
Calculus of Variations and Elliptic Equations
–

5th class

Smooth Harmonic functions
A well-known fact abouth harmonic functions is the mean value property
Proposition 1. Consider u ∈ C∞(Ω) a function satisfying ∆u = 0 in Ω, and take x0, R such that
B(x0, R) ⊂ Ω. Then we have

u(x0) =
 
B(x0,R)

u =
 
∂B(x0,R)

u,

where the integral on the ball is performed w.r.t. the Lebesgue measure, the one on the sphere w.r.t. the
boundary measure.

Proof. It is enough to prove the equality with the average on the sphere, since this one for every radius
implies the one with averages on the ball. Indeed, if we have u(x0) =

ffl
∂B(x0,r) u,, then we also have

ˆ
B(x0,R)

u =
ˆ R

0
dωdr

d−1
 
∂B(x0,r)

u = u(x0)
ˆ R

0
dωdr

d−1 = u(x0)ωdRd,

which gives the result (here ωd is the volume of the unit ball in Rd).
It it then enough to prove that R 7→ g(R) :=

ffl
∂B(x0,R) u =

ffl
∂B(0,1) u(x0 + Rx)dx is constant, since its

limit as R→ 0 is u(x0). We differentiate it, and obtain

g′(R) =
 
∂B(0,1)

∇u(x0 +Rx) · xdx =
 
∂B(0,1)

∇v · n = 1
dωd

ˆ
B(0,1)

∆v = 0,

where v(x) = R−1u(x0 + Rx) and ∆v = R∆u(x0 + Rx). We used the fact that, on the unit ball, the
vector x coincides on the boundary with the normal vector, and applied the divergence theorem.

Proposition 2. Consider u ∈ C∞(Ω) a function satisfying ∆u = 0 in Ω. Then u is analytic in Ω.

Proof. This requires to obtain a bound of the form |Dku(x0)| ≤ dk

Rk k! supB(x0,R) |u|, whenever B(x0, R) ⊂
Ω. Adapting the exact bound to the case of multi-indices is delicate, see the proof in [?].

Caccioppoli inequality

Proposition 3. Suppose that u ∈ C∞(Ω) is harmonic in Ω, and take x0, r < R such that B(x0, R) ⊂ Ω.
Then we have ˆ

B(x0,r)
|∇u|2 ≤ 4

(R− r)2

ˆ
B(x0,R)

|u|2.

Proof. From the harmonicity of u we get
´
∇u · ∇ϕ = 0 for every ϕ ∈ C∞c (Ω). We choose a cut-off

function η ∈ C∞(Ω) with η = 1 on B(x0, r) and η = 0 outside of B(x0, R), and use ϕ = uη2. We then get
ˆ
|∇u|2η2 = −2

ˆ
∇u · ∇ηuη ≤ 2

(ˆ
|∇u|2η2

)1/2 (ˆ
|∇η|2|u|2

)1/2
,

which implies ˆ
|∇u|2η2 ≤ 4

ˆ
|∇η|2|u|2.

Hence, ˆ
B(x0,r)

|∇u|2 ≤ 4||∇η||2L∞
ˆ
B(x0,R)

|u|2

and the L∞ norm of the gradient of η can be takes as close as we want to (R− r)−1.



We can state a series of generalizations of the above result

• u does not need to be a smooth harmonic function, but u ∈ H1
loc and ∆u = 0 in the sense of

distributions (which implies
´
∇u · ∇ϕ = 0 for every ϕ ∈ H1

c (Ω)) is enough.

• actually, the inequality ∆u ≥ 0 together with u ≥ 0 is enough (since we have
´
∇u · ∇ϕ ≤ 0 for

every ϕ ∈ H1
c (Ω) with ϕ ≥ 0).

• more general equations can be considered. If a point-dependent symmetric matrix a(x) satisfying
λI ≤ a(x) ≤ ΛI for every x is given the result for an H1 function satisfying ∇ · (a∇u) = 0 (in the
sense

´
a∇u · ∇ϕ = 0 for every ϕ ∈ H1

c (Ω)) is the following variant :
ˆ
B(x0,r)

|∇u|2 ≤ 4Λ/λ
(R− r)2

ˆ
B(x0,R)

|u|2.

