Calculus of Variations and Elliptic Equations

9th-10th class

Asymptotics of an optimal location problem

Let us consider f € C°() a strictly positive probability density on a compact domain Q@ C RY. We
consider

min{/ d(z,S)f(x)de S C Q,#S =N} (1)
and associate with every set S with #5 = N the uniform probability measure on .5, i.e. ug = % 2 yes Oy €
P(€2). Our question is to identify the limit as N — oo of the measures pg, where Sy is optimal.

We define the functionals Fy : P(2) — RU {400} through

NYa [d(z,S)f(x)dr if p = pg with #S = N,

+00 otherwise.

Fn(p) = {
We denote by I? the unit cube I% = [0,1]¢. Let us define the constant
0 := inf{thianl/d /Id d(z, Sx)dz, #Sx = N,}
as well as, for technical reasons, the similar constant

0 := inf{lim Nianl/d / d(z, Sy UdI%)dzx, #Sy = N, }.
7d

Proposition 1. We have 0 = 0 and 0 < 6 < .

Proof. We have of course § > . To prove the opposite inequality, fix ¢ > 0 and select a sequences of
uniform grids on 97%: decompose the boundary into 2dM9~! small subes, each of size 1/M, choosing M
such that M~ < e N~1/4_ We call such a grid G. Take a sequence Sy which almost realizes the infimum
in the definition of 4, i.e. #Sy = N and lim infy N1/4 fld d(z, Sy Ul dx < (1+ 6)9. We then use

vd—1

d(z,Sy UGy) < d(z, Sy UdI?) + i

to obtain )
limianl/d/ d(z, Sy UGN)dz < (1+¢)0 +limsup N4 — < (1+¢)f +e.
N 7d N M
If we use #(Sy UGN) < N + 2dM* 1 = N + O(N@-1/4) = N + o(N) we obtain a sequence of sets
Sy := Sy UGn such that

limNinf(#SN)l/d/ d(z,Sn)dx < (1+¢)0 + ¢,
7d

hence 6 < 6.

In order to prove # < +o0, just use a sequence of sets on a uniform grid in I¢: we can decompose the
whole cube into M¢ small subes, each of size 1/M, choosing M such that M~N1/4,

In order to prove 6 > 0 we also use a uniform grid, but choosing M such that M? > 2N.Then we take
an arbitrary Sy with IV points: in this case at least half of the cubes of the grid do not contain points of
Sx. An empty cube of size § contributes for at least C9%t! in the integral, i.e. M (@1 Nice at least N
cubes are empty we obtain § > N/¢ N M~(+) = O(1). O



We then define the functional F': P(2) — R U {400} through

P =0 | e

where ¢ is the density of the absolutely continuous part of p.

We will prove the following.

Proposition 2. Suppose that ) is a cube and f is strictly positive and condinuous. Then we have Fiy Lr
in P(Q) (endowed with the weak-* convergence) as N — oo.

Proof. Let us start from the I'-liminf inequality. Consider puy — pand suppose Fy(uy) < C. In par-
ticular, we have uny = pg, for a sequence of sets Sy with #Sy = N. Let us define the functions
Ay = N1/ fd(s,Sn). This sequence of functions is bounded in L', so we can assume that it converges
weakly-* as positive measures to a measure \ up to a subsequence. Choosing a subsequence which realizes
the liminf we will have liminfy Fn(un) = A(Q).

In order to estimate A from below we fix a closed cube @ C Q. Let us call ¢ the size of this cube (its side,
so that |Q| = d9). We write

1
pn (Q)

1/d
A (Q) = N4 /Q (s, Sx) = min f ( ) (#Sx N Q) /Q d(z, Sy U 0Q)da.

We note that the last part of the right-hand side recalls the definition of §. We also note that if we want
to bound from below Ay (Q) we can assume limy #Sy N Q = oo, otherwise if the number of points in
@ stays bounded we necessarily have Ay (Q) — co. So, the sequence of sets Sy N @ is admissible in the
definition of §,but we need to scale: indeed, if the unit cube in the definiiton of 8 is replaced by a cube of
size 0, the values of the integrals are multiplied times 6%t!. We then have

lim inf (#Sx N Q)\/? / d(z, Sy UdQ)dx > 6%+
Q

and hence

1 1/d 5
lim inf Ax(Q) > min f lim inf ( ) §4t1g.
N (@) =mj N\ v (@)
We now use the fact that, for closed sets, when a sequence of measures weakly converges the mass given
by the limit measure is larger thatn the limusp of the masses:

MQ) > liminfyAn(Q) > min f(l)l/dad“é
- N =T (@) '

This can be re-written as 1/d
N —)
o = ™n/ (M(Q)) ’

where we aso used 8 = §. We now choose a sequence of cubes shrinking around a point z € Q and we use
the fact that, for a.e. z, the ratio between the mass a measure gives to the cube and the volume of the
cube tends to the density of the absolutely continuous part, thus obtaining (also using the continuity of

f)

A (z) > Of () (Macl(m)>1/d.

