Calculus of Variations and Elliptic PDEs

Final Exam

3h duration. All kind of documents (notes, books...) are authorized, but not communication devices. The total number of points is much larger than 20, so attacking only some exercises could be a reasonable option. The exercises are not necessarily ordered by difficulty.

Exercice 1 (4 points). Consider the two optimization problems

$$(P_{\rm D}) \quad \min\left\{\int_0^1 \left(|u'(t)|^2 + |u(t) - t|^2\right) dt \quad : \quad u \in C^1([0, 1]), \ u(0) = 0, u(1) = 1\right\}, \\ (P_{\rm N}) \quad \min\left\{\int_0^1 \left(|u'(t)|^2 + |u(t) - t|^2\right) dt \quad : \quad u \in C^1([0, 1])\right\}.$$

Prove that u_D given by $u_D(t) = t$ is a solution of (P_D), and that it is its unique solution. Then, find the solution u_N of (P_N).

Exercice 2 (5 points). Given a bounded and smooth domain $\Omega \subset \mathbb{R}^d$ and a function $u_0 \in H^1(\Omega)$, prove that we have

$$\min\left\{\int_{\Omega} \left(\frac{|\nabla u|^2}{2} + |u - u_0|\right) dx : u \in H^1(\Omega)\right\}$$
$$= \max\left\{\int_{\Omega} \left(-\frac{|v|^2}{2} + v \cdot \nabla u_0\right) dx : v \in L^2(\Omega; \mathbb{R}^d), \nabla \cdot v \in L^{\infty}, ||\nabla \cdot v||_{L^{\infty}} \le 1\right\}.$$

Prove that both problems admit a unique solution, and deduce that the optimizer of the first problem is a function u such that $|\Delta u| \leq 1$, $\Delta u = 1$ on $\{u > u_0\}$, and $\Delta u = -1$ on $\{u < u_0\}$.

Exercice 3 (10 points). We consider the following optimization problem

(P)
$$\min\left\{M(u) := \int_{\mathbb{R}^3} u^3(x) dx , \ u \in \mathcal{S}(\mathbb{R}^3)\right\}$$

where $\mathcal{S}(\mathbb{R}^3)$ is the set of non-trivial nonnegative subsolutions of $\Delta u + u^3 = 0$, i.e.

$$\mathcal{S}(\mathbb{R}^3) = \left\{ u \in L^3(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3) \cap H^1_{loc}(\mathbb{R}^3), u \ge 0, \Delta u + u^3 \ge 0 \right\} \setminus \{0\},$$

(the inequality $\Delta u + u^3 \ge 0$ has to be considered in its weak form $-\int \nabla u \cdot \nabla \psi + \int u^3 \psi \ge 0$ for every non-negative test function $\psi \in H^1$ with compact support).

- 1. Prove that $\mathcal{S}(\mathbb{R}^3)$ is non-empty and that, if g denotes the Gaussian function $g(x) = e^{-|x|^2/2}$ and A > 0 is a constant, the function Ag belongs to $\mathcal{S}(\mathbb{R}^3)$ if and only if $A \ge e$.
- 2. Prove that for every $\lambda > 0$ if $u \in \mathcal{S}(\mathbb{R}^3)$ the function u_{λ} defined via $u_{\lambda}(x) = \lambda u(\lambda x)$ also belongs to $\mathcal{S}(\mathbb{R}^3)$ and $M(u_{\lambda}) = M(u)$ and deduce that one can construct a minimizing sequence $(u_n)_n$ for (P) such that $||u_n||_{L^{\infty}} = 1$ for every n.
- 3. In arbitrary dimension d (not necessarily d = 3 in this question), prove that there exists a constant C = C(d) such that whenever u satisfies $\Delta u \ge -1$ then $R \mapsto \int_{B(x_0,R)} u(x)dx + CR^2$ is nondecreasing for every x_0 and admits a limit as $R \to 0$. Prove that such a limit, as a function of x_0 , is a representative of u and that for this representative we have $\int_{B(x_0,R)} u(x)dx \ge u(x_0) CR^2$. Also prove that the same representative is upper-semicontinuous.

- 4. Again in arbitrary dimension, prove that for every $p \in [1, \infty)$ and every function $u \in L^p(\mathbb{R}^d)$ satisfying $\Delta u \geq -1$, if we choose the representative described in the previous question, then we have $\lim_{|x|\to\infty} u(x) = 0$.
- 5. Deduce that (P) admits a minimizing sequence $(u_n)_n$ made of upper-semicontinuous functions functions u_n tending to 0 at infinity and such that $u_n(0) = \max u_n$ and $\int_{B(x_0,R_0)} u_n(x) dx > \frac{1}{2}$ for a certain radius R_0 independent of n.
- 6. Prove that such a minimizing sequence is bounded in $H^1_{loc}(\mathbb{R}^3)$ and deduce that it admits a subsequence which locally weakly converges in H^1 to a function $\bar{u} \in S$.
- 7. Prove that \bar{u} is a solution of (P).
- 8. Suppose that, in an open set $\Omega \subset \mathbb{R}^3$, we have $\Delta \bar{u} + \bar{u}^3 = f \in C^0(\Omega)$. Prove that the optimality of \bar{u} implies f = 0 in Ω and deduce that the solution of (P) is not of the form u = Ag.

Exercice 4 (4 points). Given a function $u \in L^1(\mathbb{R}^d)$ and a number R > 0, define a function $a_R[u]$ as follows: $a_R[u](x) := \int_{B(x,R)} u(y) dy$. Suppose that a function $u \in H^1_{loc}(\mathbb{R}^d)$ satisfies u > 0 a.e. and

$$\nabla \cdot (a_R[u]\nabla u) = \frac{u}{1+u}$$

Prove that we have $u \in C^{\infty}(\mathbb{R}^d)$.

Exercice 5 (7 points). Take $X = \{u \in L^1([-1, 1]) : 0 \le u \le 1 a.e.\}$ and define a family of functionals on X, indexed by $\varepsilon > 0$, as follows:

$$F_{\varepsilon}(u) = \begin{cases} \frac{\varepsilon}{2} \int_{-1}^{1} |u'(t)|^2 dt + \frac{1}{2\varepsilon} \int_{-1}^{1} u^2(t)(1-u(t))^2 dt & \text{if } u \in H_0^1([-1,1]) \text{ and } u(0) = 0, \\ +\infty & \text{if not.} \end{cases}$$

Also define the functional F as follows: if u is the indicator function of a union of intervals whose closures are disjoint and which do not contain 0 in their interior, then F(u) is 1/6 times the number of endpoints of these intervals (i.e. 1/3 times the number of intervals); if u is the indicator function of a union of intervals whose closures are disjoint and such that one of them contains 0 in its interior, then F(u) is 1/6 times the number of endpoints of these intervals increased by 2 (i.e. 1/3 plus 1/3 times the number of intervals); otherwise $F(u) = +\infty$.

Prove that we have $F_{\varepsilon} \xrightarrow{\Gamma} F$ for the L^1 strong convergence on X.