Calculus of Variations and Elliptic Equations

9th class

I'-convergence

Let us fix a metric space (X,d). Given a sequence of functionals F,, : X — R U {400} we define their
I’-liminf and their I-limsup as two other functionals on X, in the following way.

(I'=liminf F,,)(x) := inf{limninf Fo(z,) @ 2 —» 2}, (D=limsup F,)(z) := inf{limsup F,(x,) : , — z}.

We say that F,, I'-converges to F', and we write F, 5 F,if (I' —liminf F},) = (I" — limsup F,,) = F. Very
often we will write F'~ instead of I' — lim inf F}, and F'* instead of I" — lim sup F),.

In practive, proving F), LF requires to prove two facts:

o (T'—liminf inequality): we need to prove F~ > F, i.e. we need to prove liminf,, F},(x,) > F(zx) for
any approximating sequence x, — x; of course it is sufficient to prove it when F,,(z,) is bounded;

o (U—limsup inequality): we need to prove F* < F, i.e. we need to find, for every z, a sequence
x, — x such that limsup, Fy,(z,) < F(x) or at least, for every ¢ > 0, find a sequence with
limsup,, F,(zy,) < F(z)+¢e. We will see later that this inequality can be restricted to suitable dense
subsets. In any cases it can be obviously restricted to the set {F < 400}, otherwise the inequality
is trivial.

We will prove the following propositions

Among the properties of I'—convergence we have the following:

e if there exists a compact set K C X such that infx F,, = infx F, for any n, then F attains its
minimum and inf £}, — min F’;

o if (z,)y is a sequence of minimizers for F,, admitting a subsequence converging to x, then x minimizes

F

o if F}, is a sequence I'—converging to F', then F,, + G will I'—converge to F' 4+ G for any continuous
function G : X — R U {+4o00}.

Proposition 1. If F, L F then for every subsequence we still have Fy,, Lr

Proof. Let us take a sequence x,, — x corresponding to the indices of this subsequence and let us complete
it to a full sequence using z,, = x for all the other indices. We have

limkinf Fo, (xy,) > liminf F,(z,) > (I' — liminf F},)(x),
n
which proves that the I'-liminf of the subsequence is larger than that of the full sequence.
For the I'-limsup, let us take a recovery sequence x, — z for the full sequence. We then have
lim sup Fy,, (2, ) < limsup Fy,(zy,) < (I' — limsup F,)(x) + €,
k

thus proving (I' — limsup F),, ) < (I' — limsup F},) + «.

this proves that passing to a subsequence increases the I'-liminf and reduces the I'-limsup, but when they
coincide they cannot change, thus proving the claim. O



Proposition 2. Both F~ and F* are lsc functionals.

Proof. Let us take x € X and a sequence x; — x as in the statement. We want to prove the semicontinuity
of F~. For each k there is a sequence z,, ;, such that lim,, z,, , = =3, and liminf,, F},(z 1) < F~ (x) + 2k,
We can hence choose n = n(k) arbitrarily large such that d(z,x,z;) < 27k and F,(zp%) < F~(x)) +
27k+1 We can assume n(k + 1) > n(k) which means that the sets of indices n that we use defines a
subsequence. Consider a sequence Z,, defined as

- Tpk if n=n(k),
Iy =
x if n # n(k) for all k

We have lim,, ¥, = x and

F~(z) < lirnninf F.(Z,) < limkinf Froiy (T ) < liminf F~(2y,),

which proves that F'~ is lsc.

We want to prove the semicontinuity of F*. We can assume, up to subsequences, that lim F'~(x) exists.
For each k there is a sequence x,, ; such that lim,, 2, ; = 2} and limsup,, Fy(2n ;) < F1(zg) + 27, This
means that we can hence choose n = n(k) such that for every n > n(k) we have d(z,x,x;) < 27k and
Fo(zng) < FF(zy) + 2771 We can choose the sequence n(k) such that n(k + 1) > n(k). We now define
a sequence I, defined as

Tn =y ifn(k) <n<n(k+1).

We have lim,, Z,, = x and
F* () < limsup Fy (i) < lim F* (zy),

which proves that F'T is lsc.
]

Proposition 3. If FT < F on a set D with the following property: for every x € X there is a sequence
xn, — o contained in D and such that F(z,) — F(z), then F* < F on X.

Proof. Let us take z € X and a sequence x,, — z as in the statement. We then write F*(z,) < F(x,)
and pass to the limit, using the semicontinuity of F* and the assumption F(x,) — F(z). This provides
F*(z) < F(x), as required. O

Proposition 4. If F, L F and there exists a compact set K C X such that infx F,, = infg F}, for any
n, then F attains its minimum and inf F,, — min F';

Proof. Let us first prove liminf, inf F;, > inf F'. Up to extracting a subsequence, we can suppose that
this liminf is a limit, and I'-convergence is preserved. Now, take z, € K such that F,(z,) < inf F,, + %
Extract a subsequence z,, — xo and look at the sequence of functionals F;,, whoch also I'-converge to
F. We then have inf F' < F(zg) < liminf F},, (z,, ) = liminfinf F,.

Take now a point z, and ¢ > 0. There exists z_,x such that limsup F,,(z,) < F(z) + . In particular,
limsupinf F,, < F(z) + ¢ and, ¢ > 0 and « € X being arbitrary, we get limsupinf F,, < inf F.