This implies
limjut Fy () =A@) > [ N(a)do > Flp),
Q



We now switch to the I'-limsup inequality. Let us start from the case p = >, a;1g,, i.e. u is absolutely
continuous with piecewise constant density a; > 0 on the cubes of a regular grid. In order to have a
probability measure, we suppose »_; a ]\Ql] = 1. Fix € > 0. Using the definition of § we can find a finite
set So C I¢ with #Sy = Ny such that N0 ffd x,S0)dr < 6(1 + ¢). We then divide each cube Q; into
M¢ subcubes Q;,j of size 9; on a regular grid, and on each subcube we put a scaled copy of Sy. We have
Mdéd |Qi|. We choose M; such that NOMid ~ a;|Q;|N so that, for N — oo, we have indeed uny —
(Where pn is the the uniform measure on the set Sy obtained by the union of all these scaled copies).
We now estimate
Fn(un) < N4 Z 601 + E)No_l/d max f.

ij &d
For N large enough, the cubes Q; ; are small and we have maxg, ; f < (1 +¢) fQi,j (1+e)5;@ fQ 1,
hence we get

Fn(puy) < NY99(1 + ¢ ”dZé
ij Qg

Note that we have &; = |Q;|"/?/M ~ N&/del/dai_l/d, whence
. f
timsup Py () <60 +9) Y [ =L = 1+ 9)F ().

This shows, € being arbitrary, the I'-limsup inequality in the case p = >, a;1¢,-

We now need to extend our I'-limsup inequality to other measures y which are not of the form pp = >, a; g,
We need hence to show that this class of measures is dense in energy.

Take now anarbltrary probability p with F'(u) < /oo. Since f is supposed to be stritly positive, this
implies p% > 0 a.e. Take a regular grid of size 6§, — 0, composed of k¢ disjoint cubes @Q; and define
pi =Y ;a;lg, with a; = p(Q;) (one has to define the subcubes in a disjoint way, for instance as products
of semi-open intevals, of the form [0, d;)?). Tt is clear that we have u; — u since the mass is preserved in
every cube, whose diameter tends to 0.

We then compute F'(ug). We have

(Q)>‘1/d.

i = S0 (42

We use the function U(s) = s~ /¢, which is decreasin and convex, with a Jensen’s inequality to obtain

<M|(C§2ii))—1/d _ U(M‘(gj)) < U(][i“ac) < ][ig(luac).

This allows to write
Fue) < 3 ma f16 ]‘; U = mc ) | )

We finish by noting that, for & — oo, we have (maxg, f) [o, U(n*) < (1+ &x) [, fU(u) for e — 0
(depending on the modulus of continuity of f), and hence

F(ug) < (1 +ex)F(p),

which concludes the proof. O

Note that the assumption that € is a cube is just done for simplicity in the I'-limsup, and that it is
possible to get rid of it by suitably considering the “rests” after filling €2 with cubes.



The above proof is a simplified version of that in [?] where f was only supposed to be lsc. Actually, in
[?] (which deals with a similar but different problem) even this assumption is removed, and f is only
supposed to be L!.

A consequence is the following

Proposition 3. Suppose that Sy is a sequence of optimizers for (1) with N — oo. Then he sequence
un weakly-* converges to the measure p which is absolutely continuous with density p equal to cfd/(d+1)
where ¢ is a normalization constant such that [ p = 1.

Proof. We just need to prove that this measure p is the unique optimizer of F'. First note that F' can
only be minimized by an absolutely continuous measure, as singular part do not affect the value of the
functional, so it is better to remove a possible singular part and use the same mass to increase the
absolutely continuous part.

Then, using again the notation U(s) = s~1/d Also write p = ¢f%(@+1) ag in the statement. Then we
have, for p < £4,

P = [0 =cfu (S ) oz (F(52) o) =ev( [ u) = o)

The inequality is due to Jensen’s inequality and is an equality if and only if pu/p is constant, which
proves the claim. ]
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