
ENS Lyon and Université Claude Bernard Lyon 1, M2A
December 1st, 2020

Calculus of Variations and Elliptic PDEs
–
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–

Exercice 1 (6 points). Consider the problem

min
{∫ π/2

0

(
u′(t)2 + u(t)2 + 2 sin(t)u(t)

)
dt : u ∈ C1([0, π/2]), u(0) = 0

}
.

Prove that it admits a minimizer, that it is unique, and find it.

Solution
The function L given by L(t, x, v) = |v|2 + |x|2 + 2 sin(t)x is convex in (x, v). Hence, any solution of
the Euler-Lagrange equation of the problem coupled with the suitable boundary conditions, is also
a minimizer. considering that we have ∂vL(t, x, v) = 2v and partialxL(t, x, v) = 2x + 2 sin(t) the
Euler-Lagrange system is 

2u′′ = 2u+ 2 sin(t),
u(0) = 0,
u′(π/2) = 0.

It is easy to see that the solution is of the form u(t) = Aet +Be−t − 1
2 sin(t) and find A+B = 0 and

Aeπ/2 = Be−π/2, hence A = B = 0. The solution is then given by u(t) = −1
2 sin(t).

This function is C1 and solves the Euler-Lagrange system, it then minimizes the functional among
any admissible competitor. Uniqueness can be justified either using the strict convexity of L in (x, v),
or just be noting that this is the only solution of the Euler-Lagrange system.

Exercice 2 (8 points). Let Ω be a bounded open subset of Rd. Consider the following minimization
problem

min
{∫

Ω
(1 + eu)(1 + |∇u|2)dx : u ∈ X

}
.

1. If X = H1(Ω), prove that the problem has no solution.

2. If X = H1
0 (Ω), prove that the problem admits at least a solution ū, and prove ū ≤ 0.

3. Via a suitable change of variable v = g(u) prove that the minimizer ū is unique, and that we
have ū ∈ C∞(Ω) (interior regularity only).

Solution

1. If X = H1(Ω), we can easily see that the inf of the problem is |Ω|. Indeed, for every function
u ∈ X we have F (u) >

∫
1 = |Ω (let F be the functional we minimize). Moreover, F (−n) =

|Ω|(1 + e−n) → |Ω (where −n is the constant function −n). Yet, no function u can satisfy the
equality F (u) = |Ω| since this would imply eu = 0.



2. If X = H1
0 (Ω), we take a minimizing sequence un. From the bound from above on F (unà) we

deduce that
∫
|∇un|2 ≤

∫
(1 + |∇un|2) ≤ F (un) is also bounded. Hence, un is bounded in H1

0
and admits a subsequence which weakly converges in H1 and strongly in L2. Since the integrand
L(x, v) = (1 + ex)(1 + |v|2) is continuous in (x, v) and convex in v, the functional F is l.s.c. for
this convergence, and the limit ū is a minimizer.
Let us compare ū and −|ū|. The modulus of their gradient is the same, so that we have

(1 + e−|ū|)(1 + |∇|ū||2) ≤ (1 + eū)(1 + |∇ū|2),

with strict inequality where−|ū| < ū, i.e. where ū > 0. This proves that we have F (−|ū|) < F (ū)
unless ū ≤ 0 a.e. Since ū is a minimizer, we deduce ū ≤ 0.

3. We can write F (u) in the form F (u) =
∫
|h(u)|2|∇u|2 + |h(u)|2, where h(s) =

√
1 + es. Take g

the anti-derivative of h, i.e. g(0) = 0 and g′ = h. Do not look for an explicit expression of g.
Set v = g(u) and F̃ (v) = F (u). The problem becomes then

min F̃ (v) =
∫
|∇v|2 + φ(v)

where φ = |h2| ◦ g−1. Note that g is a C∞ diffeomorphism, since g ∈ C∞ and g′ ≥ 1. The
function φ is also C∞.
The Euler-Lagrange equation of the problem is

2∆v = φ′(v)

and a simple bootstrap procedure proves v ∈ C∞. Indeed, we start from v ∈ H1 and we can
prove by induction v ∈ Hk since v ∈ Hk ⇒ v ∈ Hk+2 by elliptic regularity. Hence, the minimizer
ū is also C∞.
Uniqueness can be proven once we check that φ is convex, and this makes F̃ strictly convex on
X. Let us compute φ′. We have

φ(s) = 1 + eg
−1(s), φ′(s) = eg

−1(s)

g′(g−1(s)) φ′(g(s)) = es

h(s) = es√
1 + es

.

The function φ is convex if and only if φ′ is increasing, which is also equivalent to φ′ ◦ g being
increasing. A simple computation proves that s 7→ es

√
1+es is increasing since its derivative is

es+ 1
2 e

2s

(1+es)3/2 and is positive, hence φ is convex.