• of course this also generalizes to non-negative H1 functions u ≥ 0 satisfying ∇ · (a∇u) ≥ 0.

A corollary of the Caccioppoli inequality is the following:

Proposition 4. Suppose that u ∈ C∞(Rd) is harmonic and has polyunomial growth (|u(x)| ≤ C(1+|x|p)).
Then u is a polynomial.

Proof. Applying Caccioppoli’s inequality with R = 2r we obtain
ˆ
B(x0,r)

|∇u|2 ≤ Cr−2+d(1 + rp)2.

Applying the same inequality to te derivatives of u, which are also harmonic, we obtain
ˆ
B(x0,r)

|D2u|2 ≤ C1r
−4+d(1 + rp)2

for a new constant C1. Iterating, we obtain
ˆ
B(x0,r)

|Dku|2 ≤ Ckr−2k+d(1 + rp)2.

Selecting k such that 2k > d+ 2p we obtain

lim
r→∞

ˆ
B(x0,r)

|Dku|2 = 0,

which implies Dku = 0 everywhere. Then u is a polynomial of degree at most k − 1 (but actually of
degree at most p, because of its growth condition).

L2
loc harmonic functions

We can now state the following result.

Proposition 5. Suppose that u ∈ L2
loc(Ω) is harmonic in Ω in the sense of distributions. Then u is

analyitic.

Proof. We will prove that u is C∞, and analyticity will just be a consequence. We fix a ball B(x0, R)
which is compactly contained in Ω and a dcreasing sequence of radii rk ≥ rk+1 with r0 = R and rk ≥ R/2.
We take a sequence of standard mollifiers ηε supported in B(0, ε) with ε < d(B(x0, R), ∂Ω). We define
uε := ηε ∗ u. These functions are harmonic in a neighborhood of B(x0, R) and smooth. The norms
||uε||L2(B(x0,R) are bounded since u ∈ L2

loc(Ω) and uε → u in L2(B(x0, R). Yet, Caccioppoli’s inequality
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implies a bound on the H1 norm of uε on B(x0, r1). Applying the same inequality to the derivatives
of u (which are also harmonic) we obtain a bound on the H2 norm of uε on B(x0, r2) and, iterating,
on the Hk norm of uε on B(x0, rk). On B(x0, R/2), the sequence uε is bounded in all the spaces Hk.
Extracting a subsequence, we have for every k weak convergence in Hk of uε to its L2 limit u. Hence
u ∈ ∩kHk = C∞.

Solutions of ∆u = f

Let us consider the fundamental solution of the Laplacian

Γ(x) =


1

2π log |x| if d = 2,
− 1
d(d−2)ωd

|x|2−d if d > 2.

We can see that we have

• Γ ∈ L1
loc, ∇Γ ∈ L1

loc, but D2Γ /∈ L1
loc.

•
´
∂B(0,R)∇Γ · n = 1 for every R.

• Γ ∈ C∞(Rd \ {0}) and ∆Γ = 0 on Rd \ {0}.

• ∆Γ = δ0 in the sense of distributions.

As a consequence, for every f ∈ C∞c (Rd), the function u = Γ ∗ f is a smooth function solving ∆u = f in
the classical sense. It is of course not the unique solution to this equation, since we can add to u arbitrary
harmonic functions.
For this solution, we have the following estimate

Proposition 6. Given f ∈ C∞c (Rd), let u be given by u = Γ∗f . Then we have
´
Rd |D2u|2 =

´
Rd |f |2, where

|D2u|2 denotes the squared Frobenius norm of the Hessian matricx, given by |A|2 = Tr(AtA) = ∑
i,j A

2
ij.

Proof. We consider a ball B(0, R) and obtain, by integration by parts
ˆ
B(0,R)

f2 =
ˆ
B(0,R)

|∆u|2 =
∑
i,j

ˆ
B(0,R)

uiiujj = −
∑
i,j

ˆ
B(0,R)

uiijuj +
∑
i,j

ˆ
∂B(0,R)

uiiujn
j .

