω) and u ∈ HM,0(Ω),
the discretization of the mass convection term is given by:

divM(ρu)(x) =
∑

K∈M

1

|K|

(

∑

σ∈E(K)

FK,σ(ρ,u)
)

XK(x), (3.3)

where XK is the characteristic function of the subset K of Ω. The quantity FK,σ(ρ,u) stands for the mass
flux across σ outward K. By the impermeability boundary conditions, it vanishes on external faces and is
given on internal faces by:

FK,σ(ρ,u) = |σ| ρσ uσ · nK,σ, ∀σ ∈ Eint, σ = K|L. (3.4)

The density at the face σ = K|L is approximated by the upwind technique, i.e.

ρσ =

{

ρK if uσ · nK,σ ≥ 0

ρL otherwise.
(3.5)

Velocity convection operator We now describe the approximation of the convection operator ∂t(ρu)+
div(ρu ⊗ u). The approximation of the time derivative part ∂t(ρu) is naturally discretized at the dual
cells Dσ, σ ∈ Eint and an approximation ρDσ

of the density on these dual cells Dσ is thus needed. Given a
density field ρ ∈ LM(Ω), this approximation is built as follows:

|Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL, ∀σ ∈ Eint, σ = K|L. (3.6)

Given discrete a density ρ ∈ LM(Ω) and velocity fields u,v ∈ HM,0(Ω), the discretization of the
convection term is given by:

divE(ρu⊗ v)(x) =
∑

σ∈Eint

1

|Dσ|

(

∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ,u) vǫ

)

XDσ
(x). (3.7)

Fσ,ǫ(ρ,u) is the mass flux across the edge ǫ of the dual cell Dσ. Its value is zero if ǫ ∈ Ẽext. Otherwise, it
is defined as a linear combination, with constant coefficients, of the primal mass fluxes at the neighboring
faces. For K ∈ M and σ ∈ E(K), let ξσK be given by:

ξσK =
|DK,σ|

|K|
=

1

d+ 1
, (3.8)

so that
∑

σ∈E(K) ξ
σ
K = 1. The dual mass fluxes Fσ,ǫ(ρ,u) are then computed to as to satisfy the following

three conditions:

(H1) For all primal cell K in M, the set (Fσ,ǫ(ρ,u))ǫ⊂K of dual fluxes included in K solves the following
linear system

FK,σ(ρ,u) +
∑

ǫ∈Ẽ(Dσ), ǫ⊂K

Fσ,ǫ(ρ,u) = ξσK
∑

σ′∈E(K)

FK,σ′ (ρ,u), σ ∈ E(K). (3.9)

(H2) The dual fluxes are conservative, i.e. for any dual face ǫ = Dσ|Dσ′ , we have Fσ,ǫ(ρ,u) = −Fσ′,ǫ(ρ,u).
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(H3) The dual fluxes are bounded with respect to the primal fluxes (FK,σ(ρ,u))σ∈E(K), in the sense that

|Fσ,ǫ(ρ,u)| ≤ max {|FK,σ′ (ρ,u)|, σ′ ∈ E(K)} , (3.10)

for K ∈ M, σ ∈ E(K), ǫ ∈ Ẽ(Dσ) with ǫ ⊂ K.

This convection operator is built so that a discrete mass conservation equation can be shown to be
satisfied on the cells of the dual mesh:

|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ
n+1,un+1) = 0, ∀σ ∈ Eint. (3.11)

To complete the definition of the convective flux, we must give the expression of the velocity vǫ at the
dual face:

vǫ =
1

2
(vσ + vσ′), for ǫ = Dσ|D

′
σ.

Diffusion operator – Let us define the shape functions associated with the Crouzeix-Raviart finite
element. These are the functions (ζσ)σ∈E where for all σ ∈ E , ζσ is the element of HM(Ω) which satisfies:

1

|σ′|

∫

σ′

ζσ dσ(x) =

{

1, if σ′ = σ,
0, if σ′ 6= σ.

Given a discrete velocity field u ∈ HM,0(Ω), the discretization of the diffusion terms is given by:

divE(τ (u)) = µ∆Eu+ (µ+ λ)(∇ ◦ div)Eu

with

∆Eu(x) =
∑

σ∈Eint

1

|Dσ|

(

∑

K∈M

∫

K

∇u .∇ζσ dx
)

XDσ
(x),

(∇ ◦ div)Eu(x) =
∑

σ∈Eint

1

|Dσ|

(

∑

K∈M

∫

K

divu∇ζσ dx
)

XDσ
(x).

(3.12)

Truncated pressure and gradient operator – Given a discrete pressure field p ∈ LM(Ω), the pressure
gradient term is discretized as follows:

∇Ep(x) =
∑

σ∈Eint

σ=K|L

( |σ|

|Dσ|
(pL − pK)) nK,σ

)

XDσ
(x). (3.13)

We also introduce a truncated pressure pε,M defined as follows:

pε,M(r) =











ε
rγ

(1 − r)β
if r ≤ 1− δε,M,

h−αβ
M rγ if r > 1− δε,M,

where δε,M = hα
Mε

1
β−1 and α(β − 1) > 3. (3.14)

As said in the introduction, the cut-off of the pressure is a technical detail that ensures the existence of
a numerical solution to the schemes. In practice, there is no problem to keep the original pressure in the
software CALIF3S. We will also see later in the analysis that the cut-off density 1− δε,M is never reached
provided the initial density is less than 1− δε,M.

9



3.2 Discrete norms and properties

We start with defining the piecewise smooth first order differential operators associated with the Crouzeix-
Raviart non-conforming finite element representation of velocities u ∈ HM(Ω) :

∇Mu(x) =
∑

K∈M

∇u(x)XK(x), divM u(x) =
∑

K∈M

divu(x)XK(x). (3.15)

We define an interpolation operator ΠE which associates a piecewise constant function over the cells of
the dual mesh to any function u ∈ HM(Ω) as follows:

ΠEu(x) =
∑

σ∈Eint

uσ XDσ
(x). (3.16)

The mapping u 7→ ΠEu is a one-to-one mapping which is continuous with respect to the Lq-norm, for all
q ∈ [1,+∞]: there exists a constant C = C(q, d,D) such that: ‖ΠEu‖Lq(Ω) ≤ C ‖u‖

Lq(Ω).

