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Abstract. In this paper, we build and analyze a scheme for variable density flows, able to cope with
unstructured non-conforming meshes (i.e. with hanging nodes), in d = 2 or d = 3 space dimensions.
The cells are quadrangles (d = 2) or hexahedra (d = 3), and local refinement is obtained by (possibly
successively) dividing some cells in 2d sub-cells. The space approximation is based on a low-order
staggered non-conforming finite element, the so-called Rannacher-Turek element. In the momentum
balance equation, a finite element technique is used for the discretization of the diffusion term, where
we relax the usual mean value continuity constraint across the mesh faces: at the interface between
two refinement levels, average continuity is required only across the coarse face. The convection term is
discretized by a finite volume technique, and a careful construction of the momentum fluxes, especially
through non-conforming faces, yields a discrete analogue of the kinetic energy identity. On a model
problem, namely the steady convection-diffusion equation, we establish a first order error estimate in
energy norms. This convergence order is also observed in the numerical experiments for the Navier-
Stokes equations, both for incompressible and quasi-incompressible (i.e. obeying the asymptotic model
for vanishing Mach numbers) flows.

Keywords. Navier-Stokes equations, finite volumes, finite elements, stability, kinetic energy, non-
conforming local refinement.

1. Introduction

Let Ω be an open bounded connected subset of Rd, with d ∈ {2, 3}, which is supposed to be polygonal
if d = 2 and polyhedral if d = 3, let T ∈ R+ and let us consider the following system of equations:

C(ρ, ui,u)− div(τ
(
u)
)
i
+ ∂ip = 0, 1 ≤ i ≤ d, on Ω× (0, T ), (1.1a)

∂tρ+ div(ρu) = 0, on Ω× (0, T ), (1.1b)

with ρ ∈ R, u = (u1, . . . , ud)
t ∈ Rd and p ∈ R the density, the velocity and the pressure in the flow.

The shear stress tensor τ is given by:

τ (u) = µ(∇u+ ∇tu)− 2µ

3
divu I, (1.2)

where µ is a positive parameter, possibly depending on x. The operator C will be referred to in the
following as the convection operator and reads:

C(ρ, ui,u) = ∂t(ρui) + div(ρuiu), 1 ≤ i ≤ d.
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The two equations of system (1.1) correspond to the momentum balance and the mass conservation
of the fluid, respectively.

Thanks to the mass balance equation, C may be recast as a transport operator

C(ρ, v,u) = ρ
(
∂tv + u ·∇v

)
,

for a regular function vΩ× (0, T )→ R, and this equivalence between a divergence and transport form
allows to show that:

C(ρ, v,u) ϕ′(v) = C(ϕ(v)) = ∂t(ρϕ(v)) + div(ρϕ(v)u),

for any regular real functions ϕ. Taking ϕ(v) = v2/2 and v = ui, 1 ≤ i ≤ d yields (at least formally)
the kinetic energy identity. We show in [13, Lemma A2] that a discrete analogue of this computation
holds for finite volume operators, with a similar interplay between the momentum and mass balances,
although with some remainders which turn out to be numerical dissipation terms for convex functions
ϕ. The benefits of such a discrete local kinetic energy identity are two-folds: first, integrating is space
and time, it yields stability estimates for incompressible or barotropic flows (see, e.g., [1, 4, 9]); second,
it allows to build numerical schemes for compressible flows based on ad hoc discretizations of the
internal energy balance which preserve the sign of this variable [13]. This latter aspect is particularly
interesting for staggered discretizations, where the implementation of the usual techniques relying on
(approximate or exact) Riemann solvers is cumbersome. Note also that the conservation of the kinetic
energy is often presented as a prerequisite for LES applications [4].

The present work is a continuation of a research program undertaken to develop semi-implicit stag-
gered schemes satisfying a local discrete kinetic energy balance [1, 9, 13, 10]. The convection operator
C is discretized by a finite-volume technique while diffusion terms use, for unstructured meshes, a finite
element formulation, in the spirit of the algorithm developed and analyzed for incompressible flows
in [23, 24]. For unstructured quadrangular (d = 2) or hexahedric (d = 3) meshes, we base our space
approximation on the Rannacher-Turek element [22]. In the staggered flow context, however, ensuring
the above-mentioned required consistency between the mass balance and the momentum convection
operator C is not straightforward, since the mass balance is posed on the primal mesh while the mo-
mentum balance equation is posed on the dual mesh. This difficulty is overcome by a construction
which derives a secondary mass balance on ”dual cells” from the original one; this construction is of
algebraic nature, in the sense that it does not require the definition of the dual cells geometry (which,
in fact, is never specified). Consequently, the discretization of C sounds rather abstract, and motivated
by stability arguments only. The consistency of this operator was first only suggested by numerical
experiments, up to the work in [16] where we show by discrete compactness arguments that, with the
stability estimates which are satisfied by the solutions to variable density Navier-Stokes equations,

C(ρ(m), u
(m)
i ,u(m)) weakly converges to C(ρ̄, ūi, ū), where ρ(m) and (u

(m)
i )m∈N, 1 ≤ i ≤ d, stand for

a sequence of discrete solutions which converges, up to the extraction of a subsequence, to ρ̄ and ūi,
1 ≤ i ≤ d; we refer to [16] for a more precise formulation of this result. The work presented here builds
upon these developments, by pursuing the following goals:

– first, we extend the definition of the discrete velocity convection operator to cope with a class
of locally refined non-conforming (i.e. featuring hanging nodes) meshes.

– second, we establish an error estimate for the model problem of the convection-diffusion equation
which suggests that the discrete convection operator (both on conform or locally refined meshes)
is first order accurate for regular solutions. For the diffusion term, we adopt the same finite
element approach as for a regular mesh, and the extension to non-conforming meshes is easily
obtained in practice by slightly relaxing the weak continuity constraint across a face [3] (mean
continuity is required only across the whole face containing the hanging node and not across
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each sub-face having this node as vertex). From a theoretical point of view, the error analysis
of the resulting approximation turns however to be more technical than in the conforming case.

For numerical tests, the presented scheme is implemented in the open-source software library for fluid
applications CALIF3S [5] developed at the French Institut de Radioprotection et Sûreté Nucléaire
(IRSN), as a building-brick of pressure-correction method (see [6, 25] for the seminal papers and [12]
for a review); as a striking outcome of the use of Object Oriented Programming, it is now available for
all the software applications, including incompressible, quasi-incompressible (i.e. obeying the system
of equations obtained at the limit of vanishing MAC numbers [19]) and compressible flows, possibly
turbulent or reactive.

This paper is organized as follows. We first describe the space discretization (Section 2) then the
proposed convection and diffusion operators for locally refined meshes (Section 3.2). Section 4 is
devoted to the error analysis of the scheme on the convection-diffusion model problem, and Section 5
gathers some numerical experiments which comfort this theoretical study.

2. Meshes and discretization spaces

Definition 2.1 (Unrefined mesh). A meshM0 is said an unrefined mesh if it is a regular decomposition
(in the usual sense of the finite element literature, see e.g. [7])) of the domain Ω either in quadrilaterals
(d = 2) or hexahedra (d = 3). Each cell K ofM0 is defined by the image by the standard Q1 mapping
associated with its vertices, denoted by QK , of the unit square or cube (0, 1)d.

Let us now define a refinement process. In two dimensions, it consists in cutting a cell K in four sub-
cells, which are defined as the image by QK of the four sub-squares of the unit square (α1/2, (α1 +
1)/2) × (α2/2, (α2 + 1)/2), for (α1, α2) ∈ {0, 1}2. In three dimensions, sub-cells are obtained by
applying QK to the eight subset of the unit cube (α1/2, (α1 +1)/2)×(α2/2, (α2 +1)/2)×(α3/2, (α3 +
1)/2), for (α1, α2, α3) ∈ {0, 1}3. The additional vertices produced by this process lie in the mid-point
of a coarse edge in 2D, and at the center of a coarse face in 3D (precisely speaking, at the image
by QK of the mass center of the associated face of the reference unit cube). The following lemma is
essential for the well-posedness of the refinement process, and is a (not so easy) consequence of the
properties of the Q1 mapping.

Lemma 2.2. The sub-cells produced by the refinement process are themselves the image of the unit
square or cube by the Q1 mapping associated with their vertices.

Proof. We give the proof in two dimensions, the extension to d = 3 being easy although cumbersome.
Let K be a quadrangle of vertices a1, a2, a3 and a4. The cell K is thus defined by:

K =
{ 4∑
i=1

ϕi(x̂) ai, x̂ ∈ (0, 1)2
}
,

with ϕ1(x̂) = (1 − x̂1) (1 − x̂2), ϕ2(x̂) = x̂1 (1 − x̂2), ϕ3(x̂) = x̂1 x̂2 and ϕ4(x̂) = (1 − x̂1) x̂2. A
fundamental property of the Q1 mapping is that it may be obtained by 2 (in fact d) successive
interpolations, performed in any order. Indeed, let us denote by I(a, b, s) the following interpolated
point between a and b:

I(a, b, s) = (1− s)a+ sb.

Then, by the definition of ϕ, we get:

K =
{
I
(
I(a1,a4, x̂2), I(a2,a3, x̂2), x̂1

)
, x̂ ∈ (0, 1)2

}
.

In addition, we may check that a first property of the interpolation operator I is that, for any vector
x̂ of R2:

I
(
I(a1,a4, x̂2), I(a2,a3, x̂2), x̂1

)
= I

(
I(a1,a2, x̂1), I(a4,a3, x̂1), x̂2

)
.
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Let a1,4 be defined by a1,4 = (a1 + a4)/2. Then, it is easy to see that I also satisfies:{
I(a1,a4, s), s ∈ (0, 1/2)

}
=
{
I(a1,a1,4, s), s ∈ (0, 1)

}
.

We a similar definition for a1,3, we get for the first sub-cell of K, let us say K1:

K1 =
{
I
(
I(a1,a4, x̂2), I(a2,a3, x̂2), x̂1

)
, x̂ ∈ (0,

1

2
)2
}

=
{
I
(
I(a1,a1,4, ξ), I(a2,a2,3, ξ), x̂1

)
, x̂1 ∈ (0,

1

2
), ξ ∈ (0, 1)

}
.

We now permute the interpolations to obtain:

K1 =
{
I
(
I(a1,a2, x̂1), I(a1,4,a2,3, x̂1), ξ

)
, x̂1 ∈ (0,

1

2
), ξ ∈ (0, 1)

}
.

Finally, with a1,2 = (a1 + a2)/2 and a1,2,3,4 = (a1 + a2 + a3 + a4)/4, we get:

K1 =
{
I
(
I(a1,a1,2, η), I(a1,4,a1,2,3,4, η), ξ

)
, (η, ξ) ∈ (0, 1)2

}
.

This means that K1 may be obtained from the unit square by the Q1 mapping associated with the
vertices a1, a1,2, a1,2,3,4 and a1,4, which is the result we are searching for. The same conclusion may be
obtained for the other sub-cells of K, by simple change of axes for the unit square. In three dimensions,
the proof follows similar lines, but the interpolation operator I must be applied three times (along
each of the coordinates) instead of twice.

