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Calculus of Variations and Elliptic PDEs
–

Mid-Term Examination
–

All kind of documents (notes, books. . . ) are authorized. The total number of points is much larger than 20,
which means that attacking only some exercises could be a reasonable option.
The exercises are not necessarily ordered by difficulty.

Exercice 1 (8 points). Given ε > 0 and a function f : [0, π]→ R consider the problem

min
{∫ π

0

ε

2 |u
′(t)|2 + 1

2ε |u(t)− f(t)|2dt : u ∈ C1([0, π])
}
.

We consider two cases.
In case a) the function f is given by f(t) = cos(t).
In case b) the function f is given by

f(t) =


1 if t < π/2,
0 if t = π/2,
−1 if t > π/2.

In both cases find the solution uε of the problem, properly justifying its minimality and its uniqueness,
and prove that we have limε→0 uε = f , at least pointwisely. In which cases is this convergence uniform?

Answer Let us write the Euler-Lagrange equation of the problem. Using

L(t, x, v) = ε

2 |v|
2 + 1

2ε |x− f(t)|

we see that the equation, together with its boundary conditions, is
ε2u′′ = u− f
u′(0) = 0,
u′(π) = 0.

Let us solve it in the two cases. For simplicity, we set n = ε−1

In case a) we have u(t) = Aent + Be−nt + C cos t, where the last term comes from a particular
solution. In order to satisfy the equation we need C cos t to be indeed a particular solution, so we
need −ε2C = C − 1, i.e. C = (1 + ε2)−1. In order to satisfy the boundary conditions, using that
the derivative of the cosinus vanishes at t = 0, π, we need nA − nB = 0, i.e. A = B, and then
nAenπ − nBe−nπ = 0, which finally provides A = B = 0. The solution is then uε(t) = cos(t)/(1 + ε2)
and it is indeed C1, and converges uniformly to f as ε→ 0. The optimality of uε is guaranteed by the
convexity of the functional. Also note that it was possible to guess the solution, by directly putting
A = B = 0, and the strict convexity of the functional would have automatically guaranteed that it is
the only solution.
In case b) we have to solve ε2u′′ = u− 1 on (0, π/2) and ε2u′′ = u+ 1 on (π/2, π). The solution will
maybe not be very smooth, but we want to construct it so that it is C1. The solution in the first interval
is of the form u(t) = Aent +Be−nt + 1 and in the second of the form u(t) = Cen(π−t) +Den(t−π) − 1.



Imposing u′(0) = 0 means A = B. Imposing u′(π) = 0 means C = D. We still need two other
conditions, which are the continuity of u and of u′ at π/2. The continuity of u′ guarantees that the
equation is indeed satisfied on the whole interval (0, π) and not only on the two subintervals separately.
If we set κn := enπ/2 + e−nπ/2 the continuity of u means Aκn + 1 = Cκn − 1, while the continuity
of the derivative provides nA(enπ/2 − e−nπ/2) = −nC(enπ/2 − e−nπ/2). We then deduce A = −C and
2Cκn = 2. Finally we obtain

uε(t) = − 1
enπ/2 + e−nπ/2

(ent + e−nt) + 1 for t < π

2 ,

as well as
uε(t) = 1

enπ/2 + e−nπ/2
(ent + e−nt)− 1 for t > π

2 .

We observe that both expressions give uε(π/2) = 0 and that, since as ε → 0 we have n → ∞ and
enπ/2 +e−nπ/2 →∞, we have pointwise convergence to f . Of course the convergence cannot be unifrm
since the uε are continuous functions and f is not.

Exercice 2 (5 points). Let Ω be a bounded open subset of Rd. Consider the minimization problem

min
{∫

Ω

(√
v4 + |∇u|4 + v cos(u− g)

)
dx : u ∈ H1(Ω), v ∈ L2(Ω)

}
,

where g is a given measurable function. Prove that the problem has a solution. Assuming that g is
continuous but not constant, prove that no solution (ū, v̄) is such that the v̄ is identically zero.