Lemma 3.1. Let D = (M, E) be a staggered discretization of Ω. The following discrete integration by
parts formulas are satisfied for all (p,u) ∈ LM(Ω)×HM,0(Ω). One has for all v ∈ HM,0(Ω):

−

∫

Ω

∆Eu · ΠEv dx =

∫

Ω

∇Mu : ∇Mv dx,

−

∫

Ω

(∇ ◦ div)Eu · ΠEv dx =

∫

Ω

divM udivM v dx,

∫

Ω

∇E(p) · ΠEv dx = −

∫

Ω

p divM v dx.

(3.17)

(3.18)

(3.19)

We then define for q ∈ [1,∞) the broken Sobolev W1,q semi-norm ‖.‖1,q,M associated with the Crouzeix-
Raviart finite element representation of the discrete velocities. For any u ∈ HM(Ω) it is given by:

‖u‖
q
1,q,M =

∫

Ω

|∇Mu|q dx.

An important property is the following discrete Sobolev embedding: for all q ∈ [1,+∞) if d = 2 and
for all q ∈ [1, 6] if d = 3, there exists C = C(q, d,D) > 0 such that:

‖u‖
Lq(Ω) ≤ C ‖u‖1,2,M, ∀u ∈ HM,0(Ω).

Note that the semi-norm ‖u‖1,2,M is in fact a norm on the space HM,0(Ω).

4 Analysis of the implicit scheme

We begin with the analysis of a fully implicit scheme. As we shall see, the estimates associated with this
time discretization is really close to the analysis of the continuous equations.
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4.1 Presentation of the scheme

Let δt > 0 be a constant time step. The approximate solution (ρn,un) ∈ LM(Ω) × HM,0(Ω) at time
tn = nδt for 1 ≤ n ≤ N = ⌊T/δt⌋ is computed by induction through the following implicit scheme.

Knowing (ρn,un) ∈ LM(Ω)×HM,0(Ω), solve for ρn+1 ∈ LM(Ω) and un+1 ∈ HM,0(Ω):

1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, ∀K ∈ M,

1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+ div(ρn+1un+1 ⊗ un+1)σ

− div(τ (un+1))σ + (∇pn+1
ε,M)σ = fn+1

σ , ∀σ ∈ Eint

(4.1a)

(4.1b)

As in the continuous case (see (2.1)), we can define an internal energy Hε,M ∈ C1(R+) associated to this
truncated pressure, it is such that:

H ′
ε,M(r)r −Hε,M(r) = pε,M(r) ∀r ∈ [0, 1). (4.2)

Written differently, H ′′
ε,M(r) = p′ε,M(r)/r for any r 6= 1 − δε,M. Since p′ε,M(r) > 0 for all r 6= 1 − δε,M,

Hε,M is convex.

Initialization of the scheme As in Section 2, we shall assume that the continuous initial datum is
such that ρε0 ∈ (0, 1) a.e. and

‖
√

ρε0u
ε
0‖L2(Ω)

+ ‖Hε(ρ
ε
0)‖L1(Ω) ≤ C0, (4.3)

for some C0 independent of ε and the mesh. The initial approximations are given by the average of the
initial density ρε0 on the primal cells and the initial velocity uε

0 on the dual cells:

ρ0K =
1

|K|

∫

K

ρε0(x) dx, ∀K ∈ M, u0
σ =

1

|Dσ|

∫

Dσ

uε
0(x) dx, ∀σ ∈ Eint. (4.4)

We also define

fn
σ =

1

δt

1

|Dσ|

∫ tn+1

tn

∫

Dσ

f (t,x) dxdt. (4.5)

4.2 Estimates

We present in this subsection how to derive uniform estimates w.r.t the parameter ε. To lighten the
presentation, we will just detail the estimates that are specific to our singular pressure case, other estimates
that are identical to the classical Navier-Stokes equations and the low Mach limit are just stated and we
refer the reader to [18] for their proof.

The first result is a reformulation of the discrete mass balance (4.1a). It is simply obtained by multi-
plying (4.1a) H ′

ε,M(ρn+1
K ) and by using the definition of the flux (3.4).

Lemma 4.1 (Discrete renormalization identity). Any solution to the numerical implicit scheme (4.1)
satisfies for all K ∈ M and 0 ≤ n ≤ N − 1 the following identity

1

δt

(

Hε,M(ρn+1
K )−Hε,M(ρnK)

)

+ div(Hε,M(ρn+1)un+1)K +Rn+1
K

= −pε,M(ρn+1
K ) div(un+1)K (4.6)
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with:

Rn+1
K =

1

δt

[

Hε,M(ρnK)−Hε,M(ρn+1
K )−H ′

ε,M(ρn+1
K )(ρnK − ρn+1

K )
]

+
1

|K|

∑

σ∈E(K)

|σ|rn+1
K,σ u

n+1
σ · nK,σ,

rn+1
K,σ = (Hε,M)′(ρn+1

K )(ρn+1
σ − ρn+1

K ) +Hε,M(ρn+1
K )−Hε,M(ρn+1

σ ).

(4.7)

Moreover, since Hε,M is convex we have 0 ≤
∑

K∈M |K|Rn+1
K .

We now are able to state a discrete kinetic energy balance obtained by multiplying the momentum
equation (4.1b) with the discrete velocity un+1

σ .

Proposition 4.2 (Discrete kinetic energy balance).

1

2δt

(

ρn+1
Dσ

|un+1
σ |2 − ρnDσ

|un
σ|

2
)

+
1

2|Dσ|

∑

ǫ=Dσ|Dσ′

Fσ,ǫ(ρ
n+1,un+1)un+1

σ · un+1
σ′

− div(τ (un+1))σ · un+1
σ + (∇pn+1

ε )σ · un+1
σ +Rn+1

σ = fn+1
σ · un+1

σ , (4.8)

where Rn+1
σ =

1

2δt
ρnDσ

|un+1
σ − un

σ|
2.