We are now in position to define a locally refined mesh.

Definition 2.3 (Refined mesh). A locally refined mesh is obtained from an unrefined one by recur-
sively splitting some cells by the above defined refinement process, in such a way that the number of
hanging nodes per face is at most one (which means that the difference of level of refinement between
two adjacent cells is at most one).

Examples of locally refined meshes are given on Figure 1.

(a) (b) (c)

Figure 1. An example of admissible mesh refinement – (a): conforming mesh. (b):
refined mesh obtained by cutting in four some initial cells (process often called ”first
level refinement”). (c): refined mesh obtained by cutting in four some initial cells and
some refined cells (”second level refinement”). The edges in blue and green are created
by the first end second refinement level, respectively.

We denote byM the obtained mesh by such a refinement process, and by E(K) the set of the faces
of an element K ∈M. We exclude the presence of a node in the interior of a face, i.e. we split an initial
face in 2d−1 faces if one of the cells adjacent to the face is split. The number of faces, NEK , of a cell

K thus ranges between 2d and 2dd. Let E = ∪K∈ME(K), Eext = {σ ∈ E , σ ⊂ ∂Ω} and Eint = E \ Eext.
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Dσ

Dσ′K

σ
=
K
|L L

M

σ′ = K|M

ε = D
σ |D

σ ′

Figure 2. Notations for control volumes and diamond cells.

A face σ ∈ Eint separating the cells K and L is denoted by K|L. Hereafter, | · | stands for the d- or
(d− 1)-dimensional measure of a subset of Rd or Rd−1 respectively.

For σ ∈ E(K), nK,σ stands for a unit normal vector to σ outward K. In two dimensions and for plane
faces in three dimensions, its definition is clear. For non-plane faces, many definitions are possible;
here, we split the face in four 2-dimensional simplices the boundary of which joins the center of the
face (with the same definition as before, namely the image by QK of the mass center of the associated
face of the unit cube) and two vertices of the face, and use for nK,σ the average of the unit normal
vectors of these four simplices, weighted by their area.

We define a dual mesh associated with the faces E as follows. When K ∈ M is a rectangle or a
cuboid, for σ ∈ E(K), we define the half-diamond cell DK,σ as the cone with basis σ and with vertex

the mass center of K (see Figure 2). We thus obtain a partition of K in NEK sub-volumes, each sub-

volume having a measure |DK,σ| equal to |K|/(2d), when σ has not been split, or |K|/(2dd) otherwise.
We extend this definition to general quadrangles and hexahedra, by supposing that we have built a
partition with the same connectivities and the same ratio between the volumes of the half-diamonds
and of the cell. For σ ∈ Eint, σ = K|L, we now define the dual (or diamond) cell Dσ associated with

σ by Dσ = DK,σ ∪DL,σ. For σ ∈ E(K) ∩ Eext, we define Dσ = DK,σ. We denote by Ẽ(Dσ) the set of
faces of Dσ, and by ε = Dσ|Dσ′ the face separating two dual cells Dσ and Dσ′ (see Figure 2).

The space discretization is staggered in the sense that the pressure and the velocity unknowns are
discretized as piecewise constant functions respectively on the primal and dual mesh. In addition,
in order for the algorithm to be further suitable for more general models including the density as
unknown (e.g. the asymptotic model for anisothermal low Mach number flows, see Section 5.3), we
suppose that ρ is approximated by a discrete function which is also piecewise constant on the primal
mesh. Hence, the degrees of freedom for the pressure and the density are associated with the cells of
the primal mesh: {pK , K ∈ M} and {ρK , K ∈ M} while a discrete velocity field is associated with
degrees of freedom localized at the cells of the dual mesh: {uσ, σ ∈ E}.
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K

Lσ

Σ

σ

Σ
|σ|
|Σ|

ζΣ

ζσ

Figure 3. Piecewise definition of ζσ.

3. The discrete diffusion and convection operators

The purpose of this section is to define the discrete diffusion and convection operators for the cells
adjacent to faces featuring a hanging node.

3.1. The diffusion operator

The discretization of the diffusion term −(divτ (u)) relies on the so-called ”rotated bi-linear element”

introduced by Rannacher and Turek [22]. The reference element K̂ is the unit d-cube (0, 1)d, and the
discrete functional space is:

Q̃1(K̂) = span
{

1, (xi)i=1,...,d, (x2
i − x2

i+1)i=1,...,d−1

}
. (3.1)

When no vertex of the face σ is a hanging node, we impose the jump of a discrete function through
the face to have a zero mean value. When one vertex is a hanging node, we only impose to zero the
integral of the jump through the initial coarse face containing σ. Hence, the set {ζσ, σ ∈ E} of nodal
functions associated with the Rannacher-Turek element is defined as follows.

Let K ∈M and σ be a face of K. If σ is a whole side of K, the standard definition applies:

(i) ζσ|K = ζσ̂ ◦ Q−1
K where ζσ̂ is some function of Q̃1(K̂),

(ii)
1

|σ|

∫
σ
ζσ = 1 and, for all other sides Σ′ of K,

∫
Σ′
ζσ = 0.

(3.2)

Let us now suppose that σ is only a subset of a side of K, which we denote by Σ (which occurs when σ
separates K form a cell which refinement level is equal to the refinement level of K plus 1, see Figure
3). Let ζΣ be the Rannacher-Turek usual shape function associated with Σ (i.e. the function satisfying
the above definition (3.2), replacing σ by Σ). Then, we define ζσ on K by:

ζσ(x) =
|σ|
|Σ|

ζΣ(x).

Finally, of course, the nodal functions are local, in the sense that, for σ ∈ E , the support of ζσ is
reduced to the (one or two) cells adjacent to σ.

We are now in position to apply a Galerkin technique, which yields, for the discretization of the ith

component of the diffusion term:

−(divτ (u))σ,i =
1

|Dσ|
∑
K∈M

∫
K

∑
σ′∈E(K)

d∑
j=1

uσ′,j τ
(
ζσ′(x) e(j)

)
: ∇
(
ζσ(x) e(i)

)
dx,

where, for 1 ≤ j ≤ d, e(j) stands for the jth vector of the canonical basis of Rd.
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3.2. The discrete momentum convection operator

We now turn to the approximation of the convection operator C = ∂t(ρu) + div(uq), which appears in
the momentum balance equation (1.1a) with ρ the density, u a component of the velocity, and q = ρu
the momentum field. This approximation is of finite volume type, with a discretization based on the
diamond cells, and takes the following general form, for σ ∈ Eint:

Cnσ =
1

δt
(ρnσu

n
σ − ρn−1

σ un−1
σ ) +

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fnσ,ε u
n
ε .

The quantities ρnσ and ρn−1
σ are approximations of the density on the dual cell Dσ at time tn and tn−1

respectively, and the quantities Fnσ,ε are mass fluxes across the faces of the dual cells. These quantities
are built so that a finite volume discretization of the mass balance holds over the internal dual cells:

1

δt
(ρnσ − ρn−1

σ ) +
1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fnσ,ε = 0, σ ∈ Eint. (3.3)

This is crucial in order to reproduce, at the discrete level, an analogue of the relation C u = 1
2∂t(ρu

2)+
1
2div(u2q), which a central arguments of stability estimates. Relation (3.3) must be deduced from the
mass balance solved by the scheme, which is supposed to take the following form:

1

δt
(ρnK − ρn−1

K ) +
1

|K|
∑

ε∈E(K)

FnK,σ = 0, K ∈M, (3.4)

with FnK,σ the mass flux through σ outward K at time tn, the expression of which does not need to
be specified here.

Let us now give the detailed construction of the dual densities and mass fluxes that ensures (3.3).
For σ ∈ Eint such that σ = K|L, the approximate densities on the dual cell Dσ are given by the
following weighted average:

|Dσ| ρkσ = ξσK |K| ρkK + ξσL|L| ρkL, for k = n− 1 and k = n, (3.5)

where

ξσK =
|DK,σ|
|K|

, K ∈M, σ ∈ E(K). (3.6)

The set of dual fluxes Fnσ,ε with ε included in the primal cell K, is computed by solving a linear
system which right-hand side is a linear combination of the primal fluxes (FnK,σ)σ∈E(K), appearing in

the discrete mass balance (3.4). More precisely, we have the following definition for the dual fluxes, in
which we omit for short the time dependence (i.e. the superscript n).

Definition 3.1 (Definition of the dual fluxes from the primal ones). The fluxes through the faces of
the dual mesh are defined so as to satisfy the following three constraints:

- (H1) – For all primal cell K in M, the set (Fσ,ε)ε⊂K of dual fluxes through faces included in
K satisfies the following linear system:

FK,σ +
∑

ε∈Ẽ(Dσ), ε⊂K

Fσ,ε = ξσK
∑

σ′∈E(K)

FK,σ′ , ∀σ ∈ E(K). (3.7)

- (H2) – The dual fluxes are conservative: Fσ,ε = −Fσ′,ε for all ε = Dσ|D′σ.

- (H3) – The dual fluxes are bounded with respect to the primal ones (FK,σ)σ∈E(K):

|Fσ,ε| ≤ C max {|FK,σ|, σ ∈ E(K)} , K ∈M, σ ∈ E(K), ε ∈ Ẽ(Dσ), ε ⊂ K.
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Appendix A provides the detailed construction of the dual fluxes (i.e. the way to find a solution to
(3.7) satisfying the other two constraints). Owing to these definitions of the dual densities and mass
fluxes, the mass balance on the dual cells (3.3) is an easy consequence of the mass balance on the cells
of the primal mesh (3.4) [1].

To make the description of the operator complete, it remains to define the velocity interpolates unε
at the internal dual faces. We chose a centered approximation:

unε =
unσ + unσ′

2
, for ε = Dσ|D′σ.

4. Error analysis for the advection-diffusion equation

For the sake of simplicity, we propose to perform an error analysis of the scheme on the simplified
model of the advection-diffusion equation. This scalar equation can be seen as a model problem for the
prediction step of the method (for one component of the velocity), where the known density is assumed
to be constant and the pressure gradient and the advective velocity are known given functions from
the previous time step. Since the density is considered constant, the mass balance ∂tρ+ div(ρw) = 0
boils down to divw = 0, which is supposed here; this relation plays, for the stability of the model
problem under consideration, the same role as the kinetic energy identity in Navier-Stokes equations.
We assume in addition that w is a regular function, namely w ∈ C1(Ω̄)d, and vanishes at the boundary
∂Ω of the computational domain. The problem we consider thus consists in finding a function u such
that:

u+ div(uw)−∆u = f, on Ω, (4.1a)

u = 0, on ∂Ω, (4.1b)

where f ∈ L2(Ω). In order to write a weak formulation of (4.1), let us define the following forms
corresponding respectively to the diffusion and convection terms:

a(u, v) =

∫
Ω
∇u ·∇v, b(w, u, v) =

∫
Ω

div(uw)v, u, v ∈ H1
0(Ω).