Answer We observe that the functional to be minimized is larger than
∫

(v2 − v). This implies that
any minimizing sequence (un, vn) is such that vn is bounded in L2. The functional is also larger than∫
|∇u|2−v and, using the previous bound on v, this implies the boundedness of ∇un in L2 as well. By

Poincaré-Wirtinger, un minus its average is also bounded in L2. We then observe that the functional
is invariant if we add 2kπ for k ∈ Z to u, so we can also assume that the average of un is in [−π, π).
Hence, we can obtain a minimizing sequence (un, vn) such that vn is bounded in L2 and un in H1.
We then extract a subsequence weakly converging to a limit (ū, v̄). The first part of the integrand is
convex in v and ∇u and hence the corresponding integral is lower-semicontinuous. For the second, we
have un → ū a.e. (up to a subsequence). and hence cos(un−g)→ cos(ū−g) strongly in L2 because of
dominated convergence. Then,

∫
vn cos(un − g) →

∫
v̄ cos(ū − g), which proves the continuity of this

part of the functional. This proves that (ū, v̄) is a minimizer.
Suppose now v̄ = 0 and let S be a set of positive measure (if it exists) where cos(ū− g) > 0. We see
then the replacing v̄ with the value −ε on S improves the functional. Analoguously, if there is a set S′
of positive measure where cos(ū− g) < 0, replacing v̄ with the value ε on S′ improves the functional.
Hence from v̄ = 0 a.e. we deduce cos(ū − g) = 0 a.e. Then, observe that ū is necessarily constant,
since for v = 0 the functional in u becomes just

∫
|∇u|2. Hence cos(c− g) = 0 for a certain constant

c. If g is continuous bbut not constant then c − g is also continuous but not constant and it is not
possible that its cosinus is constant. Finally, we deduce that v̄ is not the zero function.

Exercice 3 (4 points). Consider the function H : Rn → R given by H(x) =
√

1 + |x|2. Compute H∗
and prove that we have

H(x) +H∗(y) ≥ x · y + 1
2

∣∣∣∣ x

H(x) − y
∣∣∣∣2 .

Answer We first compute H∗. We have

H∗(y) = sup
x
x · y −

√
1 + |x|2.

If |y| > 1 taking x = ny we obtain n|y|2 −
√

1 + n2|y|2 > n|y|2 − 1 − n|y| and this quantity tends to
+∞ since |y|2 − |y| > 0. Hence the sup is +∞.
If |y| = 1 we observe

√
1 + |x|2 ≥ |x| ≥ x · y so that the sup is non-positive. Yet, taking again x = ny

we obtain n−
√

1 + n2 which becomes n2−(1+n2)
n+
√

1+n2 = − 1
n+
√

1+n2 → 0, so that the sup is 0.



If |y| < 1 then the function x 7→ −x ·y+
√

1 + |x|2 that we need to minimize is coercive, so a minimizer
exists,. We can differentiate in order to find it, and we have y = x√

1+|x|2
. This implies that x and y

are colinear (and with the same orientation), and we can llok at their norms. We square and obtain
(1 + |x|2)|y|2 = |x|2, i.e. |x| = |y|/

√
1− |y|2. This provides H∗(y) = |x||y| −

√
1 + |x|2 = −

√
1− |y|2.

This expression is also valid for |y| = 1.
We observe that we have, inside the ball B(0, 1), D2H∗ ≥ I. Indeed we can compute

∇H∗(y) = y√
1− |y|2

, D2H∗(y) = I√
1− |y|2

+ y ⊗ y
(1− |y|2)3/2 ≥

I√
1− |y|2

≥ I,

where the inequalities are in the sense of symmetric matrices and we use y⊗ y ≥ 0 and
√

1− |y|2 ≤ 1.
Hence we have, for every y, y0

H∗(y) ≥ H∗(y0) +∇H∗(y0) · (y − y0) + 1
2 |y − y0|2.

We take y0 = ∇H(x) = x
H(x) , and this gives

H∗(y) ≥ H∗(∇H(x)) + x · (y −∇H(x)) + 1
2 |y −

x

H(x) |
2.

We conclude by adding H(x) on both sides and using H(x) +H∗(∇H(x)) = x · ∇H(x).