If the support of f is compactly contained in B(0, R) then the last boundary term vanishes since it equals´
∂B(0,R) f∇u · n. Going on with the integration by parts we have

ˆ
B(0,R)

f2 =
∑
i,j

ˆ
B(0,R)

uijuij −
∑
i,j

ˆ
∂B(0,R)

uijujn
i,

hence ˆ
B(0,R)

f2 =
ˆ
B(0,R)

|D2u|2 −
ˆ
∂B(0,R)

D2u∇u · n.

We then note that, for R >> 1, we have |∇u(x)| ≤ C|x|1−d and |D2u(x)| ≤ C|x|−d, as a consequence of
the shape of Γ and the compact support of f , so that we have

|
ˆ
∂B(0,R)

D2u∇u · n ≤ CRd−1.R−d.R1−d = CR−d → 0 as R→∞,

which proves the claim.

Applying the same result to the derivatives of f we immediately obtain
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Corollary 1. Given f ∈ C∞c (Ω) for a bounded set Ω, let u be given by u = Γ ∗ f . Then for every k ≥ 0
we have

||u||Hk+2(Ω) ≤ C(k,Ω)||f ||Hk(Ω).

Harmonic distributions

Lemma 1. Suppose u ∈ C∞(Ω) is harmonic in Ω and take x0, r < R such that B(x0, R) ⊂ Ω. Then, for
every integer k ≥ 1, we have

||u||H1−k(B(x0,r) ≤ C(k, r, R)||u||H−k(B(x0,R).

Proof. We want to take ϕ ∈ C∞ with spt(ϕ) ⊂ B(x0, r) and estimate
´
uϕ in terms of ||ϕ||Hk−1 and

||u||H−k(B(x0,R)). To do this, we first consider v = Γ ∗ ϕ and a cutoff function η ∈ C∞(Ω) with η = 1 on
B(x0, r) and η = 0 outside of B(x0, R). We write

0 =
ˆ
u∆(vη) =

ˆ
uϕη +

ˆ
uv∆η + 2intu∇v · ∇η.

Using ϕη = ϕ (since η = 1 on spt(ϕ)), we obtain
ˆ
uϕ = −

ˆ
uv∆η − 2

ˆ
u∇v · ∇η ≤ ||u||H−k(B(x0,R)

(
||v∆η||Hk(B(x0,R) + 2||∇v · ∇η||Hk(B(x0,R)

)
.

Since η is smooth and fixed, and its norms only depend on r,R, we obtain

||v∆η||Hk(B(x0,R), ||∇v · ∇η||Hk(B(x0,R) ≤ C(k, r, R)||∇v||Hk(B(x0,R).

Applying the Corollary 1 we obtain ||∇v||Hk ≤ ||v||Hk+1 ≤ C(k, r, R)||ϕ||Hk−1 , which provides the desired
result.

We can then obtain

Proposition 7. Suppose that u ∈ H−kloc (Ω) is harmonic in Ω in the sense of distributions. Then u is an
analyitic funtion.

Proof. The proof is the same as in Proposition 5: we regularize by convolution and apply the bounds on
the Sobolev norms. Lemma 1 allows to pass from H−k to H1−k and, iterating, arrive to L2. Once we
know that u is in L2

loc we directly apply Proposition 5.

Finally, we have

Proposition 8. Suppose that u is harmonic distribution in Ω. Then u is an analyitic funtion.

Proof. We just need to show that u locally belongs to a space H−k. This is a consequence of the definition
of distributions. Indeed, we have the following: for every distribution u and every compact set K ⊂ Ω
there exist n,C such that < u,ϕ >≤ C||ϕ||Cn for very ϕ ∈ C∞ with spt(ϕ) ⊂ K. to prove this we just
need to act by contradiction: if it is not true, then there exists a distribution u and a compact set K such
that for every n we find ϕn with

< u,ϕn >= 1, ||ϕn||Cn ≤ 1
n
, spt(ϕn) ⊂ K.

Note that we define the Cn norm as the sup of all derivatives up to order n; so that ||ϕ||Cn+1 ≥ ||ϕ||Cn .
Yet, this is a contradiction since the sequence ϕn tends to 0 in the space of C∞c functions and u should
be continuous for this convergence. So we have the inequality < u,ϕ >≤ C||ϕ||Cn which can be turned
into < u,ϕ >≤ C||ϕ||Hk because of the continuous embedding of Sobolev spaces into Cn spaces (take
k > n+ d/2).
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