We also introduce the inner product of L2(Ω) denoted (., .), and we are now in position to state the
weak formulation of problem (4.1).

Definition 4.1. A weak solution of the advection-diffusion problem (4.1) is a function u ∈ H1
0(Ω)

such that:
(u, v) + b(w, u, v) + a(u, v) = (f, v), ∀v ∈ H1

0(Ω). (4.2)

It is well known that, by the Lax-Milgram theorem, there exists a unique solution to (4.2).

4.1. Regularity of the mesh and approximation space

In addition to the definition of the mesh given in Section 2, we suppose that any quadrilaterals (d = 2)
or hexahedra (d = 3) of the mesh are convex, which implies that their faces are hyperplanes of Rd.
For K ∈M, we denote by hK the diameter of K. Similarly, we denote by hσ the diameter of an edge
σ ∈ E . The size of the discretization is defined as usual by:

h = max{hK ,K ∈M}.
For the consistency of the Rannacher-Turek finite element approximation of the diffusion term, we
need a measure of the difference between the cells ofM and parallelograms (d = 2) or parallelepipeds
(d = 3), as defined in [22]. For K ∈ M, we denote by ᾱK the maximum of the angles between the
normal vectors of opposite faces, choosing for the latter the orientation which maximizes the angle,
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and set αK = π − ᾱK (so αK = 0 if K is a parallelogram or a parallelepiped, and αK > 0 otherwise).
Then we define αh as:

αh = max{αK , K ∈M}. (4.3)

For K ∈ M, let {ai,K , i = 1, .., 2d} denote the vertices of K. Let ai,K be one of these vertices
and let Si,K be the simplex whose vertices are ai,K and the d adjacent vertices to ai,K . We denote
by ri,K the diameter of the largest ball included in Si,K and by rK the real number given by rK =

min{ri,K , i = 1, .., 2d}. We define the real number θh by:

θh = max

{
hK
rK

, K ∈M
}
. (4.4)

In accordance with the velocity discretization described in Section 3, a discrete function v is asso-
ciated with degrees of freedom {vσ, σ ∈ Eint} located at the internal faces, the values associated with
the boundary faces E ∈ Eext being set to zero, consistently with the boundary conditions (4.1b). For
K ∈ M, the restriction of a discrete function v to K belongs to the local Rannacher-Turek space:

v|K = v̂◦Q−1
K where v̂ ∈ Q̃1(K̂) (see (3.1)). The last step to obtain a definition of the discrete approxi-

mation space is to state the continuity constraints satisfied by the discrete functions at the faces. Once
again, when no vertex of the face is a hanging node, this issue is clear: as usual for the Rannacher-
Turek element, we impose the jump through the face to have a zero mean value. Otherwise, we only
impose to zero the integral of the jump through the initial coarse face. Hence the approximation space
is given by

Vh =
{
v(x) =

∑
σ∈Eint

vσ ζσ(x), (vσ)σ∈Eint ⊂ R
}
, (4.5)

where the shape functions ζσ are defined in Section 3.1.

With the continuity requirements described above, the functions of Vh are discontinuous across each
edge; the discretization is thus non-conforming in the sense that Vh 6⊂ H1

0(Ω). Therefore we define the
”broken” gradient ∇hv on Vh as the function of L2(Ω)d which is equal to ∇v|K for all K ∈ M. The
corresponding broken Sobolev H1 semi-norm is defined for v ∈ Vh by:

‖v‖2h,b =

∫
Ω
|∇hv|2 =

∑
K∈M

∫
K
|∇v|2.

Thanks to the homogeneous Dirichlet boundary conditions, this defines a norm on Vh which is known
to control the L2-norm by a Poincaré inequality:

‖v‖L2(Ω) ≤ diam(Ω) ‖v‖h,b, ∀v ∈ Vh. (4.6)

4.2. The staggered scheme for the advection-diffusion equation

Let us now adapt to the advection-diffusion problem the first step of the staggered scheme proposed
in Section 3. For this purpose, we assume that the divergence of the velocity field w is discretized on
the cells of the primal mesh by

div(w)|K ≈
1

|K|
∑

σ∈E(K)

FK,σ(w), with FK,σ(w) =

∫
σ
w · nK,σ dγ, (4.7)

and we define the dual fluxes Fσ,ε(w) from the primal ones following exactly the procedure described
in Section 3.2. Adapting the staggered scheme to the advection-diffusion problem thus consists in
finding a discrete function uh ∈ Vh such that:

(uh, v)h + bh(w, uh, v) + ah(uh, v) = (f, v), for all v ∈ Vh, (4.8)

9
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where, for any u, v ∈ Vh,

(u, v)h =
∑
σ∈E
|Dσ|uσvσ, (4.9)

bh(w, u, v) =
∑
σ∈E

vσ
∑

ε∈Ẽ(Dσ)

Fσ,ε(w)uε, (4.10)

ah(u, v) =

∫
Ω
∇hu ·∇hv. (4.11)

4.3. Stability properties of the scheme

One first important property of the scheme follows from the particular construction of the discrete
convection term bh(w, u, v). Indeed, since w is divergence-free, one has∑

σ∈E(K)

FK,σ(w) = 0,

which, by construction, implies a similar discrete divergence-free property on the cells of the dual
mesh: ∑

ε∈Ẽ(Dσ)

Fσ,ε(w) = 0, ∀σ ∈ Eint. (4.12)

This is crucial in order to reproduce, at the discrete level, the derivation of a stability estimate for
the scheme, analogous to the kinetic energy balance equation in the context of the full Navier-Stokes
equations. Indeed, by a computation which may be found in [1], Equation (4.12) yields:

bh(w, v, v) = 0, ∀v ∈ Vh. (4.13)

Remark 4.2. At first glance, this relation is the usual well known antisymmetry of the centered
convection operator with a divergence free advection field; note however that the scheme is posed on
a dual mesh, which, if we restrict the set of dual cells to those associated with the internal faces,
does not cover Ω, and that no balance equation is written on the remainder of the domain (i.e. the
half-diamond-shaped volumes associated with the external faces). This necessitates a slight adaptation
of the usual proof, which is performed in [1].

A first consequence of this antisymmetry property is the existence of a unique solution to the scheme
(4.8). Let Ah be the following form defined on the finite dimensional space Vh × Vh by

Ah(u, v) = (u, v)h + bh(w, u, v) + ah(u, v), u, v ∈ Vh.

The mapping Φ from Vh to V ′h which maps an element u to the form Φ(u) := Ah(u, .) is clearly linear

and satisfies (Φ(u) = 0⇒ u = 0) since Ah(u, u) = (u, u)h + ‖u‖2h,b for all u ∈ Vh by (4.13). Hence, Φ
is a one-to-one linear mapping which, in a finite dimensional context, is equivalent to the existence of
a unique solution uh ∈ Vh which satisfies Φ(uh) = f i.e. Ah(u, v) = (f, v) for all v ∈ Vh.

A second straightforward consequence is a stability estimate on the solution uh. Taking uh as a
test function in (4.8) and using again (4.13), one gets (uh, uh)h + ‖uh‖2h,b = (f, uh). Applying Young’s

inequality in the right hand side term and recalling the Poincaré inequality (4.6), we obtain the
stability estimate

2 (uh, uh)h + ‖uh‖2h,b ≤ diam(Ω)2 ‖f‖2L2(Ω). (4.14)

10
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4.4. Error estimate

We may now state the main result of this section, which is an error estimate for the scheme (4.8).

Theorem 4.3. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω (in the
sense of Definition 2.3) such that θh ≤ θ0, with θh defined by (4.4). Let uh ∈ Vh be the solution to the
scheme (4.8). We assume that the solution u of the continuous problem (4.2) belongs to H1

0(Ω)∩H2(Ω).
Then uh satisfies:

‖uh − u‖h,b ≤ C (h+ αh) ‖u‖H2(Ω),

where C only depends on w, Ω and θ0.

Remark 4.4 (A particular construction of a regular sequence of discretizations). For d = 2, a sequence
of discretizations satisfying h→ 0 and αh → 0 is obtained by successively dividing each quadrangle in
four sub-quadrangles, splitting it along the lines joining the mid-points of opposite faces. Unfortunately,
the extension of this construction to the three-dimensional case is not straightforward, since this
subdivision process may generate non-plane faces (see Appendix B).

Remark 4.5. Theorem 4.3 shows that the accuracy of the scheme for the energy norm ‖.‖h,b is
the same as that of the usual Rannacher-Turek approximation of the Stokes problem on non-refined
meshes [22]. In particular, there is no loss in the convergence rate due to the non-conforming local
refinement or the particular discretization of the convection term.

4.4.1. Preliminary lemmas

We begin with stating some technical lemmas, which will be useful in the proof of Theorem 4.3. We
first introduce the following discrete H1-norm on the space Vh:

‖v‖2h,fv =
∑
K∈M

hd−2
K

∑
σ,σ′∈E(K)

|vσ − vσ′ |2, (4.15)

which, by an easy computation, may be shown to be equivalent, over a regular sequence of discretiza-
tions such that maxh θh ≤ θ0 for some θ0 > 0, to the usual finite volume H1-norm. Lemma 4.6 shows
that this H1-norm is controlled by the broken-Sobolev H1-norm.

Lemma 4.6. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such that
θh ≤ θ0, with θh defined by (4.4). Then, there exists C only depending on θ0 such that:

‖v‖h,fv ≤ C ‖v‖h,b, ∀v ∈ Vh.

Proof. For K ∈ M, let v̂ be the function defined over K̂ by v̂(x̂) = v(x), where x ∈ K stands for

the image of x̂ by the Q1 mapping QK . By definition of the discretization space, we have v̂ ∈ Q̃1(K̂).
Now, since there exists only a bounded number of possible configurations for K (depending on the
fact that its sides are split in 2d−1 faces or not), a finite dimensional argument for norms acting on

Q̃1(K̂) shows that there exists a constant C such that:∑
σ,σ′∈E(K)

|vσ − vσ′ |2 ≤ C
∫
K̂
|∇v̂|2.

We conclude the proof by invoking standard properties of the Q1 mapping which enable to write:∫
K̂
|∇v̂|2 ≤ C(θ0)

h2
K

|K|

∫
K
|∇v|2 ≤ C ′(θ0)h2−d

K

∫
K
|∇v|2.

11



J.-C. Latché, B. Piar, & K. Saleh

KK1

K2

Σ

σ
1

σ
2

τ1 xτ

xfΣ

x

xcΣ

Figure 4. Notations for the proof of Lemma 4.8.

The following lemma compares piecewise constant approximates of a discrete function with the
function itself. It is an easy consequence of the previous one.

Lemma 4.7. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such that
θh ≤ θ0, with θh defined by (4.4). For v ∈ Vh, let vc stand for the piecewise constant function over
each diamond cell Dσ and equal to vσ. Then, there exists C, only depending on θ0, such that:

‖v − vc‖L2(Ω) ≤ C h ‖v‖h,b.

Let now vm be defined as a piecewise constant function over the primal mesh, the value over a cell
K being a convex combination of (vσ)σ∈E(K). Then, once again, there exists C, only depending on θ0,
such that:

‖v − vm‖L2(Ω) ≤ C h ‖v‖h,b.