Proof. Let us take the scalar product of the momentum equation (4.1b) with un+1
σ , we get:

[

1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+ div(ρn+1un+1 ⊗ un+1)σ

]

· un+1
σ

−div(τ (un+1))σ · un+1
σ + (∇pn+1

ε )σ · un+1
σ = fn+1

σ · un+1
σ

Let us rewrite the first term as follows:
[

1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+ div(ρn+1un+1 ⊗ un+1)σ

]

· un+1
σ

=











1

δt

(

ρn+1
Dσ

un+1
σ − ρnDσ

un
σ

)

+
1

2|Dσ|

∑

ǫ∈Ẽ(Dσ)
ǫ=Dσ|Dσ′

Fσ,ǫ(ρ
n+1,un+1) (un+1

σ + un+1
σ′ )











· un+1
σ

=
1

2δt

(

ρn+1
Dσ

|un+1
σ |2 − ρnDσ

|un
σ|

2
)

+
1

2|Dσ|

∑

ǫ=Dσ|Dσ′

Fσ,ǫ(ρ
n+1,un+1) un+1

σ · un+1
σ′

+
1

2δt
ρnDσ

|un+1
σ − un

σ|
2 +





1

δt
(ρn+1

Dσ
− ρnDσ

) + |Dσ|
−1

∑

ǫ∈E(Dσ)

Fσ,ǫ(ρ
n+1,un+1)





|un+1
σ |2

2

where we have used the identity 2 (ρ|a|2 − ρ∗a · b) = ρ|a|2− ρ∗|b|2+ ρ∗|a− b|2 +(ρ− ρ∗)|a|2 for ρ = ρn+1
Dσ

,
ρ∗ = ρnDσ

, a = un+1
σ and b = un

σ . Eventually, we observe that the last term is equal to 0 thanks to the
discrete mass conservation satisfied on the dual cells (3.11)

Next, we get a total (local in time) energy inequality by combining discrete kinetic energy balance (4.8)
over the faces σ ∈ Eint and the discrete renormalized equation (4.6) summed over K ∈ M. We also prove
the existence of a discrete solution to (4.1).
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Lemma 4.3 (Local-in-time energy inequality, existence of the numerical solutions). Let ε > 0 and assume
that the initial data satisfy (4.3). Then, there exists a solution (ρnε ,u

n
ε )0≤n≤N to the scheme (4.1), such

that ρnε > 0 for 0 ≤ n ≤ N , and the following inequality holds for 0 ≤ n ≤ N − 1:

1

2

∑

σ∈Eint

|Dσ|
(

ρn+1
Dσ

|un+1
σ |2 − ρnDσ

|un
σ|

2
)

+
∑

K∈M

|K|
(

Hε(ρ
n+1
K )−Hε(ρ

n
K)
)

+
µ

2
δt ‖un+1‖

2

1,2,M +Rn+1 ≤ Cδt‖fn+1‖
2

L2(Ω), (4.9)

where Rn+1 =
∑

σ∈Eint
|Dσ|R

n+1
σ +

∑

K∈M |K|Rn+1
K ≥ 0.

Sketch of proof. We sum the discrete kinetic energy balance (4.8) over the faces σ ∈ Eint and add the
discrete renormalized equation (4.6) summed over K ∈ M. The desired inequality is then obtained as
in [18] thanks to the discrete grad-div duality (3.19), the conservativity of the dual fluxes (H2), and the
coercivity of the diffusion operator.

The positivity of the density is a consequence of the properties of the upwind choice (3.4) for ρ [11,
Lemma 2.1]. Given discrete density and velocity fields (ρn,un), the proof of existence of a solution
(ρn+1,un+1) to the implicit scheme at the time step n + 1 is the same as that given in [17, Proposition
3.3] in the case of the Euler equations. It may be inferred by the Brouwer fixed point theorem, by an easy
adaptation of the proof of [7, Proposition 5.2]. This proof relies on the following set of mesh-dependent
estimates: the conservativity of the mass balance discretization, together with the fact that the density is
positive, yields an estimate for ρ in the L1-norm. Then, by a norm equivalence argument, the truncated
pressure pε,M is controlled in any norm. Next, for a given density ρ, the discrete global kinetic energy
inequality (i.e. (4.8) summed over the control volumes) provides a control on the velocity. Therefore,
computing ρ from the mass balance for fixed u, then pε,M from ρ by the equation of state and finally u

from the momentum balance equation with fixed ρ, yields an iteration in a bounded convex subset of a
finite dimensional space.

Remark 4.1. It is important to note that the truncation of the pressure is necessary in the argument above
to infer a control of the pressure from the control of the density ρ. The control of the discrete truncated
pressure is then obviously not uniform with respect to ε, but this is not an issue here since we just want
to ensure at this stage the existence of a solution. Suitable bounds are derived below, see in particular
Lemma 4.6.

Integrating over time the previous inequality, we get the final energy inequality:

Lemma 4.4 (Global discrete energy inequality). Let ε > 0 and assume that the initial data (ρε0,u
ε
0) has

finite energy. There exists C > 0 independent of ε and of the mesh such that, for ε small enough and for
all 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρ
n
Dσ

|un
σ|

2 +
µ

2

n
∑

k=1

δt ‖ũk‖
2

1,2,M +
∑

K∈M

|K|Hε(ρ
n
K) ≤ C. (4.10)

Proof. Summing (4.9) over n yields the expected inequality (4.10) with C = 1
2

∑

σ∈Eint
|Dσ| ρ

0
Dσ

|u0
σ|

2 +
∑

K∈M |K|Hε(ρ
0
K) + ‖f‖2L2 , which is bounded uniformly with respect to ε by hypothesis (4.3).

The next lemma gives the crucial upper bound on the density.

