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Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much
larger than 20, which means that attacking only some exercises could be a reasonable option.
The exercises are not necessarily ordered by difficulty.

Exercice 1 (6 points). Find the solution of the problem

T I(¢ 2
min {/ ecos(t) <% + u(t)(1 — cos(t) — COS2(t))> dt : weC(0,7]), u(0) = 0} ,
0
properly justifying its minimality and its uniqueness.

Answer

Let us write the Euler-Lagrange equation of the problem. Using

L(t, z,v) = ") (z}; + (1 — cos(t) — COS2(t))>

we see that the equation, together with its boundary conditions, is

(e«5W/ (1)) = e« (1 — cos(t) — cos?(t)),
u(0) =0,

ecos(t)u/(ﬂ_) —0.
Expanding the first equation we obtain
u (t) — sin(t)u/(t) = 1 — cos(t) — cos®(t)).

We look for a solution in the form w(t) = Asin(t) + B cos(t) + C' (no guaranee that the solution will
actually be of this form, but we try). The boundary conditions impose B + C' =0 and A = 0. Hence
we look for a solution in the form u(t) = B(cos(t) —1). In order for this function to solve the equation
we need —B cos(t) + Bsin?(t) = 1 — cos(t) — cos?(t)), and we can observe that B = 1 provides (by
chance) a solution. This solution is a C'! function.

Hence the function wu(t) = cos(t) — 1 solves the Euler-Lagrange equation of the problem. Since L
is convex in both v and z, solving the Euler-Lagrange equation is both necessary and sufficient for
being a minimizer. Thus, this function u is a minimizer. Since we found a solution to the equation
by guessing it, we have noidea if other solutions exist. Yet, we observe that L is strictly convex in
v, which implies that if two minimizers u; and wug exist we should have v} = ) a.e. The difference
u1 — ug is then constant, and using the intiial boundary condition we obtain u; — us = 0, so that the
minimizers is finally unique.

Exercice 2 (4 points). Let  be a bounded open subset of R?. Consider the minimization problem

min {/Q (\/u(x)4 + [Vu(z)|* + cos(u(x) — g(x)) + \/1 + u(a;)QIVu(x)P) dx : u € H&(Q)} ,

where ¢ is a given measurable function defined on 2. Prove that the problem has a solution.



Answer

We consider the function L given by

L(z,u,v) = \/u* + |[v|* 4+ cos(u — g(x)) + /1 + u?|v)|?

and we see that the functional to minimize has the form

J(u) = J(u, Vu), where J(u,v) / L(z,u(x),v(x))dz.

The function L is such that L > 0 (since \/u* + [v]* > 0, cos(u—g(z)) > —1 and /1 + u?[v[?> > 1) and
is continuous in u and convex in v (just use the convexity of v — /1 + |v|? possibly composed with
powers larger than one or multiplications by a positive constant). Hence, the lower semicontinuity
theorems we proved in class show that .J is lower semicontinuous for the strong L? convergence of
v and the weak L? convergence of v. In particular, J is lower semicontinuous for the weak H'
convergence. We now take a minizing sequence u,, such that J(u,) — inf J and we want to extract
a weakly converging subsequence. We use L(x,u,v) > |ul? (just keep only the first term and remove
lv[* in the square root) as well as L(z,u,v) > |v|? (now, remove |u|* in the square root). This implies
L(z,u,v) > $(Jul® + [v]*) and J(u) > 3|u||%,. Hence, every minimizing sequence is bounded in H'
and we can extract a weakly converging subsequence. The limit still belongs to H¢, which is a colsed
subspace, hence also weakly closed because it is convex.

Exercice 3 (5 points). Consider the function f: R — R given by f(z) = z—; + cos(x). Prove that f

is strictly convex and that f* is a C! function of the form f*(y) = % + h(y), where h satisfies |h| < 1,
h(0) = —1 and A/(z — sin(z)) = sin(x). Find the value of f* at all the points y = kx for k € Z.

Answer

We compute f’ and f”, obtaining f’(xz) = x —sin(z) and f”(x) = 1 —cos(z). The function f is convex
since f” > 0. Moreover, f” only vanishes at isolated points, so there is no interval on which f is affine,
and hence f is strictly convex. for the same reason f’ is strictly increasing. We also not that we have
1/(0) = 0, so that 0 is a minimizer of f and hence min f = f(0) = 1.