The following lemma is the analogue, for the Rannacher-Turek element and a locally refined mesh,
of a well known result for the Crouzeix-Raviart element and regular meshes. For technical reasons, its
proof is however more intricate than in the case of conforming meshes.

Lemma 4.8. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such that
θh ≤ θ0, with θh defined by (4.4). Let v ∈ Vh. For σ ∈ Eint, let [v]σ denote the jump of v across σ (the
orientation of which we do not need to precise), and, for σ ∈ Eext, let [v]σ = v. Then the following
inequality holds: (∑

σ∈E

1

hσ

∫
σ
[v]2σ

)1/2
≤ C ‖v‖h,b.

where C only depends on θ0.

Proof. Let σ be an internal face of the mesh. By assumption, the integral of the jump of a discrete
function v vanishes either through σ or through a coarse face Σ including σ. Let us first consider the
latter situation, which is the most complex; it is encountered when σ is located at an interface between
a coarse and a refined zone of the mesh. Let us adopt the notations of Figure 4; the coarse face Σ

12
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includes nΣ = 2d−1 refined faces, which we denote by σi, 1 ≤ i ≤ nΣ and, without loss of generality,
let us suppose that

vσ1 = min
1≤i≤nΣ

{
vσi , 1 ≤ i ≤ nΣ

}
and vσnΣ

= max
1≤i≤nΣ

{
vσi , 1 ≤ i ≤ nΣ

}
.

By definition of the discrete space, there exists x1 ∈ σ1 and xnΣ ∈ σnΣ such that v|K1
(x1) = vσ1 and

v|KnΣ
(xnΣ) = vσnΣ

, respectively (since the mean value of v|K1
(resp. v|KnΣ

) is vσ1 (resp. vσnΣ
)). Let

us denote by Ki, 1 ≤ i ≤ nΣ the refined cells adjacents to σi, 1 ≤ i ≤ nΣ and by τj , 1 ≤ j ≤ nτ ,
with nτ = 1 if d = 2 and nτ = 4 if d = 3, the faces separating these cells. Still by definition of the
discrete space, for 1 ≤ j ≤ nτ , there exists a point of τj where the function v is continuous (since the
average of the jump of v across τj vanishes). Hence, there exists a piecewise linear path P included in
∪1≤i≤nΣKi joining x1 and xnΣ and such that the function v is continuous along P. The mean value
vΣ of v over Σ lies in the interval [vσ1 , vσnΣ

], so there exists xrΣ ∈ P such that v(xrΣ) = vΣ. Finally,

once again by definition of the discrete space, there exists xcΣ such that v|K (xcΣ) = vΣ, with K the
coarse mesh adjacent to Σ.

Let us consider one of the faces included Σ, let us say σ1. The point xrΣ may lie in Ki, i 6= 1. However,
by the same arguments as previously, there exists a piecewise linear path joining any x of σ to xrΣ
along which v is continuous. Let us suppose that xrΣ ∈ K2, and that the path joining x and xrΣ is
made of two segments, which we denote by (x,xτ ) ⊂ K1 and (xτ ,x

r
Σ) ⊂ K2, with xτ the point of the

face τ where v is continuous. We may now write, making the integration measures apparent in the
integrals for the sake of clarity:∫

σ
[v]2σ =

∫
σ

(∫ 1

0
∇v
(
(1− ξ)xrΣ + ξ xτ

)
· (xτ − xrΣ) dξ

+

∫ 1

0
∇v
(
(1− ξ)xτ + ξ x

)
· (x− xτ ) dξ −

∫ 1

0
∇v|K

(
(1− ξ)xΣ + ξ x

)
· (x− xΣ) dξ

)2
dγ(x),

where dγ(x) stands for the measure on the face σ. Hence,

∫
σ
[v]2σ ≤ 3 (T1 + T2 + T3) with

T1 =

∫
σ

(∫ 1

0
∇v
(
(1− ξ)xrΣ + ξ xτ

)
· (xτ − xrΣ) dξ

)2
dγ(x),

T2 =

∫
σ

(∫ 1

0
∇v
(
(1− ξ)xτ + ξ x

)
· (x− xτ ) dξ

)2
dγ(x),

T3 =

∫
σ

(∫ 1

0
∇v|K ·

(
(1− ξ)xΣ + ξ x

)
· (x− xΣ) dξ

)2
dγ(x).

The Cauchy-Schwarz inequality yields:

T1 ≤ h2
K2

∫
σ

∫ 1

0
|∇v

(
(1− ξ)xrΣ + ξ xτ

)
|2 dξ dγ(x).

The integrand is independent from x, and we get:

T1 ≤ h2
K2
|σ| max

x∈K2

|∇v|2.

Thanks to the properties of the Q1 mapping, we have

max
x∈K2

|∇v|2 ≤ C(θ0)
1

|K2|
‖∇v‖2L2(K2),

so, finally:

T1 ≤ C(θ0)
h2
K2
|σ|

|K2|
‖∇v‖2L2(K2).

13
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For T2, we have similarly:

T2 ≤ h2
K1

∫
σ

∫ 1

0
|∇v

(
(1− ξ)xτ + ξ x

)
|2 dξ dγ(x).

Bounding the integrand by max
x∈K1

|∇v|2 yields similarly

T2 ≤ C(θ0)
h2
K1
|σ|

|K1|
‖∇v‖2L2(K1).

Finally, the same arguments yield

T3 ≤ C(θ0)
h2
K |σ|
|K|

‖∇v‖2L2(K).

Gathering the three estimates, we obtain that there exists C depending only on θ0 such that

1

hσ

∫
σ
[v]2σ ≤ C

(∫
K
|∇v|2 +

nΣ∑
i=1

∫
Ki

|∇v|2
)
.

The derivation of this estimate may be easily extended to a path joining x and xfΣ consisting in three
segments, which is the maximum possible value, or simplified to deal with the case where xrΣ ∈ K1. The
arguments to deal with the case of a face separating two cells of equal level of refinement (i.e. a face
having no hanging node as vertex) or with external faces may be extracted from the previous derivation
(roughly speaking, only the term T3 appears, twice for an internal face and once for an external one).
The conclusion follows by summing over the faces and invoking the fact that the integral of |∇v|2 over
a given cell appears only a bounded number of times in the sum.

The proof of the following trace lemma is an easy adaptation of a result which can be found in [8,
appendix A].

Lemma 4.9. Let M be a locally refined mesh of the computational domain Ω and K be a control
volume of M, and let σ be one of its faces. Then there exists C, only depending on d, such that the
following inequality holds:

‖v‖L2(σ) ≤ C
1

r
1/2
K

(
‖v‖L2(K) + hK‖∇v‖L2(K)d

)
, ∀v ∈ H1(K).

We will also need the following Poincaré-Wirtinger inequality, which is proven for any convex domain
K in [20, 2].

Lemma 4.10. For all convex domain K of Rd, 1 ≤ d ≤ 3:

‖v −mK(v)‖L2(K) ≤
1

π
hK‖∇v‖L2(K)d , ∀v ∈ H1(K), (4.16)

where mK(v) stands for the mean value of v over K.

We are now in position to prove the following result, which may be seen as a ”weighted version”
of Lemma 4.8. This result is directly used to bound the consistency error associated to the diffusion
term.

Lemma 4.11. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such
that θh ≥ θ0, where θh is defined by (4.4). We define Ec as the set containing:

- the internal faces of the mesh which do not have as vertex a hanging node,

- the coarse faces, i.e. for any hanging node b, the subset of a hyperplane made of the union of the
faces having b as vertex.

14
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Let (aΣ)Σ∈Ec be a family of real numbers such that for all Σ ∈ Ec, |aΣ| ≤ 1. Let v be a function of the
Rannacher-Turek space Vh associated with M, and, for Σ ∈ Ec let [v]Σ be the jump of v through Σ.
Then the following bound holds:∑

Σ∈Ec

∣∣∣∣∫
σ
aΣ [v]Σ g

∣∣∣∣ ≤ C h ‖v‖h,b ‖∇g‖L2(Ω)2 , ∀g ∈ H1(Ω).

where the real number C only depends on θ0 and d.

Proof. Let Σ ∈ Ec and v ∈ Vh. Since the integral of the jump of v through Σ is zero, we have:∫
Σ
aΣ [v]Σ g =

∫
Σ
aΣ [v]Σ (g − gΣ),

where gΣ is any real number. By the Cauchy-Schwarz inequality in L2(Σ), we thus get:∑
Σ∈Ec

∣∣∫
Σ
aΣ [v]Σ g

∣∣ ≤ ∑
Σ∈Ec

(∫
Σ

[v]2Σ
) 1

2
(∫

Σ
(g − gΣ)2

) 1
2 .

Let us now decompose the integral over Σ in integrals over the faces (in fact, for the coarse faces only),
then use the concavity of the square root function, to obtain:∑

Σ∈Ec

∣∣∫
Σ
aΣ [v]Σ g

∣∣ ≤ ∑
Σ∈Ec

(∑
σ⊂Σ

(∫
σ
[v]2σ

) 1
2

) (∫
Σ

(g − gΣ)2
) 1

2 .

The discrete Cauchy-Schwarz inequality now yields:∑
Σ∈Ec

∣∣∫
Σ
aΣ [v]Σ g

∣∣ ≤ (∑
σ∈E

1

hσ

∫
σ
[v]2σ dγ

) 1
2

(∑
Σ∈Ec

hΣ

∫
Σ

(g − gΣ)2

) 1
2

︸ ︷︷ ︸
T1

,

where hΣ stands for the sum of the diameters of the faces included in Σ (which is equal to the diameter
of Σ in two dimensions, and lower than four times this diameter in three dimensions). By Lemma 4.8,
the first term of the latter product is bounded by C(θ0) ‖v‖h,b. For the second one, for Σ ∈ Ec, let KΣ

be a cell of the mesh having Σ as a whole side (two choices are possible for a standard face, and only
one for a coarse one). Applying the trace lemma 4.9, we get:

T 2
1 ≤ C(d)

∑
Σ∈Ec

hΣ

rKΣ

(
‖g − gΣ‖2L2(KΣ) + h2

KΣ
‖∇g‖2L2(KΣ)d

)
.

Choosing for gΣ the mean value of g on KΣ and using (4.16), we thus get:

T 2
1 ≤ C(d)

∑
Σ∈Ec

(1 +
1

π2
)
hΣ

rKΣ

h2
KΣ
‖∇g‖2L2(KΣ)d ≤ C(d, θ0) h2

∑
Σ∈Ec

‖∇g‖2L2(KΣ)d .

The result follows by observing that the H1 semi-norm of g on a given cell K of the mesh appears at
most 2d (the maximum number of sides of a cell K) times in the summation.

Finally, we now give two technical corollaries of Lemmas 4.9 and 4.10; they both compare different
mean values of functions of H1(Ω).