Lemma 4.5 (Maximal constraint on the density). Assume that α(β − 1) > 3. There exists a constant
CM > 0 independent of ε (but not on the mesh), such that

ρnK ≤ 1− CMε
1

β−1 ∀ K ∈ M, n ∈ N. (4.11)
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Proof. The bound follows from the control of the energyHε,M(ρn) provided by the discrete energy estimate
(4.10). Indeed, let us rewrite Hε,M as

Hε,M(ρ) = ρeε,M(ρ) with eε,M(ρ) =

∫ ρ

0

pε,M(s)

s2
ds.

To simplify, let us assume that γ is an integer. We have
∫

Ω

Hε,M(ρnε ) dx ≥

∫

Ω

ρnε eε,M(ρnε )X{ρn
ε >1−δε,M} dx

≥

∫

Ω

ρnε eε,M(1− δε,M)X{ρn
ε >1−δε,M} dx

= ε

∫

Ω

ρnε

(

∫ 1−δ

0

sγ−2

(1− s)β
ds

)

X{ρn
ε >1−δε,M} dx

≥ ε

∫

Ω

ρnε

(
∫ 1

δ

(1− s)γ−2

sβ
ds

)

X{ρn
ε >1−δε,M} dx

= ε

∫

Ω

ρnε

(

γ−2
∑

k=0

(−1)k
(

γ − 2
k

)
∫ 1

δ

sk−βds

)

X{ρn
ε >1−δε,M} dx.

Hence,
∫

Ω

Hε,M(ρnε ) dx ≥

(

δ1−β − 1
)

β − 1
ε

∫

Ω

ρnε X{ρn
ε >1−δε,M} dx

+ ε

∫

Ω

ρnε

(

γ−2
∑

k=1

(−1)k
(

γ − 2
k

)
∫ 1

δ

sk−βds

)

X{ρn
ε >1−δε,M} dx

≥ C1(γ, β) ε δ1−β
ε,M meas{ρnε > 1− δε,M} − C2(γ, β)

For some positive constants C1,2 independent of ε. As a result of the global energy inequality (4.10), we
deduce that

meas {ρnε > 1− δε,M} ≤ Cε−1δβ−1
ε,M ≤ Chα(β−1) (4.12)

for some constant C independent of h and ε. Since we have assumed α(β − 1) > 3, we ensure that

meas {ρnε > 1 − δε,M} < |K| for all K ∈ M or, in other words, ρnK ≤ 1 − δε,M = 1 − hαε
1

β−1 for all
K ∈ M.

The previous bound on the density ensures that ρnK < 1. Unfortunately this bound does not yield any

uniform (with respect to ε) control of the pressure since pε,M(1 − δε,M) ≤ Cε−
1

β−1 .

Proposition 4.6 (Control of the pressure). Assume initially (4.3) as well as (2.2). For 1 ≤ n ≤ N the
following inequality holds:

‖pnε,M‖
L1(Ω)

≤ CM, (4.13)

where the real number CM > 0 depends on the mesh size but not on ε.

The proof of the lemma relies on the following result which ensures the existence of a discrete equivalent
of the Bogovskii operator (cf Section 2).

Lemma 4.7 (Lq Discrete inf-sup property). Let D = (M, E) be a staggered discretization of Ω. Then,
there exists a linear operator BM : LM,0(Ω) −→ HM,0(Ω), depending only on Ω and on the discretization
such that the following properties hold:
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(i) For all p ∈ LM,0(Ω),

∫

Ω

r divM(BMp) dx =

∫

Ω

r p dx, ∀r ∈ LM(Ω).

(ii) For all q ∈ (1,+∞), there exists C = C(q, d,Ω,D), such that

‖BMp‖1,q,M ≤ C‖p‖Lq(Ω).

Proof of Proposition 4.6. Let us set vn+1 = BM(ρn+1 −m(ρn+1)) ∈ HM,0(Ω) where m(ρn+1) denotes the
average of ρn+1. We multiply the discrete momentum equation (4.1b) by vn+1

σ , multiply by |Dσ| and sum
over σ ∈ Eint to get:

−
∑

σ∈Eint

|Dσ|(∇pε,M)n+1
σ vn+1

σ

=
1

δt

∑

σ∈Eint

|Dσ|(ρ
n+1
Dσ

un+1
σ − ρnDσ

un
σ)v

n+1
σ −

∑

σ∈Eint

|Dσ|div(τ (u
n+1))σ · vn+1

σ .

Thanks to the bounds previously derived on ρ and u, we bound the right-hand side uniformly with respect
to ε. On the left-hand side, thanks to (3.19) we have by Lemma 3.1

−
∑

σ∈Eint

|Dσ|(∇pε,M)n+1
σ vn+1

σ =

∫

Ω

pn+1
ε,M divM vn+1 dx,

and therefore
∣

∣

∣

∣

∫

Ω

pn+1
ε,M divMvn+1 dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

pn+1
ε,M(ρn+1 −m(ρn+1)) dx

∣

∣

∣

∣

≤ CM.

Now, we can split the pressure integral into two parts:
∫

Ω

pn+1
ε,M · (ρn+1 −m(ρn+1)) dx =

∫

Ω

pn+1
ε,M · (ρn+1 −m(ρn+1))X{ρn+1> 1

2
(1+ρ∗)} dx

+

∫

Ω

pn+1
ε,M · (ρn+1 −m(ρn+1))X{ρn+1≤ 1

2
(1+ρ∗)} dx.

In the domain {ρn+1 ≤ 1
2 (1+ρ∗)}, the pressure is uniformly bounded with respect to ε so the corresponding

integral is controlled uniformly with respect to ε. Hence, using the assumption (2.2):

CM ≥

∣

∣

∣

∣

∫

Ω

pn+1
ε,M · (ρn+1 −m(ρn+1))X{ρn+1> 1

2
(1+ρ∗)} dx

∣

∣

∣

∣

≥
1 + ρ∗ − 2m(ρn+1)

2

∫

Ω

pn+1
ε,MX{ρn+1> 1

2
(1+ρ∗)} dx

≥
1− ρ∗

2

∫

Ω

pn+1
ε,MX{ρn+1> 1

2
(1+ρ∗)} dx

which yields the control of the pressure in L1(Ω).

