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Γ-convergence
Let us fix a metric space (X, d). Given a sequence of functionals Fn : X → R ∪ {+∞} we define their
Γ-liminf and their Γ-limsup as two other functionals on X, in the following way.

(Γ−lim inf Fn)(x) := inf{lim inf
n

Fn(xn) : xn → x}, (Γ−lim supFn)(x) := inf{lim sup
n

Fn(xn) : xn → x}.

We say that Fn Γ-converges to F , and we write Fn
Γ→ F , if (Γ− lim inf Fn) = (Γ− lim supFn) = F . Very

often we will write F− instead of Γ− lim inf Fn and F+ instead of Γ− lim supFn.

In practive, proving Fn
Γ→ F requires to prove two facts:

• (Γ−liminf inequality): we need to prove F− ≥ F , i.e. we need to prove lim infn Fn(xn) ≥ F (x) for
any approximating sequence xn → x; of course it is sufficient to prove it when Fn(xn) is bounded;

• (Γ−limsup inequality): we need to prove F+ ≤ F , i.e. we need to find, for every x, a sequence
xn → x such that lim supn Fn(xn) ≤ F (x) or at least, for every ε > 0, find a sequence with
lim supn Fn(xn) ≤ F (x)+ε. We will see later that this inequality can be restricted to suitable dense
subsets. In any cases it can be obviously restricted to the set {F < +∞}, otherwise the inequality
is trivial.

We will prove the following propositions
Among the properties of Γ−convergence we have the following:

• if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any n, then F attains its
minimum and inf Fn → minF ;

• if (xn)n is a sequence of minimizers for Fn admitting a subsequence converging to x, then xminimizes
F

• if Fn is a sequence Γ−converging to F , then Fn +G will Γ−converge to F +G for any continuous
function G : X → R ∪ {+∞}.

Proposition 1. If Fn
Γ→ F then for every subsequence we still have Fnk

Γ→ F .

Proof. Let us take a sequence xnk
→ x corresponding to the indices of this subsequence and let us complete

it to a full sequence using xn = x for all the other indices. We have

lim inf
k

Fnk
(xnk

) ≥ lim inf
n

Fn(xn) ≥ (Γ− lim inf Fn)(x),

which proves that the Γ-liminf of the subsequence is larger than that of the full sequence.
For the Γ-limsup, let us take a recovery sequence xn → x for the full sequence. We then have

lim sup
k

Fnk
(xnk

) ≤ lim supFn(xn) ≤ (Γ− lim supFn)(x) + ε,

thus proving (Γ− lim supFnk
) ≤ (Γ− lim supFn) + ε.

this proves that passing to a subsequence increases the Γ-liminf and reduces the Γ-limsup, but when they
coincide they cannot change, thus proving the claim.



Proposition 2. Both F− and F+ are lsc functionals.

Proof. Let us take x ∈ X and a sequence xk → x as in the statement. We want to prove the semicontinuity
of F−. For each k there is a sequence xn,k such that limn xn,k = xk and lim infn Fn(xn,k) < F−(xk)+2−k.
We can hence choose n = n(k) arbitrarily large such that d(xn,k, xk) < 2−k and Fn(xn,k) < F−(xk) +
2−k+1. We can assume n(k + 1) > n(k) which means that the sets of indices n that we use defines a
subsequence. Consider a sequence x̃n defined as

x̃n =
{
xn,k if n = n(k),
x if n 6= n(k) for all k

We have limn x̃n = x and

F−(x) ≤ lim inf
n

Fn(x̃n) ≤ lim inf
k

Fn(k)(xn(k),k) ≤ lim inf F−(xk),

which proves that F− is lsc.
We want to prove the semicontinuity of F+. We can assume, up to subsequences, that limF−(xk) exists.
For each k there is a sequence xn,k such that limn xn,k = xk and lim supn Fn(xn,k) < F+(xk) + 2−k. This
means that we can hence choose n = n(k) such that for every n ≥ n(k) we have d(xn,k, xk) < 2−k and
Fn(xn,k) < F+(xk) + 2−k+1. We can choose the sequence n(k) such that n(k+ 1) > n(k). We now define
a sequence x̃n defined as

x̃n = xn,k if n(k) ≤ n < n(k + 1).