We then have
limsupinf F, < inf F < F(xg) < liminfinf F,, <limsupinf F,.

Hence, all inequalities are equalities, which proves at the same inf F,, — inf F' and inf F' = F'(z9), i.e. the
min is attained by xg. O

Proposition 5. If F, L Foand Tn € argmin F,, and x,, — x, then x € argmin F.



Proof. First notice that |J,{z,} U {z} is a compact set on which all the functionals F), attain their
minimum, so we can apply the previous proposition and get inf F;, — inf F'. We then apply the I'-liminf
property to this sequence, thus obtaining

F(z) < liminf F,,(z,) = liminf inf F}, = inf F,
which proves at the same time x € argmin F' and argmin F' # (). O

Proposition 6. If F}, EN F, then F, + G LFrya for any continuous function G : X — R U {+o0}.

Proof. To prove the I-liminf inequality, take x,, — x: we have lim inf(F},(z,,)+G(z,)) = (liminf F),(z,))+
G(x) > F(z) + G(x). To prove the I'-limisupinequality, the same recovery sequence x,, — x:can be used:
indeed, lim sup(F,,(z,,) + G(z,,)) = (limsup F,(x,)) + G(z) < F(x) + ¢ + G(x). O

We then consider some examples
Example 1 Consider X = L?(Q) and some functions f,, € L?(£2). Consider

J VP + fou i w e WP (),

400 if not.

Fp(u) :== {

Suppose fp, — f. Then we have F), L F where F is defined by replacing f, with f.

This can be proven in the following way. For the I-liminf inequality, suppose u, — u in L? and F,(u,) <
C. Using the L? bounds on u, and f,, we see that the W1 norm of u,, is bounded, so that we can assume
Vu, — Vu in LP and, by semicontinuity [ %\VUP’ < liminf [ %]Vun]p . In thaw concerns the second part
of the integral we have [ fou, — [ fu since we have weak convergence of f,, and strong of u,,. We tthen
obtain liminf F,,(u,) > F(u). For the I'-limsup inequality it is enough to choose u with F'(u) < +o0 and
take u, = u.

This I'-convergence result implies the convergence of the minimizers as soon as they are compact for the
L? strong convergence. This is true for p > dQ—_dQ so that WP compactly embeds into L?. We then deduce
the L? convergence of the solutions u,, of Apuy, = f to the solution of A,u = f. Note that the linear
case p = 2 could be easy studied by bounding the norm ||u, — u||g1 in termes of ||f, — f||g-1 (which
tends to 0 since L? compactly embeds into H 1) but the situation is more complicated in the non-linear
case and I'-convergence is a useful tool.

As a last remark, we observe that for p > dz—_dQ the choice of the strong L? convergence to establish the
I'-convergence is irrelevant. We could have for instance chosen the weak L? convergence and deduce the
strong L? convergence in the I-liminf inequality from the W' bound. We could have chosen other norms,
but in this case it would have been necessary to first obtain a bound on ||uy,||y1.p.

Example 2 We now consider a more surprising example. We consider a sequence of functions a,, : [0,1] —
R such that A < a,, < A for two strictly positive constants A\, A. We then define a functional on L*(]0, 1]
via

o an(@) DL gy i e W2, 0(1) =0,

+00 if not.

Fo(u) := {

We now wonder what could be the I'-limit of F,. A natural guess is to suppose, up to subsequences,
that we have a, — a (weak-* convergence in L) and hope to prove that the functional where we
replace a, with @ is the I-limit. If this was true, then we would also have I'-convergence should we
add [ fu to the functional, for fixed f € L?, and convergence of the minimizers. The minimizers u,
would be characterized by (a,ul) = f with a transversality condition ] (0) = 0, so that we have
an(@)up(x) = [ f(t)dt and hence uj,(z) = (an(z))~! [ f(t)dt. We then see that the weak convergence
of ay,, is not the good assumption, but we should rather require a,, L g1



We can now prove the following. Suppose that a, is such that a;' — a=!, then F, RN F, where F is
defined as F), by replacing a, with a.

To prove the I'-liminf inequality, we write F,(u) = [ L(ul,,,!)dz, where L : R x R} is given by L(v,s) =
%. We take a sequence u, — u with Fj(u,) < C. This boiund implies that u, is bounded in H L and
then v/, — u/ in L?. We can easily check that L is a convex function of two variables, for instance by

computing its Hessiand, which is given by
1 v
D?L(v,s) = ( S ) > 0.

Hence, by semicontinuity, we deduce from a,! — a~! and u/, — v’ that we have lim inf F}, (u,) > F(u).

To prove the I-limsup inequality, given u with F(u) < +oo (i.e. u € H'), we define u, via u), = o
and u, (1) = 0. We see that u/, is bounded in L? and hence u/, — v. Integrating against a test function
ans using a,' — a~! we see v = %’ = o/, so that we have uj, — u and, thanks to the final value

un(1) = u(1) = 0, we deduce weak convergence of u, to u in H', and strong in L2. We then have

1 1 1
E,(un) = / Qanu; cul, = /Qau' cul, — / iau' v’ = F(u),

which proves the I'-limsup inequality.