Exercice 3 (6 points). Given a continuous function L : R × Rn → R, positive and convex in the
second variable, and a bounded open domain Ω ⊂ Rn, prove that the following minimization problem
admits a solution

min
{

Per(A) +
∫

Ω
(|∇u|p + |u|p) +

∫
A
L(u,∇u) : u ∈W 1,p(Ω), A ⊂ Ω, |A| = |Ω|2

}
,

where Per(A) stands for the perimeter - in the BV theory - of A, and the minimization is performed
over u and A.

Solution
Sorry, we should have written p > 1. . . Also, it is maybe not clear that, even if we impose A ⊂ Ω, we
compute the perimeter of A as a subset of of Rn (i.e., we count the part of the boundary which is on
∂Ω).
Take a minimizing sequence (An, un). From the bound of the functional we obtain that un is bounded
in W 1,p and that IAn is bounded in BV . We can extract a subsequence such that un ⇀ u in W 1,p

and IAn → v strongly in L1 and a.e. Moreover, by pointwise a.e. convergence, we see that v is



also an indicator function v = IA. The strong convergence in L1 impies
∫
v = |Ω|/2, so that A

also satisfies the constraint. We can also assume ∇IAn ⇀ ∇v = ∇IA as measures. We then have
Per(A) ≤ lim infn Per(An) and

∫
Ω (|∇u|p + |u|p) ≤ lim infn

∫
Ω (|∇un|p + |un|p). In order to obtain

the lower semicontinuity of the functional and prove existence we just need to prove that the term∫
A L(u,∇u) is also l.s.c.
This term can be written as

∫
IAL(u,∇u). Consider the function L̃(t, x, w) := t+L(x,w). This

function is continuous in (t, x, w) and convex in w. Since (IAn , un) converges strongly to (IA, u) and
∇un weakly to ∇u, we obtain the desired lower semicontinuity, and hence the existence of a minimizer.

Exercice 4 (7 points). For given f ∈ L1(Ω) with
∫

Ω f(x)dx = 0 and p > d consider the functions up
which solve

min
{1
p

∫
|∇u|pdx+

∫
fu : u ∈W 1,p(Ω)

}
.

Prove that the sequence up is compact in C0(Ω) and that we have, up to extracting subsequences,
up → u∞ uniformly, where u∞ is a solution of the following problem

min
{∫

fu : u ∈ Lip1(Ω)
}
,

where Lip1 is the space of Lipschitz functions with Lipschitz constant at most 1.

Solution
It is clear that the minimizer up is not unique, and that we can add constants to it. Let us choose
the minimizers up with 0 average. This should have been clarified in the statement, sorry. Also, We
should add an assumption on Ω, which should be supposed to be bounded and sufficiently smooth.

Let us fix an exponent p0 > d. For any p > p0, we have (by comparing up to the constant function 0)

1
p
||∇up||pLp ≤ ||f ||L1 ||up||L∞ .

We now use the Jensen inequality in order to obtain
∫

Ω h
p0 ≤ (

∫
Ω h

p)p0/p|Ω|1−p0/p for any h ≥ 0, i.e.
||h||Lp0 ≤ |Ω|1/p0−1/p||h||Lp . Hence we have

||∇up||Lp0 ≤ |Ω|1/p0−1/p||∇u||Lp ≤ |Ω|1/p0−1/pp1/p||f ||1/pL1 ||up||1/pL∞ .

We then use ||up||L∞ ≤ C||∇up||Lp0 , which is a consequence of the injection of W 1,p0 into L∞ and of
the choice of up as a zero-average minimizer, and obtain

||∇up||1−1/p
Lp0 ≤ |Ω|1/p0−1/pp1/p|(C|f ||L1)1/p.

Note that the constant C here depends on p0.
By raising both sides to the power p′ = p/(p− 1) we obtain

||∇up||Lp0 ≤ |Ω|p
′/p0−1/(p−1)p1/(p−1)|(C|f ||L1)1/(p−1).

The r.h.s is bounded, hence the norm ||∇up||Lp0 is also bounded independently of p. The compact
injection of W 1,p0 into C0 provides the desired compactness.
We can then assume, up to subsequences, that we have uniform convergence up → u. The function u
also belongs to W 1,p0 and satisfies

||∇u||Lp0 ≤ |Ω|1/p0 ,

which can be obtained by passing to the limit p→∞ (and hence p′ → 1) the previous inequality. We
then use the fact that p0 > d is aribtrary and let p0 →∞. we then obtain

||∇u||L∞ ≤ 1



and we have u ∈ Lip1. We must now prove that the function u minimizes
∫
fu among functions in

Lip1. Take v ∈ Lip1. We can write∫
fup ≤

1
p

∫
|∇up|pdx+

∫
fup ≤

1
p

∫
|∇v|pdx+

∫
fv ≤ |Ω|

p
+
∫
fv.

We take the limit p→∞ and we obtain ∫
fu ≤

∫
fv,

which is the desired inequality.