We have limn x̃n = x and
F+(x) ≤ lim sup

n
Fn(x̃n) ≤ lim

k
F+(xk),

which proves that F+ is lsc.

Proposition 3. If F+ ≤ F on a set D with the following property: for every x ∈ X there is a sequence
xn → x contained in D and such that F (xn)→ F (x), then F+ ≤ F on X.

Proof. Let us take x ∈ X and a sequence xn → x as in the statement. We then write F+(xn) ≤ F (xn)
and pass to the limit, using the semicontinuity of F+ and the assumption F (xn)→ F (x). This provides
F+(x) ≤ F (x), as required.

Proposition 4. If Fn
Γ→ F and there exists a compact set K ⊂ X such that infX Fn = infK Fn for any

n, then F attains its minimum and inf Fn → minF ;

Proof. Let us first prove lim infn inf Fn ≥ inf F . Up to extracting a subsequence, we can suppose that
this liminf is a limit, and Γ-convergence is preserved. Now, take xn ∈ K such that Fn(xn) ≤ inf Fn + 1

n .
Extract a subsequence xnk

→ x0 and look at the sequence of functionals Fnk
whoch also Γ-converge to

F . We then have inf F ≤ F (x0) ≤ lim inf Fnk
(xnk

) = lim inf inf Fn.
Take now a point x, and ε > 0. There exists x→x such that lim supFn(xn) ≤ F (x) + ε. In particular,
lim sup inf Fn ≤ F (x) + ε and, ε > 0 and x ∈ X being arbitrary, we get lim sup inf Fn ≤ inf F .
We then have

lim sup inf Fn ≤ inf F ≤ F (x0) ≤ liminf inf Fn ≤ lim sup inf Fn.

Hence, all inequalities are equalities, which proves at the same inf Fn → inf F and inf F = F (x0), i.e. the
min is attained by x0.

Proposition 5. If Fn
Γ→ F and xn ∈ argminFn and xn → x, then x ∈ argminF .
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Proof. First notice that ⋃n{xn} ∪ {x} is a compact set on which all the functionals Fn attain their
minimum, so we can apply the previous proposition and get inf Fn → inf F . We then apply the Γ-liminf
property to this sequence, thus obtaining

F (x) ≤ lim inf Fn(xn) = lim inf inf Fn = inf F,

which proves at the same time x ∈ argminF and argminF 6= ∅.

Proposition 6. If Fn
Γ→ F , then Fn +G

Γ→ F +G for any continuous function G : X → R ∪ {+∞}.

Proof. To prove the Γ-liminf inequality, take xn → x: we have lim inf(Fn(xn)+G(xn)) = (lim inf Fn(xn))+
G(x) ≥ F (x) +G(x). To prove the Γ-limisupinequality, the same recovery sequence xn → x:can be used:
indeed, lim sup(Fn(xn) +G(xn)) = (lim supFn(xn)) +G(x) ≤ F (x) + ε+G(x).

We then consider some examples
Example 1 Consider X = L2(Ω) and some functions fn ∈ L2(Ω). Consider

Fn(u) :=
{´ 1

p |∇u|
p + fnu if u ∈W 1,p

0 (Ω),
+∞ if not.

Suppose fn ⇀ f . Then we have Fn
Γ→ F where F is defined by replacing fn with f .