Lemma 4.12. Let M be a locally refined mesh of the computational domain Ω; let K ∈ M and let
D be a subset of K. For all v ∈ H1(K), we denote mK(v) and mD(v) the mean values of v on K and
D respectively. Then:

|mK(v)−mD(v)| ≤ 1

π |D|
1
2

hK ‖∇v‖L2(K)d , ∀v ∈ H1(K).
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Proof. By the Cauchy-Schwarz inequality, we have:

|mK(v)−mD(v)| = 1

|D|

∣∣∣∫
D

(
v −mK(v)

)∣∣∣ ≤ 1

|D|
1
2

‖v −mK(v)‖L2(D).

Thus, since D is a subset of K, we have:

|mK(v)−mD(v)| ≤ 1

|D|
1
2

‖v −mK(v)‖L2(K),

and we conclude by Lemma 4.10, since K is convex.

Lemma 4.13. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such
that θh ≤ θ0, with θh defined by (4.4). Let K ∈ M be a control volume and let σ be a face of K. For
all v ∈ H1(K), we denote mσ(v) and mK(v) the mean values of v on σ and K respectively. Then,
there exists C, only depending on d and θ0 such that:

|mσ(v)−mK(v)| ≤ C

r
d/2
K

hK‖∇v‖L2(K)d , ∀v ∈ H1(K). (4.17)

Proof. We have |mσ(v)−mK(v)| ≤ |σ|−1
∫
σ |v −mK(v)| ≤ |σ|−1/2‖v −mK(v)‖L2(σ) by the Cauchy-

Schwarz inequality. Invoking successively Lemma 4.9 and Lemma 4.10 and using the regularity of the
mesh yields the result.

4.4.2. The interpolation operator

We define by rh the following interpolation operator:

rh : H1
0(Ω) −→ Vh

v 7→ rhv(x) =
∑
σ∈E
|σ|−1

(∫
σ
v dγ

)
ζσ(x). (4.18)

The stability and approximation properties of rh are given in the following lemma.

Lemma 4.14. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such
that θh ≤ θ0, with θh defined by (4.4). There exists C1 and C2 only depending on θ0 such that

(1) Stability:
∀v ∈ H1

0(Ω), ‖rhv‖L2(Ω) + ‖rhv‖h,b ≤ C1 ‖∇v‖L2(Ω)d .

(2) Approximation properties:

∀v ∈ H1
0(Ω) ∩H2(Ω), ∀K ∈M,

‖v − rhv‖L2(K) + hK ‖∇(v − rhv)‖L2(K)d ≤ C2 hK(hK + αK) ‖v‖H2(K).

Proof. The stability property follows from usual estimates on the shape functions and from the trace
lemma 4.9. We prove the approximation property. If there is no hanging node on the faces of K, rh
is the usual Rannacher-Turek interpolation operator, and the result is known. In the other case, for
d = 2, let us suppose that an initial face Σ of K has been split: Σ = σ1 ∪ σ2. Let v ∈ H1

0(Ω). Then we
get for the part of the expansion of rhv associated with σ1 and σ2, let us say rhv

σ1∪σ2 :

rhv
σ1∪σ2 |K =

1

|σ1|

(∫
σ1

v dγ
) |σ1|
|Σ|

ζΣ(x) +
1

|σ2|

(∫
σ2

v dγ
) |σ2|
|Σ|

ζΣ(x)

=
1

|Σ|

(∫
Σ
v dγ

)
ζΣ(x).
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Once again, we recognize the usual Rannacher-Turek interpolation operator. The same arguments
readily extend to the 3D case.

Remark 4.15 (inf-sup condition on locally refined meshes). The same computation shows that, as
for the usual Rannacher-Turek approximation on regular meshes, the operator rh, or, more precisely,
its natural extension to vector-valued functions, is a Fortin operator (i.e. continuous from H1

0(Ω)d to
V d
h endowed with the H1-broken norm and such that

∫
Ω q div(u− rhu) = 0 for any discrete pressure

function q); this implies that the inf-sup condition is satisfied by the pair of velocity and pressure
approximation spaces also on locally refined meshes.

4.4.3. Estimates on the discrete convective term

The form bh is a discretization of the convection term on the cells of the dual mesh. The analysis of
the scheme actually requires an equivalent (or nearly equivalent) re-formulation of the form bh on the
cells of the primal meshM, that makes use of the primal fluxes FK,σ(w). Indeed, contrary to the dual
fluxes Fσ,ε(w), the expression of FK,σ(w) with respect to the convection field w is quite simple (see
(4.7)). This motivates the introduction of the following auxiliary form:

b̃h(w, u, v) =
∑
K∈M

vK
∑

σ∈E(K)

FK,σ(w) uσ, u, v ∈ Vh,

where vK =
∑

σ∈E(K) ξ
σ
K vσ is a convex combination of (vσ)σ∈E(K), where the coefficient ξσK is equal to

1/(2d), when σ has not been split, or 1/(2dd) otherwise. The following lemma provides a bound of the

error made when replacing bh by b̃h. It may be seen as a simplified version of a slightly more general
result, dealing with density-dependent fluxes FK,σ, which may be found in [16]; we however give its
proof, for the sake of completeness.

Lemma 4.16. Let θ0 > 0 and let M be a locally refined mesh of the computational domain Ω such
that θh ≤ θ0, with θh defined by (4.4). There exists C, only depending on θ0 such that:

|̃bh(w, u, v)− bh(w, u, v)| ≤ C h ‖w‖L∞(Ω)d ‖u‖h,b ‖v‖h,b, ∀u, v ∈ Vh. (4.19)

Proof. Denote R = bh(w, u, v) − b̃h(w, u, v). In the expression (4.10) of bh(w, u, v), for σ = K|L,
let us split the sum over the fluxes through the faces of Dσ in the sum over the dual faces, on
one side, included in K and, on the other side, included in L. We get by conservativity (i.e. using
FK,σ(w) = −FL,σ(w)):

bh(w, u, v) =
∑
K∈M

∑
σ∈E(K)

vσ TK,σ, with TK,σ = FK,σ(w) uσ +
∑

ε∈Ẽ(Dσ), ε⊂K,
ε=Dσ |D′

σ

Fσ,ε(w)
uσ + uσ′

2
.

Let us write bh(w, u, v) = T1 + T2 with:

T1 =
∑
K∈M

vK
∑

σ∈E(K)

TK,σ, T2 =
∑
K∈M

∑
σ∈E(K)

(vσ − vK)TK,σ.

By the conservativity assumption of the dual fluxes (H2) (see Definition 3.1), we remark that T1 =

b̃h(w, u, v) so that R = T2. Using now (H1), we write R = R1 +R2 with:

R1 =
∑
K∈M

∑
σ∈E(K)

(vσ − vK)
( ∑
ε∈Ẽ(Dσ), ε⊂K,
ε=Dσ |D′

σ

Fσ,ε(w)
uσ′ − uσ

2

)
,
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R2 =
∑
K∈M

∑
σ∈E(K)

(vσ − vK) uσ ξ
σ
K

( ∑
σ′∈E(K)

FK,σ′(w)
)
.

Sincew is assumed to be divergence-free, the last sum inR2 (and soR2 itself) vanishes. The assumption

(H3) yields |Fσ,ε(w)| ≤ C‖w‖L∞(Ω)d h
d−1
K . As a consequence, since vK is a convex combination of the

(vσ)σ∈E(K), we have for any K ∈M:∣∣∣ ∑
σ∈E(K)

(vσ − vK)
( ∑
ε∈Ẽ(Dσ), ε⊂K,
ε=Dσ |D′

σ

Fσ,ε(w)
uσ′ − uσ

2

)∣∣∣ ≤
C‖w‖L∞(Ω)dh

∑
σ, σ′, σ′′, σ′′′∈E(K)

hd−2
K |vσ − vσ′ | |uσ′′ − uσ′′′ |,

and, for σ, σ′ ∈ E(K), the quantity |uσ − uσ′ | (or |vσ − vσ′ |) appears in the sum a finite number
of times which depends of the dimension d. Hence, by the Cauchy-Schwarz inequality and invoking
Lemma 4.6:

|R1| ≤ C h ‖w‖L∞(Ω)d ‖u‖h,fv ‖v‖h,fv ≤ C
′ h ‖w‖L∞(Ω)d ‖u‖h,b ‖v‖h,b.

Remark 4.17. The fact that the term R2 vanishes is specific to a divergence-free advection field,
and this may lead to think that the lemma result does not hold when w is an approximation of the
momentum field and the density varies in space and time. In fact, the above proof extends to cope
with this case by remarking that, by definition of vK ,

∑
σ∈E(K) ξ

σ
K (vσ − vK) = 0, so uσ may be

replaced by uσ − uK in the expression of R2. The desired bound then follows by arguments similar to
the majoration of R1.

4.4.4. Proof of Theorem 4.3

Let u be the solution of the continuous problem (4.2) which we assume to belong to H1
0(Ω) ∩ H2(Ω)

and let uh be the solution of the scheme (4.8). By the triangle inequality, we have ‖uh − u‖h,b ≤
‖uh − rhu‖h,b + ‖rhu− u‖h,b where rh is the interpolation operator defined in (4.18). The approxima-
tion property stated in Lemma 4.14 yields:

‖rhu− u‖h,b =
( ∑
K∈M

‖∇(u− rhu)‖2L2(K)d

) 1
2 ≤ C2(h+ αh) ‖u‖H2(Ω). (4.20)

To complete the proof, we now have to estimate the quantity ‖uh − rhu‖h,b. To this purpose, we

introduce ‖v‖2h = Ah(v, v) = (v, v)h + ‖v‖2h,b, which defines a norm on Vh that controls the broken

Sobolev H1-norm ‖v‖h,b. Hence, we have:

‖uh − rhu‖h,b ≤ ‖uh − rhu‖h ≤ sup
v∈Vh

Ah(uh − rhu, v)

‖v‖h
.

Since uh is the solution of the scheme (4.8), we have Ah(uh, v) = (f, v) for all v ∈ Vh. In addition, u
belongs to H1

0(Ω)∩H2(Ω), which implies that the strong form of the continuous problem, i.e. Equation
(4.1a), holds in L2(Ω) and thus, since Vh ⊂ L2(Ω):

(u, v) + (div(uw), v)− (∆u, v) = (f, v), ∀v ∈ Vh.

As a consequence, we have Ah(uh − rhu, v) = T1 + T2 + T3 where:

T1 = (u, v)− (rhu, v)h, T2 = (div(uw), v)− bh(w, rhu, v), T3 = (−∆u, v)− ah(rhu, v).
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Reaction term - Let us recall that, for v ∈ Vh, we have defined vc as the piecewise constant function
over each diamond cell and which takes the value vσ over Dσ, for σ ∈ E . The term T1 then reads:

T1 = (u, v)− ((rhu)c, vc) =
1

2
(u+ (rhu)c, v − vc) +

1

2
(u− rhu, v + vc) +

1

2
(rhu− (rhu)c, v + vc).

Then, invoking the stability and approximation properties stated in Lemma 4.14 and using Lemma
4.7 to bound ‖(rhu)c‖L2(Ω), ‖vc‖L2(Ω) and ‖v − vc‖L2(Ω), we obtain

|T1,2| ≤ Ch ‖∇u‖L2(Ω)d ‖v‖h.