4.3 Limit ε → 0

Thanks to the previous discrete estimates, we infer that the sequences (ρnε,M)ε<ε0 , (pε(ρ
n
ε,M))ε<ε0 and

(un
ε,M)ε<ε0 are bounded respectively in L∞(Ω), L1(Ω) and HM,0(Ω). Since all the discrete norms are
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equivalent in finite dimension, we deduce that the previous sequences are bounded in any discrete norm.
We infer that there exist limits ρ, p,u such that the following convergences (up to subsequences) hold

ρnε,M → ρn, pε(ρ
n
ε,M) → pn, un

ε,M → un,

in any discrete norm. As a consequence of (4.11), it is easy to see that we ensure the maximal density
constraint on the limit density

0 ≤ ρnK ≤ 1 ∀ K ∈ M, n = 0, . . . , N. (4.14)

We also have pn ≥ 0. Moreover, since on each cell we have

(

1− (ρnε,M)K
)

pε,M((ρnε,M)K) = ε
(ρnε,M)γK

(1− (ρnε,M)K)β−1
= ε

1
β (ρnε,M)

γ
β

K

(

pε((ρ
n
ε,M)K)

)

β−1

β

and we get then as ε → 0

(

1− ρnK
)

pnK = 0 where pnK = lim
ε→0

pε
(

(ρnε,M)K
)

.

Remark 4.2. In the continuous case, it was proved in [21] that divu = 0 in {ρ = 1}, i.e. the dynamics of
the congested domain is incompressible. We could a priori hope a discrete equivalent of this incompress-
ibility condition but the only (trivial) observation that we can make is the following: assume that on the
cell K, ρnK , ρn+1

K , ρn+1
σ are all equal to 1, then by (4.1a) (divu)K = 0 (see [6] where a similar observation

is made).

5 Pressure correction scheme

In practice, the implementation of the previous implicit scheme (4.1) requires to find the solution of a fully
non-linear coupled system. This task is difficult in a real computational context due to the computational
cost and lack of robustness. For that reason, we also perform the analysis of the limit ε → 0 for the
pressure correction scheme implemented in CALIF3 S [2]. The scheme is obtained thanks to a partial
decoupling of the discrete equations. It consists (after a rescaling step for the pressure gradient) in first a
prediction step, where a tentative velocity field is obtained by solving a linearized momentum balance in
which the mass convection flux and the pressure gradient are explicit, and then a correction step where
a nonlinear problem on the pressure is solved, and the velocity is updated in such a way to recover the
discrete mass conservation equation. The scheme reads as follows:

Knowing (ρn−1, ρn,un) ∈ LM(Ω)× LM(Ω)×HM,0(Ω), we compute (ρn+1,un+1) as follows:

Pressure gradient scaling step:

(∇pε)
n
σ =

(

ρnDσ

ρn−1
Dσ

)1/2

(∇pε)
n
σ ∀σ ∈ Eint (5.1)

Prediction step: Solve for ũn+1 ∈ HM,0(Ω):

1

δt

(

ρnDσ
ũn+1
σ − ρn−1

Dσ
un
σ

)

+
1

|Dσ|

∑

ǫ∈Ẽ(Dσ)

Fσ,ǫ(ρ
n,un) ũn+1

ǫ

+(∇pε)
n
σ − divτ (ũn+1)σ = f

n+1
σ ∀σ ∈ Eint (5.2)
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Correction step: Solve for ρn+1 ∈ LM(Ω) and un+1 ∈ HM,0(Ω):

1

δt

(

ρn+1
K − ρnK

)

+
1

|K|

∑

σ∈E(K)

FK,σ(ρ
n+1,un+1) = 0 ∀K ∈ M,

1

δt
ρnDσ

(

un+1
σ − ũn+1

σ

)

+ (∇pε)
n+1
σ − (∇pε)

n
σ = 0 ∀σ ∈ Eint.

(5.3a)

(5.3b)

Initial data and initialization of the scheme

Definition 5.1. The initial data (ρε0,u
ε
0) is said to be well-prepared if 0 < ρε0 < 1, uε

0 ∈ H1
0(Ω)

d for all
ε > 0 satisfy (2.2)-(2.3) and if, in addition,

‖uε
0‖H1(Ω)d + ‖pε(ρ

ε
0)‖L1(Ω) + ‖(1− ρε0)

−1[divuε
0]−‖L2(Ω) ≤ C. (5.4)

Remark 5.1. • Note that the initial control of the pressure requires

1− ρ0ε ≥ C0ε
1
β for some C0 > 0 independent of ε, (5.5)

which is actually more stringent than the control (2.3) of the energy Hε(ρ
0
ε).

• The condition on the divergence of the initial velocity ensures that the initial compression (i.e.
[divu]−) is very small in the dense regions where ρε0 is close to 1.

The source term fn
σ is defined as in (4.5). The initial velocities uε

0 are in H1
0(Ω)

d. In particular, their
trace is thus well defined as an L2 function on any smooth (or Lipschitz-continuous) hypersurface of Ω.
The initialization of the pressure correction scheme is performed as follows. First, ρ0 and u0 are given
by the average of the initial conditions ρε0 and uε

0 respectively on the primal cells and on the faces of the
primal cells:

ρ−1
K =

1

|K|

∫

K

ρε0(x) dx ∀K ∈ M, u0
σ =

1

|σ|

∫

σ

uε
0(x) dσ(x) ∀σ ∈ Eint. (5.6)

Finally, we compute ρ0 by solving the mass balance equation (5.3a) for n = −1:

1

δt

(

ρ0K − ρ−1
K

)

+
1

|K|

∑

σ∈E(K)

FK,σ(ρ
0,u0) = 0 ∀K ∈ M. (5.7)

Basically the steps for the derivation of the discrete energy estimate and the convergence as ε → 0 are
completely analogous to the previous implicit scheme. Nevertheless, due to the initialization of scheme,
we need to ensure to properties on the the first iteration ρ0.