This can be proven in the following way. For the Γ-liminf inequality, suppose un → u in L2 and Fn(un) ≤
C. Using the L2 bounds on un and fn we see that theW 1,p norm of un is bounded, so that we can assume
∇un ⇀ ∇u in Lp and, by semicontinuity

´ 1
p |∇u|

p ≤ lim inf
´ 1

p |∇un|p. In thaw concerns the second part
of the integral we have

´
fnun →

´
fu since we have weak convergence of fn and strong of un. We tthen

obtain lim inf Fn(un) ≥ F (u). For the Γ-limsup inequality it is enough to choose u with F (u) < +∞ and
take un = u.
This Γ-convergence result implies the convergence of the minimizers as soon as they are compact for the
L2 strong convergence. This is true for p ≥ 2d

d−2 so that W 1,p compactly embeds into L2. We then deduce
the L2 convergence of the solutions un of ∆pun = fn to the solution of ∆pu = f . Note that the linear
case p = 2 could be easy studied by bounding the norm ||un − u||H1 in termes of ||fn − f ||H−1 (which
tends to 0 since L2 compactly embeds into H−1) but the situation is more complicated in the non-linear
case and Γ-convergence is a useful tool.
As a last remark, we observe that for p ≥ 2d

d−2 the choice of the strong L2 convergence to establish the
Γ-convergence is irrelevant. We could have for instance chosen the weak L2 convergence and deduce the
strong L2 convergence in the Γ-liminf inequality from theW 1,p bound. We could have chosen other norms,
but in this case it would have been necessary to first obtain a bound on ||un||W 1,p .
Example 2 We now consider a more surprising example. We consider a sequence of functions an : [0, 1]→
R such that λ ≤ an ≤ Λ for two strictly positive constants λ,Λ. We then define a functional on L2([0, 1])
via

Fn(u) :=
{´ 1

0 an(x) |u
′(x)|2
2 dx if u ∈W 1,2, u(1) = 0,

+∞ if not.
.

We now wonder what could be the Γ-limit of Fn. A natural guess is to suppose, up to subsequences,
that we have an ⇀ a (weak-* convergence in L∞) and hope to prove that the functional where we
replace an with a is the Γ-limit. If this was true, then we would also have Γ-convergence should we
add

´
fu to the functional, for fixed f ∈ L2, and convergence of the minimizers. The minimizers un

would be characterized by (anu
′
n)′ = f with a transversality condition u′n(0) = 0, so that we have

an(x)u′n(x) =
´ x

0 f(t)dt and hence u′n(x) = (an(x))−1 ´ x
0 f(t)dt. We then see that the weak convergence

of an is not the good assumption, but we should rather require a−1
n ⇀ a−1!!
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We can now prove the following. Suppose that an is such that a−1
n ⇀ a−1, then Fn

Γ→ F , where F is
defined as Fn by replacing an with a.
To prove the Γ-liminf inequality, we write Fn(u) =

´
L(u′n,−1

n )dx, where L : R×R+ is given by L(v, s) =
|v|2
2s . We take a sequence un → u with Fn(un) ≤ C. This boiund implies that un is bounded in H1 and
then u′n ⇀ u′ in L2. We can easily check that L is a convex function of two variables, for instance by
computing its Hessiand, which is given by

D2L(v, s) =
( 1

s − v
s2

v
s2

|v|2
s3

)
≥ 0.

Hence, by semicontinuity, we deduce from a−1
n ⇀ a−1 and u′n ⇀ u′ that we have lim inf Fn(un) ≥ F (u).

To prove the Γ-limsup inequality, given u with F (u) < +∞ (i.e. u ∈ H1), we define un via u′n = a
an
u′

and un(1) = 0. We see that u′n is bounded in L2 and hence u′n ⇀ v. Integrating against a test function
ans using a−1

n ⇀ a−1 we see v = a
au
′ = u′, so that we have u′n ⇀ u′ and, thanks to the final value

un(1) = u(1) = 0, we deduce weak convergence of un to u in H1, and strong in L2. We then have

Fn(un) =
ˆ 1

2anu
′
n · u′n =

ˆ 1
2au

′ · u′n →
ˆ 1

2au
′ · u′ = F (u),

which proves the Γ-limsup inequality.
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