
Calculus of Variations and Elliptic Equations
–

9th-10th class

Asymptotics of an optimal location problem
Let us consider f ∈ C0(Ω) a strictly positive probability density on a compact domain Ω ⊂ Rd. We
consider

min{
ˆ
d(x, S)f(x)dx S ⊂ Ω,#S = N} (1)

and associate with every set S with #S = N the uniform probability measure on S, i.e. µS = 1
N

∑
y∈S δy ∈

P(Ω). Our question is to identify the limit as N →∞ of the measures µSN
where SN is optimal.

We define the functionals FN : P(Ω)→ R ∪ {+∞} through

FN (µ) :=
{
N1/d

´
d(x, S)f(x)dx if µ = µS with #S = N,

+∞ otherwise.

We denote by Id the unit cube Id = [0, 1]d. Let us define the constant

θ := inf{lim inf
N

N1/d

ˆ
Id

d(x, SN )dx, #SN = N, }

as well as, for technical reasons, the similar constant

θ̃ := inf{lim inf
N

N1/d

ˆ
Id

d(x, SN ∪ ∂Id)dx, #SN = N, }.

Proposition 1. We have θ = θ̃ and 0 < θ <∞.

Proof. We have of course θ ≥ θ̃. To prove the opposite inequality, fix ε > 0 and select a sequences of
uniform grids on ∂Id: decompose the boundary into 2dMd−1 small subes, each of size 1/M , choosing M
such thatM−1 < εN−1/d. We call such a grid GN . Take a sequence SN which almost realizes the infimum
in the definition of θ̃, i.e. #SN = N and lim infN N1/d

´
Id d(x, SN ∪ ∂Id)dx ≤ (1 + ε)θ̃. We then use

d(x, SN ∪GN ) ≤ d(x, SN ∪ ∂Id) +
√
d− 1
M

to obtain
lim inf

N
N1/d

ˆ
Id

d(x, SN ∪GN )dx ≤ (1 + ε)θ̃ + lim sup
N

N1/d 1
M
≤ (1 + ε)θ̃ + ε.

If we use #(SN ∪ GN ) ≤ N + 2dMd−1 = N + O(N (d−1)/d) = N + o(N) we obtain a sequence of sets
S̃N := SN ∪GN such that

lim inf
N

(#S̃N )1/d

ˆ
Id

d(x, S̃N )dx ≤ (1 + ε)θ̃ + ε,

hence θ ≤ θ̃.
In order to prove θ < +∞, just use a sequence of sets on a uniform grid in Id: we can decompose the
whole cube into Md small subes, each of size 1/M , choosing M such that M≈N1/d.
In order to prove θ > 0 we also use a uniform grid, but choosing M such that Md > 2N .Then we take
an arbitrary SN with N points: in this case at least half of the cubes of the grid do not contain points of
SN . An empty cube of size δ contributes for at least Cδd+1 in the integral, i.e. M−(d+1). Nice at least N
cubes are empty we obtain θ ≥ N1/d.N.M−(d+1) = O(1).



We then define the functional F : P(Ω)→ R ∪ {+∞} through

F (µ) := θ

ˆ
Ω

f

(µac)1/d
,

where µac is the density of the absolutely continuous part of µ.
We will prove the following.

Proposition 2. Suppose that Ω is a cube and f is strictly positive and condinuous. Then we have FN
Γ→ F

in P(Ω) (endowed with the weak-* convergence) as N →∞.

Proof. Let us start from the Γ-liminf inequality. Consider µN ⇀ µand suppose FN (µN ) ≤ C. In par-
ticular, we have µN = µSN

for a sequence of sets SN with #SN = N . Let us define the functions
λN := N1/dfd(s, SN ). This sequence of functions is bounded in L1, so we can assume that it converges
weakly-* as positive measures to a measure λ up to a subsequence. Choosing a subsequence which realizes
the liminf we will have lim infN FN (µN ) = λ(Ω).
In order to estimate λ from below we fix a closed cube Q ⊂ Ω. Let us call δ the size of this cube (its side,
so that |Q| = δd). We write

λN (Q) = N1/d

ˆ
Q
fd(s, SN ) ≥ min

Q
f

( 1
µN (Q)

)1/d

(#SN ∩Q)1/d

ˆ
Q
d(x, SN ∪ ∂Q)dx.

We note that the last part of the right-hand side recalls the definition of θ̃. We also note that if we want
to bound from below λN (Q) we can assume limN #SN ∩ Q = ∞, otherwise if the number of points in
Q stays bounded we necessarily have λN (Q) → ∞. So, the sequence of sets SN ∩Q is admissible in the
definition of θ̃,but we need to scale: indeed, if the unit cube in the definiiton of θ̃ is replaced by a cube of
size δ, the values of the integrals are multiplied times δd+1. We then have

lim inf
N

(#SN ∩Q)1/d

ˆ
Q
d(x, SN ∪ ∂Q)dx ≥ δd+1θ̃

and hence
lim inf

N
λN (Q) ≥ min

Q
f lim inf

N

( 1
µN (Q)

)1/d

δd+1θ̃.

We now use the fact that, for closed sets, when a sequence of measures weakly converges the mass given
by the limit measure is larger thatn the limusp of the masses:

λ(Q) ≥ liminfNλN (Q) ≥ min
Q

f

( 1
µ(Q)

)1/d

δd+1θ̃.