Lemma 5.1 (Bounds on ρ0). For any ε ≤ ε0, there exists ρ0, A0
ε > 0 such that A0

ε ≤ 1− Cε1/β for some
C > 0 independent of ε, and

ρ0 ≤ ρ0K ≤ A0
ε < 1 ∀ K ∈ M. (5.8)

Proof. • Lower bound. Let us set

ρ0 =
min
K∈M

ρ−1
K

1 + δtmax
(

0, max
K∈M

div(u0)K

) .
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and assume that minK∈M ρ0K = ρ0
K̄

< ρ0. Equation (5.7) rewrites as follows:

1

δt

(

ρ0K̄ − ρ−1
K̄

)

+ ρ0K̄(div u0)K̄ +
1

|K̄|

∑

σ∈E(K̄)

|σ|(ρ0σ − ρ0K̄)u0
σ · nK̄,σ = 0,

where, by definition of ρ0σ (upwind) and ρ0
K̄

= minK∈M ρ0K we have (ρ0σ − ρ0
K̄
)u0

σ · nK̄,σ ≤ 0. As a
consequence, we get the inequality

1

δt

(

ρ0K̄ − ρ−1
K̄

)

+ ρ0K̄(div u0)K̄ ≥ 0.

If (div u0)K̄ < 0, we obtain ρ0
K̄

≥ ρ−1
K̄

while for (div u0)K̄ ≥ 0:

ρ0K̄ ≥
ρ−1
K̄

1 + δt(div u0)K̄
,

In both cases, we have ρ0
K̄

> ρ0 and thus a contradiction.

• Upper bound. Let K̄ ∈ M such that maxK∈M ρ0K = ρ0
K̄
. We have

ρ0K̄ = ρ−1
K̄

− δtρ0K̄ div(u0)K̄ −
δt

|K̄|

∑

σ∈E(K̄)

|σ|(ρ0σ − ρ0K̄)u0
σ · nK̄,σ

Similarly to the previous case we have:

1

δt

(

ρ0K̄ − ρ−1
K̄

)

+ ρ0K̄(div u0)K̄ ≤ 0.

If (div u0)K̄ > 0, we directly get thanks to (5.5) that ρ0
K̄

≤ ρ−1
K̄

≤ 1−C0ε
1/β while for (div u0)K̄ ≤ 0,

we have:

ρ0K̄ ≤
ρ−1
K̄

1− δt(div u0)K̄
.

Now, using assumption (5.4) we have maxK [div(u0)]− ≤ CM minK(1 − ρ−1
K ) ≤ CMε1/β and there-

fore, for some C > 0 independent of ε,

max ρ0K ≤
max ρ−1

K

1 + Cδtmin(1− ρ−1
K )

≤ 1− Cε1/β .

Once we have the control of ρ0, we can deduce with a similar argument the positivity of the density at
any time step:

ρnK > 0 ∀K ∈ M, n = 1, . . . , N. (5.9)

Identically to the implicit scheme, we have a discrete renormalization identity (4.6).
Next, we derive the kinetic energy estimate by taking the scalar product of the velocity prediction

equation (5.2) with the corresponding velocity unknown ũn+1
σ :

1

2δt

(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|

2
)

+
1

2|Dσ|

∑

Fσ,ǫ(ρ
n,un)ũn+1

σ · ũn+1
σ′

− div(τ (ũn+1))σ · ũn+1
σ + (∇pn+1

ε )σ · un+1
σ +

δt

2

(

∣

∣(∇pn+1
ε )σ

∣

∣

2

ρnDσ

−

∣

∣(∇pnε )σ
∣

∣

2

ρn−1
Dσ

)

+Rn+1
σ = δtfn+1

σ · ũn+1
σ , (5.10)
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where Rn+1
σ =

1

2δt
ρn−1
Dσ

|ũn+1
σ − un

σ |
2. Note that we used the rescaling step (5.1) to obtain this final

expression (see details of the calculations in [18]).
Combining the renormalized equation with (5.10), we infer the following result.

Lemma 5.2 (Local-in-time discrete energy inequality, existence of a solution). There exists a solution
(ρn,un)0≤n≤N to the scheme such that ρn > 0 for 1 ≤ n ≤ N and the following inequality holds for
0 ≤ n ≤ N − 1:

1

2

∑

σ∈Eint

|Dσ|
(

ρnDσ
|un+1

σ |2 − ρn−1
Dσ

|un
σ|

2
)

+
∑

K∈M

|K|
(

Hε(ρ
n+1
K )−Hε(ρ

n
K)
)

+
µ

2
δt ‖ũn+1‖

2

1,2,M +
δt2

2

∑

σ∈Eint

|Dσ|
(

∣

∣(∇pn+1
ε )σ

∣

∣

2

ρnDσ

−

∣

∣(∇pnε )σ
∣

∣

2

ρn−1
Dσ

)

+Rn+1 ≤ Cδt‖fn+1‖
2

L2(Ω), (5.11)

where Rn+1 =
∑

σ∈Eint
|Dσ|R

n+1
σ +

∑

K∈M |K|Rn+1
K ≥ 0, with Rn+1

σ defined by (5.10) and Rn+1
K defined

by (4.7).

The existence of a solution (ρn+1,un+1) to the correction step (5.3a)-(5.3b) follows from the Brouwer
fixed point theorem, by an easy adaptation of the proof of [7, Proposition 5.2].

Let us now turn to the global entropy inequality; it was first proven in [10, Theorem 3.8], we prove
here that the bound is independent of ε if the initial data is well-prepared.