Convection term - Let us now turn to T2. We may write T2 = T2,1 +R where:

T2,1 = (div(uw), v)− b̃h(w, rhu, v), R = b̃h(w, rhu, v)− bh(w, rhu, v).

Applying Lemma 4.16 and invoking the stability property of Lemma 4.14, we get

|R| ≤ C h ‖w‖L∞(Ω)d ‖∇u‖L2(Ω)d‖v‖h.

For the term T2,1, we have:

T2,1 = (div(uw), v − vm)−
∑
K∈M

vK
∑

σ∈E(K)

∫
σ
(u− (rhu)σ)w · nK,σ,

where vm stands for the piecewise constant function over each cell K and equal to vK . By the Cauchy-
Schwarz inequality and Lemma 4.7, the first term at the right-hand side of this relation may be
bounded as follow:

|(div(uw), v − vm)| ≤ C h ‖w‖L∞(Ω)d ‖u‖H1(Ω) ‖v‖h.
For the second term, we first remark that:∣∣∣∫

σ

(
u− (rhu)σ

)
w · nK,σ

∣∣∣ ≤ ‖w‖L∞(Ω)d |σ|
1/2 ‖u−mσ(u)‖L2(σ)

≤ ‖w‖L∞(Ω)d
(
|σ|1/2 ‖u−mK(u)‖L2(σ) + |σ| |mK(u)−mσ(u)|

)
≤ C ‖w‖L∞(Ω)d h

d/2
K ‖∇u‖L2(K)d ,

by the regularity of the mesh and Lemmas 4.9, 4.10 and 4.13. Hence, reordering the summations, we
thus get (invoking the boundary conditions to exclude the external faces from the summation):∣∣∣ ∑

K∈M
vK

∑
σ∈E(K)

∫
σ
(u− (rhu)σ) w · nK,σ

∣∣∣
≤ C ‖w‖L∞(Ω)d h

∑
σ∈Eint
σ=K|L

h
d/2−1
K ‖∇u‖L2(K)d |vK − vL|

≤ C ‖w‖L∞(Ω)d h
( ∑
σ∈Eint

‖∇u‖2L2(K)d

)1/2 ( ∑
σ∈Eint
σ=K|L

hd−2
K |vK − vL|2

) 1
2

≤ C 2d d ‖w‖L∞(Ω)d ‖∇u‖L2(Ω)d h
( ∑
σ∈Eint
σ=K|L

hd−2
K |vK − vL|2

) 1
2
,

with 2d d the maximum number of the faces of the cells, so the maximum nuber of times a cell K
may appear in the sum. Since vK is a convex combination of (vσ)σ∈E(K), we have, possibly splitting

19
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a difference vσ − vσ′ as vσ − vσ′ = (vσ − vK|L) − (vσ′ − vK|L) if σ and σ′ are not faces of the same
element:

|vK − vL| ≤ 2
∑

σ,σ′∈E(K)

|vσ − vσ′ |+ 2
∑

σ,σ′∈E(L)

|vσ − vσ′ |.

Therefore, since the number of faces of an element is bounded, there exists a fixed real number C such
that: ( ∑

σ∈Eint
σ=K|L

hd−2
K |vK − vL|2

)1/2
≤ C

( ∑
K∈M

hd−2
K

∑
σ,σ′∈E(K)

|vσ − vσ′ |2
)1/2

,

and, invoking Lemma 4.6, this sum is bounded by ‖v‖h,b, and thus by ‖v‖h. We finally get:

|T2,1| ≤ C h ‖w‖L∞(Ω)d ‖u‖H1(Ω) ‖v‖h,

where C only depends on θ0. Combining this relation with the bound obtained for R yields that T2

satisfies the same inequality.

Diffusion term - We finally turn to T3. Integrating by parts, we get:

T3 =
∑
K∈M

∫
K

(∇u−∇rhu) ·∇v −
∑
K∈M

∑
σ∈E(K)

∫
σ
v∇u · nK,σ.

Thanks to Lemma 4.14, we obtain for the first term, using first the Cauchy-Schwarz inequality in
L2(K) and then the discrete Cauchy-Schwarz inequality:∣∣∣ ∑

K∈M

∫
K

(∇u−∇rhu) ·∇v
∣∣∣ ≤ C (h+ αh) ‖u‖H2(Ω) ‖v‖h,b ≤ C (h+ αh) ‖u‖H2(Ω) ‖v‖h.

Reordering the sums in the second term yields:∑
K∈M

∑
σ∈E(K)

∫
σ
v∇u · nK,σ =

∑
σ∈E

∫
σ
[v]σ∇u · nσ,

where [v]σ and nσ stand for the jump of v through σ and a normal vector to σ, with the same
orientation. Since, on a coarse face (i.e. the subset of a hyperplane which consists in the union of the
faces sharing the same hanging node), the normal is the same, we can group the terms in the above
sum to obtain, with the notations of Lemma 4.11:∑

K∈M

∑
σ∈E(K)

∫
σ
v∇u · nK,σ =

∑
Σ∈Ec

∫
Σ

[v]Σ ∇u · nΣ.

We thus may apply Lemma 4.11 for i = 1, .., d with aΣ = niΣ and g = ∂iu, and we get:∣∣∣ ∑
K∈M

∑
σ∈E(K)

∫
σ
v∇u · nK,σ

∣∣∣ ≤ C h ‖u‖H2(Ω) ‖v‖h,

which provides the bound for T3 which we are seeking.

Conclusion - Collecting the bounds for T1, T2 and T3, we obtain that ‖uh − rhu‖h,b ≤ C (h +

αh) ‖u‖H2(Ω) where C only depends on w, Ω and θ0. Combining this with equation (4.20) concludes

the proof of Theorem 4.3.
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5. Numerical tests

The convection and diffusion operators have been implemented in the CALIF3S free component li-
brary for fluid flows computation developed at IRSN [5], in the prediction step of pressure correction
algorithms used for quasi-incompressible, barotropic or non-barotropic compressible flows. Here, we
address the asymptotic model for low Mach number flows [19], which consists in a system of a vec-
tor and two scalar balance partial differential equations, corresponding to the momentum, mass and
energy balance, respectively:

∂t(ρui) + div(ρuiu)− div(τ
(
u)
)
i
+ ∂ip = 0, 1 ≤ i ≤ d, (5.1)

∂tρ+ div(ρu) = 0, (5.2)

∂t(ρcpϑ) + div(ρcpϑu)− div(λ∇ϑ) =
d

dt
Pth, (5.3)

where ϑ stands for the temperature, and cp and λ are known positive real numbers (the heat capacity
and the temperature diffusion coefficient, respectively). We recall that the shear stress tensor τ reads:

τ (u) = µ(∇u+ ∇tu)− 2µ

3
divu I, µ > 0.

The pressure Pth is referred to as ”the thermodynamical pressure”, and is supposed to depend only
on time, or, in other words, to be constant in space, which has for effect to filter out the acoustic
contributions from the flow field. It is involved in the equation of state which complements the system
of balance equations:

Pth = ρRϑ, (5.4)

where R stands for a constant specific to the gas under consideration. Initial conditions must be
provided for u, ϑ and Pth, and the equation of state yields the density at the initial state. For a closed
volume (i.e. when homogeneous Dirichlet boundary conditions are prescribed on the whole boundary),
the thermodynamical pressure at time t may be obtained from the temperature field by the overall
mass balance: ∫

Ω
ρ(x, t) dx = Pth(t)

∫
Ω

1

Rϑ(x, t)
dx = Pth,0

∫
Ω

1

Rϑ0(x)
dx,

with Pth,0 and ϑ0 the initial thermodynamical pressure and temperature field. Getting rid of (5.4) and
setting ρ = 1, the first two equations of System (5.1) boil down to the usual incompressible Navier-
Stokes equations. We address two tests here: the first one consists in an incompressible problem which
admits a known solution and the second one is a classical benchmark for low Mach natural convection
flows. Before presenting the numerical results, we first specify the time-marching algorithm used to
solve System (5.1), together with the space discretization of some differential terms which has not
been encountered until now.

5.1. The scheme

5.1.1. General form of the scheme

Let us consider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for 0 ≤ n ≤ N − 1 be the constant time step. The temperature is approximated by a
finite volume technique based on the primal mesh, so the unknowns of the scheme are (ρnK)K∈M ⊂ R,

(ϑnK)K∈M ⊂ R, Pnth ∈ R and (uσ)σ∈E ⊂ Rd, for 0 ≤ n ≤ N . The initial discrete pressure and velocity
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are defined as follows:

ρ−1
K =

1

|K|

∫
K
ρ0(x) dx, ϑ0

K =
1

|K|

∫
K
ϑ0(x) dx, p0

K = 0, K ∈M,

u0
σ =

1

|σ|

∫
σ
u0(x) dγ(x), σ ∈ Eint.

(5.5)

The Dirichlet boundary conditions for the velocity are taken into account by setting unσ to the mean
value of u∂Ω over σ, for all σ ∈ Eext and all n in {0, 1, .., N}. The value of the initial density (ρ0

K)K∈M
is obtained from (ρ−1

K )K∈M by solving the discrete mass balance with the initial velocity, to allow
to build a monotone (for the temperature) or kinetic energy preserving (for the velocity) convection
operator (see Equation (5.6e) in the algorithm below). Finally, T 0

th is obtained by the equation of state
linking ρ0 and ϑ0 (see Equation (5.6b)).

The time-marching technique implemented in CALIF3S is a fractional step algorithm, which consists
in the following three steps: (i) solution of the energy balance, (ii) computation of the thermodynam-
ical pressure and update of the density by the equation of state and (iii) solution of the momentum
and balance equations by a pressure correction scheme [25, 6, 12], which is itself a two-steps algo-
rithm. Let us assume that (ϑn)K∈M, Pn−1

th , Pnth, (ρn−1
K )K∈M, (ρnK)K∈M, (pnK)K∈M and (unσ)σ∈Eint are

known families of real numbers. Then a time step computation consists in finding (ϑn+1)K∈M, Pn+1
th ,

(pn+1
K )K∈M and (un+1

σ )σ∈Eint through the following algorithm:

Energy balance – Find (ϑn+1
K )K∈M such that:

1

δt
(ρnKϑ

n+1
K − ρn−1

K ϑnK) +
1

|K|
∑

σ∈E(K)

Fn+1
K,σ ϑnσ −

(
div(λ∇ϑn+1

)n+1

K
= 0, K ∈M, (5.6a)

Pth and density update – Compute Pn+1
th and (ρn+1

K )K∈M by:

Pn+1
th

∑
K∈M

|K|
R ϑn+1

K

=
∑
K∈M

|K| ρ−1
K and ρn+1

K =
Pn+1
th

R ϑn+1
K

, K ∈M, (5.6b)

Prediction step – Find (u
n+ 1

2
σ )σ∈Eint such that:

1

δt
(ρnσu

n+ 1
2

σ − ρn−1
σ unσ) +

1

|Dσ|
∑

ε∈Ẽ(Dσ)

Fnσ,εu
n+ 1

2
ε (5.6c)

− (divτ (u))
n+ 1

2
σ +

(
ρnσ
ρn−1
σ

) 1
2

(∇p)nσ = 0, σ ∈ Eint.

