
Calculus of Variations and Elliptic Equations
–

10th class

Vector measures and BV space
A vector measure λ on a set X is a function associating with every measurable subset A ⊂ X a vector
λ(A) ∈ Rn, satisfying the usual properties for measures (additivity on disjoint sets and countable unions. . .
in particular we need, whenever A = ∪iAi is a disjoint countable union, to have

∑
i |λ(Ai)| < +∞ and

λ(A) =
∑
i λ(Ai)). For a vector measure λ, given a norm on Rn (we will always use the Euclidean one),

we define the positive scalar measure

|λ|(A) := sup{
∑
i

|λ(Ai)| : A = ∪iAi disjoint countable union }.

We can check that |λ| is a measure and λ� |λ| with a density of unit norm.
If X is acompact, the space of vector measures, denoted byMn(X), is the topological dual of C(X;Rn)
with the duality < f, λ >:=

´
fdλ =

∑
i fidλi. If X is non-compact, then Mn(X) is the dual oc

C0(X;Rn), the space of continuous functions vanishing at infinity. The norm onMn(X) is given by

||λ||M := |λ|(X) = sup{
ˆ
fdλ : |f | ≤ 1}.

Note that L1 vector functions can be idenditifed with vector measures which are absolutely continuous
wrt Lebesgue. Their L1 norm coincides in this case with the norm inMn(X)

Once we know the space of vector measures on a domain Ω ⊂ Rd, we can define the space of functions
with bounded variation, called BV (Ω): we define

BV (Ω) := {u ∈ L1(Ω) : ∇u ∈Md(Ω)},

where the gradient is to be intended in the sense of distributions. The norm on the space BV is given by
||u||BV := ||u||L1 + ||∇u||M.
We can see that the space W 1,1, where gradients are in L1, is a subset of BV , since when a gradient is
an L1 function it is also a measure.
BV (Ω) is a Banach space, which is coninuously injected in all Lp spaces for p ≤ d/(d−1). If Ω is bounded,
the injection is compact for every p < d/(d− 1) and in particular in L1.
Some non-trivial indicator functions may belong to the space BV , differently than what happens for
sobolev spaces. For smooth sets A we can indeed see that we have

∇IA = −n · Hd−1
|∂A ,

where n is the exterior unit normal to A, and Hd−1 denotes the (d − 1)-dimensional Hausdorff measure
(see, for instance, [1] or [2]).
We say that a set A ⊂ Ω is a set of finite perimeter if IA ∈ BV (Ω), and we define its perimeter Per(A) as
||∇IA||M.
Note that the perimeter of A defined in this way depends on the domain Ω. More precisely, this perimeter
corresponds to the part of the boundary of 1 which is not ∂Ω.
Approximation of the perimeter
We consider the following sequence of functionals defined on L1(Ω),

Fε(u) :=
{
ε
´
|∇u|2 + 1

ε

´
W (u) if u ∈ H1

0 (Ω),
+∞ if not,



where W : R → R is a continuous and bounded function satisfying W (0) = W (1) = 0 and W > 0 on
R \ {0, 1}. We denote by c0 the constant given by c0 = 2

´ 1
0
√
W .

Note that the condition u ∈ H1
0 (Ω) is equivalent to requiring that we have u ∈ H1(Rd) when we extend

u to 0 outside Ω. We also define

F (u) :=
{
c0 Per(A) if u = IA ∈ BV (Rd),
+∞ if not.

In this case we stress that the perimeter of A is computed inside the whole space, i.e. also condiering
∂A ∩ ∂Ω.
We will prove the following result, due to Modica and Mortola [3].

Proposition 1. Suppose that Ω is a bounded convex set in Rd. Then Fε
Γ→ F in L1(Ω), as ε→ 0.