Exercice 4 (6 points). Consider a function u ∈ H1
0 (Ω), where Ω = (0, 1)d ⊂ Rd is a cube. Suppose

that u solves ∆u = |∇u|+ 1 in Ω. Prove that we have u ∈W 2,p(Ω) ∩W 3,p
loc (Ω) for every p <∞. Also

prove that u is a C∞ function outside a closed set of zero Lebesgue measure.

Answer
We start from |∇u|+ 1 ∈ L2 and obtain u ∈W 2,2. We want to improve this and we do the following:
whenever we know u ∈ W 2,p and p < d we deduce ∇u ∈ Lp∗ where p∗ = dp

d−p , which also guarantees
u ∈ W 2,p∗ . This allows to obtain u ∈ W 2,pk for a sequence of exponents starting from p0 = 2. This
sequence is strictly increasing and reaches either pk = d (in which case we can take pk+1 = d + 1)
or pk > d. In all cases, at a moment we obtain u ∈ W 2,p for some p > d, i.e. u ∈ C1,α. Hence ∇u
is bounded and |∇u| + 1 ∈ L∞. Since elliptic regularity does not work for p = ∞ we can then only
deduce u ∈ W 2,p for all p. These estimates hold up to the boundary thanks to the reflection method
for Dirichlet boundary conditions.
We then observe that the right-hand side is better than just integrable, it also belons to W 1,p for
every p (since the norm is a Lipschitz functiona and does not destroy the Sobolev regularity). So we
deduce, differetiating the equation, u ∈W 3,p. But htis result is only local, because ther eflection does
not preserve the Sobolev regularity, as we change the sign acress the boundary.
Finally, we observe that where ∇u 6= 0 we can go on withthe argument, have ∇u ∈ W 2,p, hence
u ∈ W 4,p. . . since the only point where the norm reduces the regularit is at the origin. We observe
that ∇u is continuous (even up to the boundary, since ∇u ∈W 1,p for p > d). Hence we can choose a
represenative so that S = {∇u = 0} is closed. In the interior of Ω,the function u is also C2 (since it
is W 3,p for lage p), and on {∇u = 0} we have ∆u = 1. So, in the points of S there exists at least a
non-zero eigevalue of D2u, which means that S will be locally contained in a hypersurface of at most
dimension d− 1, and hence S is of zero measure (an alternative argument is: almost any point of S is
a Lebesgue point of S, and u ∈ C2 so that D2u = 0 a.e. on S, but ∆u = 0 on S: the only possibility
is that the measure of S is zero).

Exercice 5 (9 points). Let Td be the d-dimensional torus. Consider the following minimization
problem

inf
{∫

Td
−
√

1− |v(x)|2dx : v ∈ L∞(Td), |v| ≤ 1 a.e., ∇ · v = f

}
,

where f is a given distribution on Td such that at least one admissible v exists.



1. Prove that the problem has a solution.

2. Formally find its dual as an optimization problem in the space W 1,1, via an inf-sup exchange.
Explain why it is not clear whether the dual has a solution. Also explain why we should rather
call dual the above problem and primal the other one.

3. Prove the duality result in this case, explaining why it does not fit the result we saw in class.

4. (More difficult) Adapt the regularity-via-duality proof to this case so as to prove that if f is
a Lipschitz function such that there exists an admissible v0 with ||v0||L∞ < 1, then the optimal
v is H1.

Answer

1. Take a minimizing sequence. It is bounded in L∞, so one can extract a weakly-* converging
subsequence. The function y 7→ −

√
1− |y|2 (which is by the way equal to H∗ from Exercise 3)

is convex, so that the functional is lower semicontinuous. The constraint
∫
v · ∇φ+

∫
fφ = 0 for

all φ ∈ C1 passes to the limit via weak convergence, and the limit is a minimizer.

2. We write
inf
v

∫
H∗(v) + sup

φ
−
∫
v · ∇φ−

∫
fφ

(the choice of the minus sign is arbitrary) and, excahanging, we obtain

sup
φ
−
∫
fφ+ inf

v

∫
(H∗(v)− v · ∇φ),

i.e.
sup
φ
−
∫
fφ− sup v

∫
(−H∗(v) + v · ∇φ).