Correction step – Find (un+1
σ )σ∈Eint and (pn+1

K )K∈M such that:

1

δt
ρnσ (un+1

σ − un+ 1
2

σ ) + (∇p)n+1
σ −

(
ρnσ
ρn−1
σ

) 1
2

(∇p)nσ = 0, σ ∈ Eint, (5.6d)

1

δt
(ρn+1
K − ρnK) +

1

|K|
∑

σ∈E(K)

Fn+1
K,σ = 0, K ∈M. (5.6e)

In equations (5.6a) and (5.6c), the time level of the density in the time derivative term is shifted
with respect to usual formulations; this is due to the fact that the mass balance of the current time step
is not solved at this stage and we want to recover the structure which yields a monotone convection
operator [15], in (5.6a), or a kinetic preserving operator, as built in the present paper, in (5.6c). For the
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face value of the temperature in the convection term, we use an explicit MUSCL-like discretization
[21] using an algebraic limitation procedure which ensures the operator monotonicity without any
slope reconstruction (so is able to cope with any mesh geometry, which is convenient here). The
discretization of the diffusion term is implicit, and performed with a variant of the so-called SUSHI
scheme using only the cell-centered variables [21]; if the velocity is prescribed to zero on the whole
boundary (or, more precisely speaking, in the absence of energy convection flux entering the domain,
as in the test presented in Section 5.3 below), Dirichlet boundary conditions for the temperature are
seen, at the discrete level, by the expression of this operator. Note that this scheme is linear and,
as all such schemes, preserves the bounds of the unknowns only under restrictive assumptions for
the mesh, which are not satisfied by locally refined meshes used here; however, no spurious under-
or over-shoots are observed in the computations performed here. The convection term used for the
velocity components is defined in Section 3.2. Similarly, the diffusion term is obtained by the standard
finite element Galerkin procedure with the shape functions introduced in Section 3.1. Equation (5.6e)
is a discretization of the mass balance over the primal mesh, and Fn+1

K,σ stands for the mass flux across

σ outward K. On the primal mesh faces, Fn+1
K,σ is given by:

Fn+1
K,σ = |σ| ρ̂n+1

σ un+1
σ · nK,σ, σ ∈ E ,

where ρ̂n+1
σ stands for an approximation of the density at the face σ. Note that, since the density

is not an unknown except for the computation of ρ0 in the initialisation step, we do not need that
the discrete mass balance equation ensures its positivity, and any reasonable approximation may be
used. Here, we choose a centered approximation at the internal faces of the domain (more precisely
speaking, for n ≥ 0, we compute ρ̂n+1

σ as the mean value of its approximation at the two neighbour
cells of σ); for the computation of ρ0, we use an upwind scheme. The pressure gradient is built as the
dual operator of the discrete divergence, itself expressed from the already defined approximation of
div(ρu) by considering that the density is everywhere equal to 1. For k = n, n+ 1,

(∇p)kσ =
|σ|
|Dσ|

(pkL − pkK)nK,σ, ∀σ ∈ Eint, σ = K|L.

Finally, the ”re-normalization” coefficient which multiplies the pressure gradient ensures that the
scheme satisfies a discrete kinetic energy balance (see [10, Appendix A]); it may be seen as a substitute
to the additional elliptic problem for the pressure introduced in [11] (and, indeed, the renormalization
used here coincides with the results of this technique for one-dimensional problems).

Besides the work in [11], we refer to [17, 18] for another schemes for the solution of System (5.1)
together with a benchmark on a problem similar to the one addressed in Section 5.3.

5.2. A stationary incompressible flow

We first assess the behavior of the proposed numerical scheme on an exact analytical solution to
the stationary incompressible Navier-Stokes equations. The scheme for this problem is derived from
System (5.6) by replacing the equation of state by ρ = 1 and solving only (5.6c)-(5.6e). The computed
flow is known as the Kovasznay flow [14]; the velocity and pressure fields are given by:

u =

1− eλx cos(2πy)

λ

2π
eλx sin(2πy)

 , p =
1

2
(1− e2λx), λ =

1

2µ
−
( 1

4µ2
+ 4π2

)1/2
,

where µ stands for the viscosity of the flow, taken here as µ = 1/40. The computational domain is
Ω = (−0.5, 1)×(−0.5, 1.5). The mesh is built from a regular n×n grid, where we refine the sub-domain
Ωf = (−0.5, 0.5) × (−0.5, 0.5) ∪ (0.5, 1) × (0.5, 1.5) by splitting each (square) cell included in Ωf in
four sub-squares. The solution is computed by the projection scheme, by letting a computed fictitious
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Figure 5. The unstructured mesh built by perturbation of the 20× 20 uniform grid.
The background is coloured as a function of the first component of the velocity.

transient tend to the desired steady state. Boundary conditions are given by the analytical solution.
The obtained numerical errors for various values of n are gathered in the following table, where uexact

and pexact stand for the exact velocity and pressure, respectively.

n ‖u− uexact‖L2(Ω)d ‖p− pexact‖L2(Ω)

20 0.0384 0.0334
40 0.00825 0.0158
80 0.00211 0.00782
160 0.000544 0.00390

The observed order of convergence (in L2-norm) is approximately 2 for the velocity and 1 for the
pressure.

We now confirm this behaviour on unstructured grids, which are obtained as follows. First, we
perturb the 20 × 20 uniform grid, by moving each internal vertex of the mesh to a random position
on a circle centered on its initial location and the radius of which is equal to 0.3 times the smallest
distance between the considered vertex and its neighbours (so, for the specific unperturbed mesh used
here, 1.5/20). Secondly, we build 3 refined meshes, by splitting each cell in 2, 4 and 8 respectively;
by this process, the deviation from a parallelogram of each cell is divided by the same ratio, which
ensures optimal convergence properties for the parametric version of the Rannacher-Turek element
(see Remark 4.4). Finally, we apply local refinement to the same zones as previously. The coarsest of
the obtained four meshes is plotted on Figure 5.

The obtained numerical errors are given in the following table. The orders of convergence are the
same as in the uniform case.
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Figure 6. Contour lines of the field u1: 80 × 80 uniform grid (left) and perturbed
mesh (right) built by perturbation of the 80×80 grid. The dashed lines materialize the
boundary of the refined area (bottom-left and top-right sub-domains).

n ‖u− uexact‖L2(Ω)d ‖p− pexact‖L2(Ω)

20 0.0617 0.0406
40 0.0119 0.0179
80 0.00281 0.0087
160 0.000718 0.0043

The contour lines of the first component of the velocity are drawn on Figure 6, for both meshes
obtained from the 80 × 80 uniform grid. We may check that no spurious perturbation appears along
the lines separating the refined and non-refined parts of the computational domain (in other words,
the lines composed by the union of the faces including a hanging node). A careful examination is
needed to observe that, as expected, contour lines are slightly more irregular in the unstructured case.

5.3. Low-Mach buoyant flows

We now address a natural convection flow governed by the low Mach number asymptotic model
(5.1), which falls into the class of differentially heated cavity problems. The computational domain is
Ω = (0, L)2, the velocity and temperature are prescribed on the whole boundary; the velocity is set to
zero and the temperature is given by:

ϑ(x) =
L− x1

L
ϑh +

x1

L
ϑc, ϑh = (1 + ε)ϑ0, ϑc = (1− ε)ϑ0,

with ϑ0 = 600 and ε = 0.6. The left and right vertical boundaries are thus set at a constant (hot and
cold, i.e. ϑh and ϑc, respectively) temperature, while this latter varies linearly along the horizontal
boundaries, from ϑh at x1 = 0 to ϑc at x1 = L. Variations of temperature are too large for the
Boussinesq approximation of System (5.1) to be valid [17].
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Figure 7. Typical (coarse) mesh. The background is coloured as a function of the
norm of the velocity (‖u‖ ∈ (0, 0.25)). The localization of the refined zones does
not exactly match the text specifications because the initial mesh is too coarse; the
obtained mesh is third times refined near the boundary and the software ensures that
coarse faces only includes two fine ones (i.e. there in no interface between `1 and `2
times refined zones with |`1 − `2| > 1).

The initial thermodynamical pressure and temperature are set to Pth(0) = 101325 and ϑ(x, 0) =
ϑ0, ∀x ∈ Ω, and the fluid is supposed to be initially at rest.

A dimensional analysis shows that the flow is governed by two non-dimensional numbers, namely
the Prandtl and the Rayleigh numbers, defined respectively by:

Pr =
µ cp
λ
, Ra =

ρ2
0 cp g (ϑh − ϑc)L3

µλϑ0
.

For the practical application performed here, we choose g = 9.81 and physical properties close to
those of the air: µ = 1.68 10−5, cp = γR/(γ − 1), with R = 287. The Prandtl number is Pr = 0.71,
which allows to compute the thermal diffusion λ, and the size of the domain L will be determined as
a function of the chosen Rayleigh number.

A stability analysis of this natural convection flow is given in [26]. It shows that the flow reaches a
steady state up to a critical value of the Rayleigh number approximately equal to Ra =2.1 106. Beyond
this value, the flow remains time-dependent, with traveling waves along the boundaries, issued from
exiting corners of the vertical boundary layers. Our aim here is to assess the capability of the proposed
scheme to confirm this behaviour in the non-Boussinesq approach; an accurate determination of the
critical Rayleigh number is however beyond the scope of this section.

The mesh used for this study is built as follows: we start from a 80 × 80 uniform grid, perform a
first refinement step splitting each cell located in Ω \ (0.15L, 0.85L)2, a second one by subdividing
once-again the cells in Ω \ (0.1L, 0.9L)2, and, finally, a third one by splitting the resulting cells in
Ω \ (0.05L, 0.95L)2; at each refinement step, the cells are cut in 4, so in fine the characteristic sizes
of the cells near the boundary are δx1 = δx2 = L/640. A mesh obtained by the same process from the
10×10 uniform grid is shown on Figure 7. The background color in this figure is the temperature; one
can see that steep variations of the solution are concentrated in the boundary layers, which justifies
the chosen refinement.
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Figure 8. Temperature (ϑ ∈ (240, 960)) and density (ρ ∈ (0.33, 1.32)) at the steady
state, for Ra = 2 106.
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Figure 9. Temperature as a function of time at the location x = (0.1L, 0.92L)t, for
different Rayleigh values.

At Ra = 2 106, the flow after 20 time units is stationary (at least approximately, see Figure 9
below). The obtained temperature and density fields are plotted on Figure 8. On can observe that the
non-linearity of the equation of state makes that the flow looses its symmetry, and generates steep
density gradients at the right boundary.