Proof. Let us start from the Γ-liminf inequality. Consider uε → u in L1.
Note that we have the lower bound

Fε(uε) ≥ 2
ˆ √

W (uε)|∇uε| = 2
ˆ
|∇Φ(uε)|,

where Φ : R → R is the function defined by Φ(0) = 0 and Φ′ =
√
W . Note that, W being bounded, we

have |Φ(uε)| ≤ C|uε|. This means that Φ(uε) is bounded in BV (Ω) and, up to a subsequence, it converges
strongly in L1 to a function v. Up to another subsequence we also have pointwise convergence a.e., but we
already had uε → u a.e., hence v = Φ(u). We then have |∇Φ(uε)→ |∇Φ(u) in the sense of distributions
and weakly as measures, and the lower semicontinuity of the norm implies

||∇Φ(u)||M ≤ lim inf
ε

ˆ
|∇Φ(uε)| ≤

1
2 lim inf

ε
Fε(uε)

and the fact that we have Φ(u) ∈ BV (Ω).
On the other hand, since we can of course assume Fε(uε) ≤ C, we also have

´
W (uε) ≤ Cε and, by

Fatou,
´
W (u) = 0, i.e. u ∈ {0, 1} a.e. This means that we do have u = IA for a measurable set A ⊂ Ω.

Note that in this case we have Φ(u) = Φ(1)u = Φ(1)IA. Since we have Φ(1) =
´ 1

0
√
W > 0, this implies

IA ∈ BV (Ω), and we finally have

F (u) = 2Φ(1) Per(A) ≤ lim inf
ε

Fε(uε).

We now switch to the Γ-limsup inequality. We first consider the case u = IA with A smooth and
d(A, ∂Ω) > 0. We need to build a recovery sequence uε. Let us define sdA the signed distance function
to A given by

sdA(x)
{
d(x,A) if x /∈ A
−d(x,Ac) ifx ∈ A

Take a function φ : R→ [0, 1] such that there exist L± > 0 with φ = 1 on (−∞, L−], φ = 0 on [L+,+∞),
and φ ∈ C1([−L−, L+]). Define

uε = φ

(sdA
ε

)
.

Note that |sdA| = 1 a.e. and hence we have ε|∇uε|2 = 1
ε |φ
′|2
(

sdA
ε

)
and

Fε(uε) = 1
ε

ˆ (
|φ′|2 +W

)(sdA
ε

)
.
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We now use the co-area formula (see [2]) which provides the following equality, valid at least for smooth
functions f, g : Ω→ R: ˆ

f |∇g| =
ˆ
R
dt

ˆ
{g=t}

fdHd−1.

We apply it to the case g = sdA, for which the norm of the gradient is always 1. We then have

Fε(uε) = 1
ε

ˆ
R

(
|φ′|2 +W (φ)

)( t
ε

)
Hd−1({sdA = t})dt =

ˆ
R

(
|φ′|2 +W (φ)

)
(r)Hd−1({sdA = εr})dr,

where the second equality comes from the change of variable t = εr.
Since A is smooth we have, for every r, the convergence Hd−1({sdA = εr}) → Per(A). We can restrinct
the integral to r ∈ [−L−, L+] which allows to apply dominated convergence and obtain

lim
ε
Fε(uε) = Per(A)

ˆ
R

(
|φ′|2 +W

)
(r)dr.

Moreover, it is clear that uε → IA in L1 because of dominated convergence.

We have now to choose φ. Choose a funcion φ̃ such that φ̃(0) = 1/2 and φ̃′ = −
√
W (φ̃). We necessarily

have limr→−∞ φ̃(r) = 1 and limr→+∞ φ̃(r) = 0. The function φ̃ is C1 and strictly monotone. Fix δ > 0
and let r± be defined via φ̃(r−) = 1− δ and φ̃(r) = δ. We then take φ = φδ a function such that φδ = φ̃
on [r−, r+], φδ ∈ C1([r− − 2δ, r+ + 2δ]), and |φ′δ| ≤ 1 on [r− − 2δ, r−] ∪ [r+, r+ + 2δ]. We have
ˆ
R

(
|φ′δ|2 +W (φδ)

)
(r)dr ≤ (1 + supW )2δ +

ˆ r+

r−

(
|φ̃′|2 +W (φ̃)

)
(r)dr ≤ Cδ +

ˆ
R

(
|φ̃′|2 +W (φ̃)

)
(r)dr.