This can be re-written as
λ(Q)
|Q|

≥ min
Q

f

( |Q|
µ(Q)

)1/d

θ,

where we aso used θ = θ̃. We now choose a sequence of cubes shrinking around a point x ∈ Ω and we use
the fact that, for a.e. x, the ratio between the mass a measure gives to the cube and the volume of the
cube tends to the density of the absolutely continuous part, thus obtaining (also using the continuity of
f)

λac(x) ≥ θf(x)
( 1
µac(x)

)1/d

.

This implies
lim inf

N
FN (µN ) = λ(Ω) ≥

ˆ
Ω
λac(x)dx ≥ F (µ).
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We now switch to the Γ-limsup inequality. Let us start from the case µ =
∑

i aiIQi , i.e. µ is absolutely
continuous with piecewise constant density ai > 0 on the cubes of a regular grid. In order to have a
probability measure, we suppose

∑
i aI |Qi| = 1. Fix ε > 0. Using the definition of θ we can find a finite

set S0 ⊂ Id with #S0 = N0 such that N1/d
0

´
Id d(x, S0)dx < θ(1 + ε). We then divide each cube Qi into

Md
i subcubes Qi,j of size δi on a regular grid, and on each subcube we put a scaled copy of S0. We have

Md
i δ

d
i = |Qi|. We choose Mi such that N0M

d
i ≈ ai|Qi|N so that, for N → ∞, we have indeed µN ⇀ µ

(where µN is the the uniform measure on the set SN obtained by the union of all these scaled copies).
We now estimate

FN (µN ) ≤ N1/d
∑
i,j

δd+1
i θ(1 + ε)N−1/d

0 max
Qi,j

f.

For N large enough, the cubes Qi,j are small and we have maxQi,j f ≤ (1 + ε)
ffl

Qi,j
f = (1 + ε)δ−d

i

´
Qi,j

f ,
hence we get

FN (µN ) ≤ N1/dθ(1 + ε)N−1/d
0

∑
i,j

δi

ˆ
Qi,j

f.

Note that we have δi = |Qi|1/d/M ≈ N1/d
0 N−1/da

−1/d
i , whence

lim sup
N

FN (µN ) ≤ θ(1 + ε)
∑
i,j

ˆ
Qi,j

f

a
1/d
i

= (1 + ε)F (µ).

This shows, ε being arbitrary, the Γ-limsup inequality in the case µ =
∑

i aiIQi .
We now need to extend our Γ-limsup inequality to other measures µ which are not of the form µ =

∑
i aiIQi .

We need hence to show that this class of measures is dense in energy.
Take now anarbitrary probability µ with F (µ) < /∞. Since f is supposed to be stritly positive, this
implies µac > 0 a.e. Take a regular grid of size δk → 0, composed of kd disjoint cubes Qi and define
µk :=

∑
i aiIQi with ai = µ(Qi) (one has to define the subcubes in a disjoint way, for instance as products

of semi-open intevals, of the form [0, δk)d). It is clear that we have µk ⇀ µ since the mass is preserved in
every cube, whose diameter tends to 0.
We then compute F (µk). We have

F (µk) ≤
∑

i

max
Qi

f |Qi|
(
µ(Qi)
|Qi|

)−1/d

.

We use the function U(s) = s−1/d, which is decreasin and convex, with a Jensen’s inequality to obtain
(
µ(Qi)
|Qi|

)−1/d

= U(µ(Qi)
|Qi|

) ≤ U(
 

Qi

µac) ≤
 

Qi

g(µac).

This allows to write

F (µk) ≤
∑

i

max
Qi

f |Qi|
 

Qi

U(µac) =
∑

i

(max
Qi

f)
ˆ

Qi

U(µac).

We finish by noting that, for k → ∞, we have (maxQi f)
´

Qi
U(µac) ≤ (1 + εk)

´
Qi
fU(µac) for εk → 0

(depending on the modulus of continuity of f), and hence

F (µk) ≤ (1 + εk)F (µ),

which concludes the proof.

Note that the assumption that Ω is a cube is just done for simplicity in the Γ-limsup, and that it is
possible to get rid of it by suitably considering the “rests” after filling Ω with cubes.
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The above proof is a simplified version of that in [?] where f was only supposed to be lsc. Actually, in
[?] (which deals with a similar but different problem) even this assumption is removed, and f is only
supposed to be L1.
A consequence is the following

Proposition 3. Suppose that SN is a sequence of optimizers for (1) with N → ∞. Then he sequence
µN weakly-* converges to the measure µ which is absolutely continuous with density ρ equal to cfd/(d+1),
where c is a normalization constant such that

´
ρ = 1.

Proof. We just need to prove that this measure µ is the unique optimizer of F . First note that F can
only be minimized by an absolutely continuous measure, as singular part do not affect the value of the
functional, so it is better to remove a possible singular part and use the same mass to increase the
absolutely continuous part.
Then, using again the notation U(s) = s−1/d. Also write ρ = cfd/(d+1) as in the statement. Then we
have, for µ� Ld,

F (µ) =
ˆ
fU(µac) = c

 
U

(
µac

ρ

)
ρ ≥ cU

( (
µac

ρ

)
ρ

)
= cU(

ˆ
µac) = cU(1).

The inequality is due to Jensen’s inequality and is an equality if and only if µac/ρ is constant, which
proves the claim.
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