The internal sup is taken among L∞ functions bounded by 1, and it canbe realized pointwisely,
so that we have

sup
φ
−
∫
fφ−

∫
H∗∗(∇φ) = sup

φ
−
∫
fφ−

∫
H(∇φ).

The sup can be taken over smooth function, but we know
∫
H(∇φ) =

∫ √
1 + |∇φ|2, which is

wel-defined for φ ∈ W 1,1. Since smooth functions are strongly dense in W 1,1, the result is the
same if we optimize over W 1,1.
There are two reasons for maybe not finding a solution to this dual problem, which is equivalent
to

inf
∫
fφ+

∫ √
1 + |∇φ|2.

The first is the factthat L1 and W 1,1 are not reflexive. Even if a minimizing sequence satisfied
||∇φn||L1 ≤ C it would not be possible to extract a subsequence converging in a weak sense to
another function in the same space (we would actually need to estend the problem to BV). The
second is that, for general f , we could have lack of coercivity, insce both terms grow linearly. If
f = ∇v0 for a certain v0 we can re-write the functional as

∫ √
1 + |∇φ|2 − v0 · ∇φ, and we can

obtain coercivity in terms of the L1 norm of the gradient if ||v0||L∞ < 1, but not if ||v0||L∞ = 1.
Note that our dual problem uses the space L1 and our primal the space L∞, but (L1)′ = L∞

and not (L∞)′ = L1. This is why the primal should be the one on φ. Also, in the general theory
it is often the case that the primal has no solution while the dual has one.

3. We consider
F(p) := inf

{∫
H∗(v) : ||v|||∞ ≤ 1, ∇ · v = f + p

}
and apply the usual strategy. F is defined on the space of divergences of L∞ functions but in
class we assumed all the spaces to be reflexive, so we have to pay attention. We compute F∗ and



F∗∗. The only difficult point is to prove that F is l.s.c., where we used coercivity and extracted
a weakly converging subsequence from the minimizers vn corresponding to a sequence pn. This
can also be done here, since vn i sbounded in L∞. There is no additional difficulty.

4. Let us write the two dual problems as minF (v) and inf G(φ), where F also includes the con-
straint. From the duality we have minF +inf G = 0. The difficulty comes from the fact that the
inf of G is maybe not attained. However, the assumption f = ∇ · v0 with ||v0||L∞ < 1, allows to
obtain coercivity, so that for every ε > 0 we can find a function φε ∈ W 1,1 (actually, we could
even have φ ∈ C∞) such that G(φε) < inf G + ε2

2 . We use Exercise 3 which provides, together
with the usual computations,

1
2 ||v − j(∇φ)||2 ≤ F (v) +G(φ) = G(φ)− inf G,

where the norm is the L2 norm, the function j is given by j(w) = w/H(w), and we use the
optimality of v. If we take φve we obtain ||v − j(∇φε)|| ≤ ε (which explains the choice of the
parameter ε2

2 ).
For a given function φ, consider its translations φh := φ(· + h) and the function h 7→ G(φh).
The usual computations in regularity-via-duality prove that this function is C2 with a Hessian
bounded by ||∇f ||L∞ ||∇φ||L1 . In Particular since it is continuous, when choosing φε we can
decide to optimaize among its translations, and assume that h 7→ G(φεh) is optmal at h = 0. But
this implies that its gradient (in h) vanishes at h = 0 and hence G(φεh) −G(φε) ≤ C|h|2 where
C = ||∇f ||L∞ ||∇φε||L1 . This constant is bounded as ε→ 0 since, by coercivity, the L1 norm of
∇φε is bounded, and we assumed f to be Lipschitz. Now we compute

||vh−v|| ≤ ||vh−(j(∇φε))h||+||(j(∇φε))h−v|| = ||v−j(∇φε)||+||(j(∇φε))h−v|| ≤ ε+||(j(∇φε))h−v||.

Then,we use

1
2 ||(j(∇φ

ε))h − v||2 ≤ G(φεh)− inf G = G(φεh)−G(φε) +G(φε)− inf G ≤ C|h|2 + ε2

2

and we obtain
||vh − v|| ≤ ε+

√
2C|h|2 + ε2.

Sending ε→ 0 we have
||vh − v|| ≤ C ′|h|,

which means v ∈ H1.