Lemma 5.3 (Global discrete energy inequality). Let ε > 0 and assume that the initial data (ρε0,u
ε
0) is

well-prepared. By Lemma 5.2, there exists a solution (ρn,un)n≤N to the scheme (5.2)-(5.3). In addition,
there exists C > 0 independent of ε such that, for ε small enough and for all 1 ≤ n ≤ N :

1

2

∑

σ∈Eint

|Dσ| ρ
n−1
Dσ

|un
σ |

2 +
µ

2

n
∑

k=1

δt ‖ũk‖
2

1,2,M +
∑

K∈M

|K|Hε(ρ
n
K)

+
δt2

2

∑

σ∈Eint

|Dσ|

ρn−1
Dσ

|(∇pnε )σ|
2 ≤ C. (5.12)

Proof. Summing (5.11) over n yields the expected inequality (5.12) with

C =
1

2

∑

σ∈Eint

|Dσ| ρ
−1
Dσ

|u0
σ|

2 +
∑

K∈M

|K|Hε(ρ
0
K) +

δt2

2

∑

σ∈Eint

|Dσ|

ρ−1
Dσ

|(∇p0ε)σ|
2 + ‖f‖2L2 .

Let us prove that if the initial data is well-prepared in the sense of (5.4), then for ε small enough, C is
uniformly bounded independently of ε. Since 0 < r1 ≤ ρ−1

K < 1 − Cε1/β for all K ∈ M, so is ρ−1
Dσ

for all
σ ∈ Eint. Hence, since uε

0 is uniformly bounded in H1(Ω)d by (5.4), a classical trace inequality yields the
boundedness of the first term. By initial conditions , one has |ρ0K − 1| ≥ Cε1/β for all K ∈ M. Hence,
the second term vanishes as ε → 0. The third term is also uniformly bounded with respect to ε since the
initial data is supposed to be well-prepared.

Control of the density and estimate of the pressure As for the implicit case, the control of the
energy (5.12) provides a control on the density close to 1: there exists a constant C > 0 independent of ε
(but not on the mesh), such that

ρnK ≤ 1− Cε
1

β−1 ∀ K ∈ M, n ∈ N. (5.13)
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Proposition 5.4 (Control of the pressure). One has, for 1 ≤ n ≤ N :

‖∇pnε ‖L2(Ω) + ‖pnε ‖L1(Ω) ≤ CM,δt, (5.14)

where the real number CM,δt depends on the mesh and the time step δt but not on ε.

Proof of Proposition 5.4. The control of the pressure gradient directly follows from the estimate (5.12) by
introducing (as done for the implicit scheme) vn+1 = BM(ρn+1 −m(ρn+1)) ∈ HM,0(Ω). We multiply the
velocity correction step (5.3b) by vσ, multiply by |Dσ| and sum over σ ∈ Eint to get:

−
∑

σ∈Eint

|Dσ|(∇pε)
n+1
σ vn+1

σ =
1

δt

∑

σ∈Eint

|Dσ|ρ
n
Dσ

(un+1
σ − ũn+1

σ )vn+1
σ −

∑

σ∈Eint

|Dσ|(∇pε)
n
σv

n+1
σ

Thanks to the bounds previously derived on ρ, ∇pε, u and ũ, we bound the right-hand side uniformly
with respect to ε. On the left-hand side we have thanks to (3.19)

−
∑

σ∈Eint

|Dσ|(∇pε)
n
σv

n+1
σ = −

∫

Ω

∇E(p
n
ε ) · ΠEv

n+1 dx =

∫

Ω

pnε divM vn+1 dx.

and therefore
∣

∣

∣

∣

∫

Ω

pn+1
ε divMvn+1 dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

pn+1
ε (ρn+1 −m(ρn+1)) dx

∣

∣

∣

∣

≤ CM,δt.

We finally conclude as in the implicit case by splitting the pressure integral into two parts.

We finally pass to the limit exactly as for the full implicit scheme.

6 Numerical simulations

The numerical test-cases presented here have been run with the pressure-correction scheme programmed
in the open source software CALIF3S. This software was originally designed for the compressible Navier-
Stokes system. We adapted the code to the soft congestion model by setting the barotropic pressure law
to (1.3). The inviscid case µ = λ = 0 can be handled by the software CALIF3S by setting the viscosity to
the order of magnitude of a numerical diffusion, namely µ = h where h is the space step and λ = − 2

3µ.
For all the test-cases, we set γ = β = 2.

6.1 1D validation test cases

We first present Riemann type test-cases taken from [4] for the 1D inviscid soft congestion system. In both
test cases we set ε = 10−4.

(P1): A double shock wave The initial density and momentum (q = ρu) for the first test-case test-case
are given by:

(P1) : (ρ, q)(x, 0) =

{

(0.7, 0.8) x ∈ [0, 0.5)
(0.7,−0.8) x ∈ (0.5, 1]

In (P1), the two opposite velocities lead to a rise of the density and the appearance of a congested area
in the middle region. The exact solution thus consists in two symmetric left and right going shocks with
a congested (up to ≈ ε) intermediate state in between. Fig. 2 displays the exact and numerical solutions
and we observe good correspondence.
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Figure 2: (P1): space variations of (ρ, u) at time T = 0.05, δx = 5.10−3, δt = 5.10−4,
CFL = 0.27. Solid line : exact solution, red line with points : pressure correction
scheme.

In order to check that the pressure correction scheme is indeed unconditionally stable with respect to
the time step, the scheme has been run for various CFL numbers varying from CFL = 0.27 to CFL = 43.9
and we obtain similar results. However, it is to be noticed that the larger is the CFL number, the worsed
conditioned is the Newton method solving the correction step. For CFL with values larger that 44, the
Newton solver needs more than 30 steps to converge which causes the program to stop.

A mesh refinement process has also been implemented in order to check numerically the convergence
of the method. For this purpose, we compute the discrete L1-error between the approximate solution and
the exact one at the final time T = Nδt = 0.05, normalized by the discrete L1-norm of the exact solution:

E(δx) =

∑

j |φ
N
j − φex(xj , T )|δx

∑

j |φex(xj , T )|δx
,

where φ is any of the non-conservative variables (ρ, u, p). The calculations have been implemented on
several meshes composed of 200 × 2n uniform cells with n = 0, 1, .., 7 (knowing that the domain size is
L = 1). The time step is adapted in order to fix the CFL number to 1.73 in all computations. In Fig. 3,
the error E(δx) at the final time T = 0.05, is plotted against δx in a log − log scale. For the three most
refined meshes, we observe the convergence of the method at the expected first order.