Note that we have
´
R

(
|φ̃′|2 +W (φ̃)

)
(r)dr = 2

´
R

√
W (φ̃)|φ̃′| = 2|Φ(φ̃(+∞)−Phi(φ̃(−∞)| = 2Φ(1) = c0,

which means
lim
ε
Fε(uε) ≤ (c0 + Cδ) PerA,

for arbitrary δ > 0, and hence

(Γ− lim supFε)(u) ≤ c0 PerA = F (u).

We now need to extend our Γ-limsup inequality to other functions u which are not of the form u = IA
with A smooth and far from the boundary, but only u = IA with A of finite perimeter. We need hence to
show that the class S of indicators of smooth sets far from the boundary is dense in energy.
We start from a set A fo finite perimeter with d(A, ∂Ω) > 0 and set u = IA. Take a smooth and compactly
supported convolution kernel ηn ⇀ δ0 defined by reslacing of a fxed kernel η1, and define vn := ηn ∗ u.
The function vn is smooth and, for large n, compactly supported in Ω. We have

´
|∇vn| ≤ ||∇u||M

since the norm of the gradient is a convex functional invariant by translations, hence it decreases under
convolution. We use again the coarea formula to write

ˆ
|∇vn| =

ˆ 1

0
drHd−1({vn = r}).

If we fix δ > 0 we can then choose a number rn ∈ [δ, 1− δ] such that

Per({vn ≥ rn}) ≤ Hd−1({vn = rn}) ≤
PerA
1− 2δ

and rn is not a critical value for vn (since, by Sard’s lemma, a.e. value is not critical). In particular, the
set An := {vn ≥ rn} is a smooth set, and we then take un = IAn . By construction the perimeter of An
is bounded by PerA

1−2δ and un is bounded in BV. We want to prove that we have un → u in L1. Up to
subsequences, we do have un → w strongly in L1 and a.e. Since un ∈ {0, 1}. also w ∈ {0, 1} a.e. Considera
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point x which is a Lebesgue point for u. In particular, this implies vn(x)→ u(x) as n→∞. Consider the
case w(x) = 1. Then un(x) = 1 for large n, i.e. vn(x) ≥ rn ≥ δ. Then u(x) ≥ δ, which means u(x) = 1.
Analogously, w(x) = 0 implies u(x) = 0. Finally we have w = u and un → u strongly in L1. This is not
yet the desired sequence, since we have F (un) ≤ (1 − 2δ)−1F (u) instead of lim supn F (un) ≤ F (u) but
this can be fixed easily. Indeed, this allows for every δ to find ũ ∈ S with ||ũ− u||L1 arbitrarily small and
F (ũ) ≤ (1− 2δ)−1F (u), which can be turned, using δn → 0, into a sequence which shows that S is dense
in energy.
We have no tget rid of the assumption d(A, ∂Ω) > 0. Using the fact that Ω is convex, and supposing
without loss of generality that the origin 0 belongs to the interior of Ω, we can take u = IA and define
un = ItnA for a sequence tn → 1. The sets tnA are indeed far from the boundary. Moreover, we have
F (un) = c0 Per(tnA) = td−1

n F (u)→ F (u). We are just left to prove un → u strongly in L1. Because of the
BV bound which provides compactness in L1 we just need to prove any kind of weak convergence. Take
a test function ϕ and compute

´
ϕun =

´
tnA

ϕ = (tn)d
´
A ϕ(tny)dy →

´
A ϕ, as soon as ϕ is continuous.

This shows weak convergence in the sense of measures un ⇀ u and, thanks to the BV bound, strong L1

convergence and concludes the proof.
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