Of course f* is convex; for every x € df*(y) we also have y € 9f*(z) i.e. y = f/'(z). Since f’ is strictly
increasing for every y there is at most one such an x, so that the subdifferential of f* at each point
only contains one point, and f* is hence C'.

From —1+ ¢ < f <1+ g, where g(x) = %, we deduce 1+ g* > f* > —1+ ¢* and using ¢*(y) = y2—2
we obtain f*(y) = y; + h(y) where h satisfies |h| < 1.

We have f*(0) = sup, —f(z) = —min f = —1, so that we have h(0) = —1.

From the relation (f*)" o f' = id we obtain f'(x) + h'(f'(x)) = x, which can be rewritten as h'(z —
sin(z)) = sin(z). We can then consider the function = — H(z) := h(z — sin(x)). We have H(0) =
h(0) = —1 and H'(x) = /(2 — sin(z))(1 — cos(x)) = sin(x)(1 — cos(z)). Hence we have

h(kr) = H(km) = —1+ /0 " in() (1 — cos(t))di = —1 + /0 (bt

where we removed the integral of sin(t) cos(t) since this function is m—periodic with zero average on
each period. Hence we obtain

h(km) = H(kr) = —1 + [— cos(t)]5™ = — cos(km) = —(—1)F.
We then have f*(kn) = %772 — (=1)k.

Exercice 4 (12 points). Let T? be the d-dimensional torus. Consider the following minimization
problem

inf{Jf(u) - /Q <%|Vu(a:)|3+ f(x)u(x)2)) v ue W1’3(’Jl‘d)},

where f is a given Lipschitz continuous function on T¢.



1. Find all the solutions of the problem when f is the zero function.

2. Prove that when [ f(z)dx < 0 there is no solution.

3. Prove that when [ f(z)dx = 0 but f is not the zero function there is no solution.

4. Assume [ f(x)dz>0: prove that there exists a minimizing sequence (uy ), with [ f(z)u,(x)dz=0.

5. Assume [ f(z)dx # 0: prove the following Poincaré-type inequality: there exists a constant C'
such that |[ul|zs < C||Vul|ys for all functions u € W13(T%) such that [ f(z)u(x)dz = 0.

6. Assuming [ f(z)dx > 0, prove that the problem admits a solution.

7. Prove that the functional J; is convex if and only if f > 0 and prove, when f is not everywhere
nonnegative but [ f(z)dx > 0, that the solution is not unique.

8. Write the PDE satisfied by the solutions (Euler-Lagrange equation).

9. Prove that we have |Vu|'/2Vu € H*(T?). Can we weaken the assumption on f in order to obtain
the same result (replacing f € Lip with f € W' and for which p)?

Answer

1. When f is the zero function we have Jy > 0 and J;(0) = 0. The minimum is thus 0 and it is
realized by all the constant functions, and only by them.

2. Set a := [ f(x)dz < 0. We can take u = ¢ constant and we have J;(u) = ac?. Sending ¢ — oo
we obtain inf Jy = —o0, so that the minimum is not attained.

3. We expand J¢(u + ¢), where c is a constant: we obtain J¢(u + ¢) = Jy(u) + 2¢ [ f(z)u(x)dz +
¢® [ f(z)dz. Using [ f(z)dz = 0 we have J(u+ c) = J(u) + 2ca where a = [ f(x)u(x)dz. If f
is not the zero function we can choose u such that a # 0. In this case J¢(u + ¢) is an unbounded
affine function of ¢, which proves that we have again inf J; = —oo, and the minimum is not
attained.

4. We use again the expansion of J¢(u + c¢) = J(u) + 2¢ [ f(z)u(x)dz + ¢ [ f(z)dz. We see that
this quantity is a second-order polynomial in ¢ which admits a minimum because we supposed
intf(z)de > 0. If u, is a minimizing sequence, we can produce a new minimizing sequence
by taking @, = u, + ¢, and choosing ¢, so that J¢(u, + ¢,) = min. Jy(u, + ¢). Such a value
¢, exists. Renaming the functions, this means that we can assume that our new minimizing
sequence, that we now call u,, is such that for every n the minimum min. J¢(u, + c) is attained
for ¢ = 0. Taking the derivative of the above expansion this means [ f(x)un(z)dz = 0.