We then plot the evolution with time of the temperature at the location x = (0.1L, 0.92L)t, for
Ra = 2 106 and Ra = 2.2 106. We observe that, for Ra = 2 106, the flow tends to a steady state, while
an oscillatory (quasi-periodic) behaviour subsists at Ra = 2.2 106, which is consistent with the value
for the critical Rayleigh known under the Boussinesq approximation [26].
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Appendix A. Construction of the dual fluxes

A.1. Dual fluxes for non-refined meshes

The system of equations (3.7) has an infinity of solutions, which explains the necessity of the additional

constraint (H3). Since (3.7) is linear with respect to the Fσ,ε, σ ∈ E(K), ε ∈ Ẽ(Dσ), ε ⊂ K, a solution
of (3.7) may thus be expressed as:

Fσ,ε =
∑

σ′∈E(K)

(αK)σ
′
σ FK,σ′ , σ ∈ E(K), ε ∈ Ẽ(Dσ) and ε ⊂ K,

and (H3) is equivalent to requiring bounded coefficients ((αK)σ
′
σ )σ,σ′∈E(K). In addition, since ξσK =

1/(2d) for all K ∈ M and σ ∈ E(K) (we recall that the mesh is not refined here), system (3.7)
is completely independent from the cell K under consideration. We may thus consider a particular
geometry for K, let us say K = (0, 1)d, and find an expression for the coefficients ((αK)σ

′
σ )σ,σ′∈E(K)

which we will apply to all the cells, thus automatically satisfying the constraint (H3). A technique
for this computation is described in [1, Section 3.2]. The idea is to build a momentum field w with a
constant divergence and such that∫

σ
w · nK,σ = FK,σ, ∀σ ∈ E(K).

Then, an easy computation shows that the following fluxes satisfy (3.7):

Fσ,ε =

∫
ε
w · nσ,ε. (A.1)

Two-dimensional case - For d = 2, using the notations introduced in Figure 10, such a momentum
field w is given by:

w(x, y) =

[
(1− x) (−FW) + xFE

(1− y) (−FS) + y FN

]
.

Using (A.1), we obtain:
Fσ,ε = αWFW + αEFE + αSFS + αNFN,

with the coefficients αW, αE, αS and αN given in table 1. The notation FW|S for the dual flux means
that one calculates the flux from the western (W) to the southern (S) region with this orientation.

Fσ,ε αW αE αS αN

FW|S − 3/8 1/8 3/8 −1/8

FS|E − 1/8 3/8 −3/8 1/8

FE|N 1/8 −3/8 −1/8 3/8

FN|W 3/8 −1/8 1/8 −3/8

Table 1. Expression of the dual fluxes in 2D.

Three-dimensional case - For d = 3, using the notations introduced in Figure 11, we may choose,
for the constant divergence momentum field w, the following expression:

w(x, y, z) =

(1− x) (−FW) + xFE

(1− y) (−FS) + y FN

(1− z) (−FB) + z FF

 .
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x = 0 x = 1

y = 0

y = 1

F
S

F
N

FW FE

F
W
|S

F S|E

F
E|N

F N
|W

Figure 10. Notations for the primal and dual fluxes in 2D.

The dual fluxes may be expressed as linear combinations of the primal ones:

Fσ,ε = αWFW + αEFE + αSFS + αNFN + αBFB + αFFF

where the coefficients αW, αE, αS, αN, αB, αF are given in table 2.

y

x

z

FF

FB
FEFW

FN

FS

FS|E

Figure 11. Notations for the primal and dual fluxes in 3D.

A.2. Dual fluxes for refined meshes

Here again, we may restrict the computation to square (d = 2) or cubic (d = 3) cells.

Two-dimensional case - In 2D, if a primal cell is surrounded with four refined cells, the half-diamond
cells are obtained by splitting the cell in four sub-squares, each one being split in two triangles. Hence,
eight dual fluxes must be computed; if some of the neighboring cells are not refined, one uses a
coarsening procedure, which just consists in keeping the fluxes associated to the fully refined cases on
existing dual faces and disregarding the other ones (the mass balance still holds by conservativity).
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Fσ,ε αW αE αS αN αB αF

FF|S 0 0 5/24 −1/24 1/24 −5/24

FS|B 0 0 −5/24 1/24 5/24 −1/24

FB|N 0 0 −1/24 5/24 −5/24 1/24

FN|F 0 0 1/24 −5/24 −1/24 5/24

FW|S − 5/24 1/24 5/24 −1/24 0 0

FS|E − 1/24 5/24 −5/24 1/24 0 0

FE|N 1/24 −5/24 −1/24 5/24 0 0

FN|W 5/24 −1/24 1/24 −5/24 0 0

FF|E − 1/24 5/24 0 0 1/24 −5/24

FE|B 1/24 −5/24 0 0 5/24 −1/24

FB|W 5/24 −1/24 0 0 −5/24 1/24

FW|F − 5/24 1/24 0 0 −1/24 5/24

Table 2. Expression of the dual fluxes in 3D.

We use the notations of Figure 12, so that (FK,σ)σ∈E(K) denoted here by Fi (4 ≤ i ≤ 11) and

Fσ,ε, σ ∈ E(K), ε ⊂ K denoted here by F̃i (0 ≤ i ≤ 7). We begin with computing the dual fluxes

across the four sub-squares faces (F̃i (4 ≤ i ≤ 7), red color in Figure 12) so that (3.7) holds. The linear
system to solve has a one dimensional kernel and a particular solution satisfying (H3) is given by:

F̃4 =
3

8
(F5 + F6 − F11 − F4 ) +

1

8
(F7 + F8 − F9 − F10),

F̃5 =
3

8
(F7 + F8 − F5 − F6 ) +

1

8
(F9 + F10 − F11 − F4),

F̃6 =
3

8
(F9 + F10 − F7 − F8 ) +

1

8
(F4 + F11 − F5 − F6),

F̃7 =
3

8
(F4 + F11 − F9 − F10) +

1

8
(F5 + F6 − F7 − F8).

Then, the dual fluxes across the diagonal faces F̄i (0 ≤ i ≤ 3) (green color in Figure 12) are computed
by isolating the sub-squares and applying the procedure described above for the non-refined case. For

instance, F̄1 = FE|N − FW |S , where FE := F7, FN := F8, FW := F̃6, and FS = −F̃5.

Three-dimensional case - The procedure is the same as in the 2D-case. The first step consists in
splitting the cube in eight sub-cubes and computing the dual fluxes across the faces of these sub-cubes.

The formula of one of these intermediate fluxes F̃ (see Figure 13) is given by:

24 F̃ = 7 ( F14 + F21 + F27 ) − 7 ( F15 + F19 + F25 )

+ 2 ( F7 + F20 + F26 ) − 2 ( F6 + F18 + F24 )

+ 2 ( F11 + F16 + F29 ) − 2 ( F13 + F17 + F23 )

+ ( F9 + F10 + F28 ) − ( F8 + F12 + F22 ).

The computation of the other fluxes across the faces separating two sub-cubes is deduced by permu-
tations of the indices.
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Figure 12. Dual fluxes for the neighboring cell of refined cells (2D case).

In the second step, each sub-cube is split in 3 half-diamonds of equal volumes. One obtains 24 half-
diamonds and 48 internal half-diamond faces of two possible types (see Figure 15). The dual fluxes
across these faces are obtained by isolating the sub-cubes and applying the procedure described above
for the non-refined case, consisting in integrating the momentum field w over the faces of interest; the
resulting expressions are gven on Figure 15.
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Figure 13. Intermediate dual fluxes for the neighboring cell of refined cells (3D case).

xK

Figure 14. Two possible types of internal half-diamond faces (3D case).
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F `F

F `B F `EF `W
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F `S F

F =
1

2
F `F

F

F =
1

3
(−F `S + F `E) +

1

6
(F `N − F `W)

Figure 15. Expression of the fluxes for the two possible types of internal half-diamond
faces (3D case).
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Appendix B. Splitting of hexahedra with plane faces

We mention in Remark 4.4 that splitting an hexahedra having only plane faces may make some curved
faces appear. This assertion being rather non intuitive, we give here an example of this phenomena.
Let us begin with a volume having three quadrangular faces and two triangular faces, as sketched on
Figure 16. With te notations of the figure, let:

A =

0
0
0

 , B =

1
0
0

 , C =

2
2
0

 , D =

0
1
0

 , E =

 0
1/2
1/2

 , F =

2
1
1

 .
We get:

EF = 2 AB +AE = DC −DE,
so both the faces ABFE and DCFE are plane, while the face ABCD is included in the plane x3 = 0
and the triangular faces are obviously planes. Let A′, B′, C ′ and D′ be the mid point of the segments
AE, BF , CF and DE respectively. Then

det(A′B′, A′D′, B′C ′) = 1,

so the points A′, B′, C ′ and D′ are not in the same plane. Let us now cut this volume by a plane
spanned by {EF, e(2)}, with e(2) the second vector of the canonical base of R3, and sufficiently close
to EF . This operation yields an hexahedra having only plane faces. By continuity, it is clear that we
may have det(A′B′, A′D′, B′C ′) 6= 0, with A′, B′, C ′ and D′ being the mid point of the new edges
issued from A, B, C and D respectively and not included in the x3 = 0 plane.

A B

C

D

E

F

A′

B′

C ′

D′

Figure 16. Notations for Appendix B.

Bibliography
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[21] L. Piar, F. Babik, R. Herbin, and J.-C. Latché. A formally second order cell centered scheme for
convection-diffusion equations on general grids. International Journal for Numerical Methods in
Fluids, 71:873–890, 2013.

[22] R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element. Numerical Meth-
ods for Partial Differential Equations, 8:97–111, 1992.

[23] F. Schieweck and L. Tobiska. A nonconforming finite element method of upstream type applied to
the stationary Navier-Stokes equation. Mathematical Modelling and Numerical Analysis, 23:627–
647, 1989.

[24] F. Schieweck and L. Tobiska. An optimal order error estimate for an upwind discretization of
the Navier-Stokes equations. Numerical Methods for Partial Differential Equations, 12:407–421,
1996.

[25] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des
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[26] S. Xin and P. Le Quéré. Linear stability analyses of natural convection flows in a differentially
heated square cavity with conducting horizontal walls. Physics of Fluids, 13:2529–2542, 2001.

36


	1. Introduction
	2. Meshes and discretization spaces
	3. The discrete diffusion and convection operators
	3.1. The diffusion operator
	3.2. The discrete momentum convection operator

	4. Error analysis for the advection-diffusion equation
	4.1. Regularity of the mesh and approximation space
	4.2. The staggered scheme for the advection-diffusion equation
	4.3. Stability properties of the scheme
	4.4. Error estimate
	4.4.1. Preliminary lemmas
	4.4.2. The interpolation operator
	4.4.3. Estimates on the discrete convective term
	4.4.4. Proof of Theorem 4.3


	5. Numerical tests
	5.1. The scheme
	5.1.1. General form of the scheme

	5.2. A stationary incompressible flow
	5.3. Low-Mach buoyant flows

	Appendix A. Construction of the dual fluxes
	A.1. Dual fluxes for non-refined meshes
	A.2. Dual fluxes for refined meshes

	Appendix B. Splitting of hexahedra with plane faces
	Bibliography

