Calculus of Variations and Elliptic Equations

10th class

Vector measures and BV space

A vector measure A on a set X is a function associating with every measurable subset A C X a vector
A(A) € R™, satisfying the usual properties for measures (additivity on disjoint sets and countable unions. . .
in particular we need, whenever A = U;A; is a disjoint countable union, to have >, [A\(4;)| < +oo and
AA) =32, AM(A)). For a vector measure A, given a norm on R"™ (we will always use the Euclidean one),
we define the positive scalar measure

IA|(A) == sup{z IA(4;)] : A= U;A; disjoint countable union }.

We can check that |A| is a measure and A < |A| with a density of unit norm.

If X is acompact, the space of vector measures, denoted by M"(X), is the topological dual of C'(X;R"™)
with the duality < f,A >:= [ fd\ = ¥, fid\;. If X is non-compact, then M™(X) is the dual oc
Co(X;R™), the space of continuous functions vanishing at infinity. The norm on M"(X) is given by

At = [AIX) = sup{/fdA Ifl < 1.

Note that L' vector functions can be idenditifed with vector measures which are absolutely continuous
wrt Lebesgue. Their L! norm coincides in this case with the norm in M™(X)

Once we know the space of vector measures on a domain  C R? we can define the space of functions
with bounded variation, called BV (€2): we define

BV(Q) :={ue L'(Q) : Vue MYQ)},
where the gradient is to be intended in the sense of distributions. The norm on the space BV is given by
ullBv := [lullpr + [[Vullm-

We can see that the space W', where gradients are in L', is a subset of BV, since when a gradient is
an L' function it is also a measure.

BV (Q) is a Banach space, which is coninuously injected in all LP spaces for p < d/(d—1). If © is bounded,
the injection is compact for every p < d/(d — 1) and in particular in L.

Some non-trivial indicator functions may belong to the space BV, differently than what happens for
sobolev spaces. For smooth sets A we can indeed see that we have
d—
Vig=—n-Hp,,
where n is the exterior unit normal to A, and H?~! denotes the (d — 1)-dimensional Hausdorff measure
(see, for instance, [1] or [2]).

We say that a set A C € is a set of finite perimeter if [4 € BV (), and we define its perimeter Per(A) as
IV Lallm-

Note that the perimeter of A defined in this way depends on the domain 2. More precisely, this perimeter
corresponds to the part of the boundary of 1 which is not 0f2.

Approximation of the perimeter
We consider the following sequence of functionals defined on L!(Q),

F.(u) == €f‘Vu]2+%fW(u) ifueH&(Q),
: " 400 if not,



where W : R — R is a continuous and bounded function satisfying W(0) = W(1) = 0 and W > 0 on
R\ {0,1}. We denote by ¢y the constant given by ¢y = 2 fol VIV,

Note that the condition u € HJ(Q) is equivalent to requiring that we have u € H'(R?) when we extend
u to 0 outside 2. We also define

Flu) = {co Per(A) %f u=1I, € BV(R?),
+o0 if not.

In this case we stress that the perimeter of A is computed inside the whole space, i.e. also condiering

0A N ON.
We will prove the following result, due to Modica and Mortola [3].

Proposition 1. Suppose that Q is a bounded convex set in RY. Then F. Lrin LY(), as e — 0.

Proof. Let us start from the I'-liminf inequality. Consider u. — w in L!.

Note that we have the lower bound

F(u) > 2 / W (o) Vo] = 2 / V().

where ® : R — R is the function defined by ®(0) = 0 and ® = /W. Note that, W being bounded, we
have |®(uz)| < Clue|. This means that ®(u.) is bounded in BV (€2) and, up to a subsequence, it converges
strongly in L! to a function v. Up to another subsequence we also have pointwise convergence a.e., but we
already had u. — u a.e., hence v = ®(u). We then have |V®(u.) — |[V®(u) in the sense of distributions
and weakly as measures, and the lower semicontinuity of the norm implies

1
V() | < lim inf / V()| < 5 imninf F ()

and the fact that we have ®(u) € BV (Q).

On the other hand, since we can of course assume F.(u;) < C, we also have [W(u.) < Ce and, by
Fatou, [ W(u) =0, i.e. u € {0,1} a.e. This means that we do have u = I4 for a measurable set A C Q.
Note that in this case we have ®(u) = ®(1)u = ®(1)I4. Since we have (1) = fol vW > 0, this implies
I4 € BV(Q), and we finally have

F(u) =2®(1) Per(A) < limainf F_(ue).

We now switch to the I'-limsup inequality. We first consider the case u = Iy with A smooth and
d(A,09) > 0. We need to build a recovery sequence u.. Let us define sd4 the signed distance function
to A given by

d(xz, A) ifx ¢ A

sda(®) {—d(x,AC) itr e A

Take a function ¢ : R — [0, 1] such that there exist Ly > 0 with ¢ =1 on (—o0, L_], ¢ = 0 on [L4, +00),
and ¢ € CY([~L_, Ly]). Define
<SdA>
Us = — ).
€

Note that [sd4| = 1 a.e. and hence we have &|Vu.|* = é|gb’|2 (Sd?A> and

R = [ (o +w) (*2).