5. The desired Poincaré-type inequality can be proven by contradiction. It it does not hold, then
for every k we find a function uy with ||lug||rs > E||Vug||ps and [ f(z)ug(z)de = 0. We can
normalize uy, so that ||uy||;s = 1. In this way, the sequence wuy, is bounded in W3 and weakly
converges, up to a subsequence, to a limit u. This limit satisfies ||Vu||;s = 0 and hence u is a
constant. By compact embedding of W13 into L3 we also have 1 = |uy||;s — |u||z3, so that w is
not the zero constant. On the other hand, u also satisfies [ f(z)u(z)dx = 0 but this is impossible
because u is a non-zero constant and [ f(x)dx # 0. Hence the desired inequality holds.

6. We assume [ f(z)dz > 0 and take a minimizing sequence u,, with the extra property [ f(x)uy(z)dz=
0. We then observe that, applying first a Holder inequality with exponents 3/2 and 3 to the sec-
ond term, and then the Poincaré-type inequality that we just proved, we have for this minimizing

sequence
1 1
Jr(un) = gl\VunH%:s — [/ llzslfunl|Fs > g\qunllia = Cl[Vunl[7.

This shows that || Vuy,||7s has to stay bounded because the positive term exploses faster than the
negative one in the right hand side. Hence u,, is bounded in W3 (using again the Poincaré-type



inequality) and admits subsequence weakly converging to some u. We then have ||[Vu||;s <
lim inf, |[Vuy,||rs and [ fu2 — [ fu? since the weak convergence in W13 implies strong conver-
gence in L?. We then obtain Jf(u) < liminf, J¢(u,) and u is a minimizer.

. If f >0, the functional Jy is of course convex. On the other hand when f is not everywhere
nonnegative, we can consider a function ¢ € C° supported on an open set where f < 0
(remember that f is supposed to be continuous). We then consider t — Jy(tp) = 1t + cot? and
we observe that we have cz = [ fp? < 0. This quantity cannot be convex in a neighborhood of
t = 0 because the second-order term has a negative sign. Hence J; is not convex. We observe
moreover that this also shows that 0 is never a solution of the minimization problem unless
f > 0. In the case where f is not everywhere nonnegative but [ f(xz)dz > 0, we consider a
minimizer u and its opposite —u. Thanks to J¢(u) = Jy(—u), we observe that we have two
minimizers (since w is not the zero function), so that the minimizer is not unique.

. The PDE satisfied by the solutions (Euler-Lagrange equation) is

Asz(u) :=V - (|Vu|Vu) = 2fu.

. The results based on regularity via duality that we proved in class show that whenver we have
Apu = g and g € W4 (the exponent g being the dual of p, we obtain (interpreting u as
thesolution of a convex variaitonal problem and using its dual as well) |Vu[P/2~1Vu € H'. Here
we just need to guarantee 2fu € W5h3/2. In this case this is easy because we have f € W1 and
u € W3, so that the product fu is W3 and hence W'3/2 (indeed, we have V(fu) = fVu+V fu
and we use the boundedness of both f and Vf and the L? integrability of  and Vu). The
assumption on f can be weakened, as we only need fVu,V fu € L*?. Using Vu € L* we have
\Vu]3/2 e L2, so that the condition on fVu is satisfied whenever f3/2 € L2 ie. f e L3. For
the conditon on V fu we distinguish according to the dimension. If the dimension is 1 or 2 then
w € W3 implies u € L™, so that we just need Vf € L3/2. In this case f € W%/2 is thus
sufficient because it would imply, both in the 1D and in the 2D case, f € L3. If the dimension
is 3 we have u € LP for every p so that in order to obtain V fu € L3/? we just need Vf € L" for
some 7 > 3/2. In this case this also implies f € L3. Finally, if the dimension d is at least 4, we
use u € L3, where 3* = 3d/(d — 3) and we need Vf € L3%/(4+3) Note that W34/ (d+3) exactly
embeds into L3, so that in this case we also guarantee f € L3. Summarizing, we can replace the
assumption f € W1 with

o« feWL/2ford=1,2,
o fEWL for some r > 3/2if d = 3,
o [ e Wh3/(dH3) for 4 > 4,



