
Calculus of Variations and Elliptic Equations
–

3rd class

Fenchel-Legendre Transform Let us fix a Banach space X together with its dual X ′, and denote by
ξ · x the duality between an element ξ ∈ X ′ and x ∈ X. We say that a function valued in R ∪ {+∞} is
proper if it is not identically equal to +∞
Definition - Given a vector space X and its dual X ′, and a proper function F = X → R ∪ {+∞} we
define its Fenchel-Legendre transform F ∗ : X ′ → R ∪ {+∞} via

F ∗(ξ) := sup
x
ξ · x− F (x).

We note that F ∗, as a sup of affine continuous (in the sequel we will just say affine and mean affine and
continuous, i.e. of the form `(x) = ξ · x+ c for ξ ∈ X ′ and c ∈ R) functions, is both convex and l.s.c., as
these two notions are stable by sup.
By abuse of notations, when considering functions defined on X ′ we will see their Fenchel-Legendre
transform as a function defined on X (and not on X ′′: this is possible since X ⊂ X ′′ and we can restrict
it to X, and by the way in most cases we will use only reflexive spaces.
We prove the following restuls.

Proposition 1. 1. If F : X → R ∪ {+∞} is proper, convex and l.s.c. then there exists an affine
function ` such that F ≥ `.

2. If F : X → R ∪ {+∞} is proper, convex and l.s.c. then it is a sup of affine functions.

3. If F : X → R ∪ {+∞} is proper, convex and l.s.c. then there exists G : X ′ → R ∪ {+∞} such that
F = G∗.

4. If F : X → R ∪ {+∞} is proper, convex and l.s.c. then F ∗∗ = F .

Proof. We consider the epigraph Epi(F ) := {(x, t) ∈ X×R : t ≥ F (x)} of F which is a convex and closed
set in X × R. We take a point x0 such that F (x0) < +∞ and consider the singleton {(x0, F (x0) − 1)}
which is a convex and compact set in X×R. The Hahn-Banach separation theorem provides the existence
of a pair (ξ, a) ∈ X ′×R such that ξ ·x0 + a(F (x0)− 1) < 0 and −xi ·x+ at ≥ 0 for every (x, t) ∈ Epi(F ).
Note that this last condition implies a ≥ 0 since we can take t → ∞. Moreover, we should also have
a > 0 otherwise taking any point (x, t)) ∈ Epi(F ) with x = x0 we have a contradiction. If we then take
t = F (x) for all x such that F (x) < +∞ we obtain aF (x) ≥ −ξ · x+ ξ · x0 + a(F (x0)− 1) and, dividing
by a > 0, we obtain the first claim.
We now take an arbitrary x0 ∈ X and t0 < F (x0) and separate again the singleton {(x0, t0)} from
Epi(F ), thus getting a pair (ξ, a) ∈ X ′ × R such that ξ · x0 + at0 < 0 and −xi · x + at ≥ 0 for every
(x, t) ∈ Epi(F ). Again, we have a ≥ 0. If F (x0) < +∞ we obtain as before a > 0 and the inequality
F (x) > − ξ

a · (x − x0) + t0. We then have an affine function `with F ≥ ` and `(x0) = x0. This shows
that the sup of all affine functions smaller than F is, at the point x0, at least t0. Hence this sup equals
F on {F < +∞}. The same argument works for F (x0) = +∞ if for t0 arbitrary large the corresponding
coefficient a is strictly positive. If not, we have ξ ·x0 < 0 and ξ ·x ≥ 0 for every x such that (x, t) ∈ Epi(F )
for at least one t ∈ R, i.e. for x ∈ {F < +∞}. Consider now `n = ` − nξ where ` is the affine function
smaller than F previously found. We have F ≥ ` ≥ ` − nξ since ξ is non-negative on {F < +∞} and
moreover limn `n(x0) = +∞. This shows that in such a point x0 the sup of the affine functions smaller
than F equals +∞, and hence F (x0).
Once that we know that F is a sup of affine functions we can write

F (x) = sup
α
ξα · x+ cα



for a family of indexes α. We then set c(ξ) := sup{cα : ξα = ξ}. The set in the sup can be empty, which
means c(ξ) = −∞. Anyway, the sup is always finite: fix a point x0 with F (x0) < +∞ and use since
cα ≤ F (x0)− ξ · (x0). We then define G = −c and we see F = G∗.
Finally, before proving F = F ∗∗ we prove that for any function F we have F ≥ F ∗∗ even if F is not
convex or lsc. Indeed, we have F (ξ)+F (x) ≥ ξ ·x which allows to write F (x) ≥ ξ ·x−F ∗(ξ), an inequality
true for every ξ. Taking the sup over ξ we obtain F ≥ F ∗∗. We want now to prove that this inequality
is an equality if F is convex and lsc. We write F = G∗ and transform this into F ∗ = G∗∗. We then
have F ∗ ≤ G and, transforming this inequality (which changes its sign), F ∗∗ ≥ G∗ = F , which proves
F ∗∗ = F .

Corollary 1. Given an arbitrary proper function F : X → R ∪ {+∞} we have F ∗∗ = sup{G : G ≤
F, G is convex and lsc}.

Proof. Let us call H the function obtained as a sup on the right hand side. Since F ∗∗ is convex and lsc
and smaller than F , we have F ∗∗ ≤ H. Note that H, as a sup of convex and lsc functions, is also convex
and lsc, and it is of course smaller than F . We write F ≥ H and double transform this inequality, which
preserves the signe. We then have F ∗∗ ≥ H∗∗ = H, and the claim is proven.
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