We now use the co-area formula (see [2]) which provides the following equality, valid at least for smooth

functions f,g: Q) — R:
/f|vgy=/dt/ fdHIL.
R J{g=t}

We apply it to the case g = sd 4, for which the norm of the gradient is always 1. We then have

Pt = [ (0P W) (1)1 (sda =0t = [ (16 +W(0)) (001 (s = eryar,

where the second equality comes from the change of variable t = er.

Since A is smooth we have, for every 7, the convergence H% ' ({sd4 = er}) — Per(A). We can restrinct
the integral to r € [—L_, L] which allows to apply dominated convergence and obtain

lim F.(uz) = Per(A) /R (\qb’]Q + W) (r)dr.

Moreover, it is clear that u. — I4 in L' because of dominated convergence.

We have now to choose ¢. Choose a funcion ¢ such that ¢(0) = 1/2 and ¢’ = —/W(¢). We necessarily

have lim, _,_ o gzz(r) =1 and lim; oo gzg(r) = 0. The function $ is C' and strictly monotone. Fix § > 0
and let r4 be defined via ¢(r—) =1 — 4§ and ¢(r) = 6. We then take ¢ = ¢5 a function such that ¢s = ¢
on [r_,r4], g5 € CH([r— — 26,74 +26]), and |¢}| < 1 on [r— —28,7_] U [ry,r4+ + 25]. We have

/R (165 + W (@5)) (r)dr < (1 + sup W)24 + / (167 +W(@)) (r)dr < C5 + /R (167 +W(@)) (r)dr.

Note that we have [ (\(5’]2 + W(gg)) (r)dr =2 [ \/W(8)|¢'| = 2|®(¢(+00) — Phi(¢(—00)| = 2®(1) = ¢y,
which means
lim F.(u:) < (co+ Cd)Per A,

for arbitrary ¢ > 0, and hence

(I' = limsup F.)(u) < ¢oPer A = F(u).

We now need to extend our I'-limsup inequality to other functions w which are not of the form u = I4
with A smooth and far from the boundary, but only u = I4 with A of finite perimeter. We need hence to
show that the class S of indicators of smooth sets far from the boundary is dense in energy.

We start from a set A fo finite perimeter with d(A4, 92) > 0 and set u = I4. Take a smooth and compactly
supported convolution kernel 7, — Jp defined by reslacing of a fxed kernel 7, and define v, := n, * u.
The function v, is smooth and, for large n, compactly supported in Q. We have [|Vu,| < [|Vu||m
since the norm of the gradient is a convex functional invariant by translations, hence it decreases under
convolution. We use again the coarea formula to write

/]an] = /01 drH T {v, = 1}).

If we fix 6 > 0 we can then choose a number r, € [§, 1 — J] such that

Per A
Per({vy, > 1, }) < %dil({vn =7n}) < 1—2
and 7, is not a critical value for v,, (since, by Sard’s lemma, a.e. value is not critical). In particular, the
set A, := {v, > r,} is a smooth set, and we then take u,, = I, . By construction the perimeter of A,
is bounded by fi%‘ and u, is bounded in BV. We want to prove that we have w, — w in L'. Up to

subsequences, we do have u,, — w strongly in L! and a.e. Since u,, € {0,1}. also w € {0, 1} a.e. Considera



point & which is a Lebesgue point for u. In particular, this implies v, () — u(x) as n — co. Consider the
case w(z) = 1. Then u,(x) =1 for large n, i.e. v,(x) > r, > §. Then u(z) > J, which means u(z) = 1.
Analogously, w(x) = 0 implies u(x) = 0. Finally we have w = u and u,, — u strongly in L. This is not
yet the desired sequence, since we have F(u,) < (1 — 2§)~'F(u) instead of limsup,, F'(u,) < F(u) but
this can be fixed easily. Indeed, this allows for every § to find @ € S with ||@ — u||;1 arbitrarily small and
F(@) < (1 —26)"1F(u), which can be turned, using §,, — 0, into a sequence which shows that S is dense
in energy.

We have no tget rid of the assumption d(A4,9) > 0. Using the fact that  is convex, and supposing
without loss of generality that the origin 0 belongs to the interior of €2, we can take u = I4 and define
up = It, 4 for a sequence t,, — 1. The sets ¢, A are indeed far from the boundary. Moreover, we have
F(upn) = co Per(t,A) = t3~1F(u) — F(u). We are just left to prove u,, — u strongly in L. Because of the
BV bound which provides compactness in L' we just need to prove any kind of weak convergence. Take
a test function ¢ and compute [ou, = [, ;¢ = (tn)? [y o(try)dy — [, ¢, as soon as ¢ is continuous.
This shows weak convergence in the sense of measures u,, — u and, thanks to the BV bound, strong L'
convergence and concludes the proof. O
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