(P2): A double rarefaction wave with vacuum The initial density and momentum (q = ρu) for
the second test-case are given by:

(P2) : (ρ, q)(x, 0) =

{

(0.7,−0.8) x ∈ [0, 0.5)
(0.7, 0.8) x ∈ (0.5, 1]

The solution of the problem (P2) consists in a left-going rarefaction wave and a symmetric right-going
rarefaction wave giving rise to a vacuum state in between. Fig. 4 displays the exact and numerical
solutions.

6.2 2D Simulation test-cases

2D collision between blocks This is a 2D inviscid test-case taken from [4] which illustrates the collision
of two congested regions. The computational domain is Ω = (0, 1)2. The initially congested regions are
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Figure 3: (P1): L1-Error with respect to δx for the pressure correction scheme.
CFL = 1.73.
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Figure 4: (P2): space variations of (ρ, u) at time T = 0.05, δx = 5.10−3, δt = 5.10−4,
CFL = 0.12. Solid line : exact solution, red line with points : pressure correction
scheme.

A = [ 16 ,
5
12 ]× [ 13 ,

7
12 ] and B = [ 7

12 ,
5
6 ]× [ 5

12 ,
2
3 ]. The initial density and momentum are given by:

ρ = 0.6 + 0.2× 1A∪B, q =

(

1
0

)

1A +

(

−1
0

)

1B.

The computation is run on a non structured grid composed of 41648 triangles. We impose a no slip
boundary condition on the velocity. The time step is δt = 5.10−4. The CPU time of the computation is 13
min for 400 time iterations. Fig. 5 displays the color map for the density at times t = 0.005 and t = 0.2.
Fig. 6 displays cut lines of the density and velocity in the x direction on the line y = 0.5 at timet = 0.005.
We obtain similar results as in [4].

2D convergent corridor This 2D test-case is inspired by a test case in [24] featuring the global motion
of crowd through a convergent corridor. The computational domain described in polar coordinates is the
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Figure 5: 2D collision: color map of the density and (rescaled) velocity vector field at
times t = 0.005 (left) and t = 0.2 (right). Number of cells 41648, δt = 5.10−4.
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Figure 6: 2D collision: cut of the density (left) and velocity (right) in the x direction
on the line y = 0.5 at timet = 0.005.

following portion of a cone:

Ω =

{

(x, y) = (r cos θ, r sin θ) ∈ R
2 s.t. 0.1 < r < 1,

π

3
< θ <

2π

3

}

.

We model the presence of an “exit” (which is actually closed) at the bottom end (r = 0.1) of the cone by
adding the following source term:

f = ∇D − u

where D is the euclidean distance with the origin of the cone (0, 0). This source term tends to force the
flow velocity towards the “exit” and the further (x, y) is from the exist, the larger is the velocity. In
practice, the part of the source term depending on the velocity unknown is incorporated as an additional
implicit reaction term in the prediction step (5.2) of the numerical scheme.

To assess the behaviour of the pressure correction scheme on the viscous model (1.1), we take µ = 0.1
and λ = − 2

3µ in this test case. On the boundary of Ω, we impose a non penetration condition on the
velocity u|∂Ω · n = 0. Hence, we expect a congested region to appear at the bottom of the computational
domain and to propagate towards the top of the domain.

The computation is run on a non structured grid composed of 12020 triangles. The time step is
δt = 10−2. The CPU time of the computation is 23 min for 1000 time iterations. Fig. 7 displays the color
map for the density at various times. Fig. 8 displays cut lines of the density and velocity with respect to
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y along the line x = 0 at time t = 10. We observe that the radial velocity is constant (close to zero) in the
congested region. In the vicinity of the upper boundary (r = 1) where the system is close to vacuum, the
velocity is close to zero which is coherent with (2.3).
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Figure 7: 2D convergent corridor: color map of the density at times t = 0.0 (top left),
t = 0.7 (top right), t = 1.7 (bottom left) and t = 10 (bottom right). Number of cells
12020, δt = 10−2.
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Figure 8: 2D convergent corridor: cut of the density (left) and velocity (right) with
respect to y on the line x = 0 at time t = 10.
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7 Conclusion

We have performed the analysis of a (spatially) staggered and semi-implicit (in time) numerical scheme for
the simulation of free-congested viscous and inviscid compressible flows, where congestion phenomena are
modelled with a singular pressure pε(ρ) = εργ/(1 − ρ)β enforcing a maximum constraint on the density:
ρ < 1. The numerical scheme falls in the framework of pressure correction schemes, it was originally
designed for the Navier-Stokes equations and programmed in the open source software CALIF3S.

Thanks to an analysis which is similar to that of the continuous model, we prove that both the fully
implicit and semi-implicit schemes satisfy a control of the discrete pressure which is independent of the
mesh size and of the parameter ε. We also prove that the expected maximum constraint on the density
is satisfied. In the limit ε → 0, it is known that the model converges towards a hybrid model combining
a pressureless non congested compressible flow (ρ < 1) and an incompressible congested (ρ = 1) flow. At
the discrete level, we prove that (up to extraction of a subsequence), the limit pressure only activates in
the congested area as we have (1 − ρ)p = 0 at the limit in all the mesh cells. An interesting question is
to go further and prove that similarly to the continuous model, the solutions of the numerical scheme for
the free-congested model converge towards the solutions of a numerical scheme for the limit hybrid model.
This will be studied in a forthcoming work, where we analyse a numerical scheme for the limit hybrid
model.

The convergence of the numerical scheme as the time step goes to zero is still an open problem for
this time-dependent system. However we refer to [28] where such a result was proven for the stationary
compressible Navier-Stokes system.

In order to validate the numerical scheme, 1D Riemann type test-cases for the inviscid model have been
performed and the discrete solutions have been shown to compare well with the exact solutions. Finally
we have performed 2D test-cases which are interesting for the targeted applications, namely the simulation
of crowd motion.
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