Calculus of Variations and Elliptic PDEs

Mid-Term Examination

All kind of documents (notes, books...) are authorized. The total number of points is much larger than 20, which means that attacking only some exercises could be a reasonable option.

The exercises are not necessarily ordered by difficulty.

Exercice 1 (8 points). Given $\varepsilon > 0$ and a function $f:[0,\pi] \to \mathbb{R}$ consider the problem

$$\min \left\{ \int_0^\pi \frac{\varepsilon}{2} |u'(t)|^2 + \frac{1}{2\varepsilon} |u(t) - f(t)|^2 dt : \quad u \in C^1([0, \pi]) \right\}.$$

We consider two cases.

In case a) the function f is given by $f(t) = \cos(t)$.

In case b) the function f is given by

$$f(t) = \begin{cases} 1 & \text{if } t < \pi/2, \\ 0 & \text{if } t = \pi/2, \\ -1 & \text{if } t > \pi/2. \end{cases}$$

In both cases find the solution u_{ε} of the problem, properly justifying its minimality and its uniqueness, and prove that we have $\lim_{\varepsilon\to 0} u_{\varepsilon} = f$, at least pointwisely. In which cases is this convergence uniform?

Exercice 2 (5 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the minimization problem

$$\min \left\{ \int_{\Omega} \left(\sqrt{v^4 + |\nabla u|^4} + v \cos(u - g) + v^2 |\nabla u| \right) dx : u \in H^1(\Omega), v \in L^2(\Omega) \right\},$$

(the term above was a mistake and has been removed during the examination) where g is a given measurable function. Prove that the problem has a solution. Assuming that g is continuous but not constant, prove that no solution (\bar{u}, \bar{v}) is such that the \bar{v} is identically zero.

Exercice 3 (4 points). Consider the function $H: \mathbb{R}^n \to \mathbb{R}$ given by $H(x) = \sqrt{1+|x|^2}$. Compute H^* and prove that we have $1 \mid x \mid^2$

 $H(x) + H^*(y) \ge x \cdot y + \frac{1}{2} \left| \frac{x}{H(x)} - y \right|^2.$

Exercice 4 (6 points). Consider a function $u \in H_0^1(\Omega)$, where $\Omega = (0,1)^d \subset \mathbb{R}^d$ is a cube. Suppose that u solves $\Delta u = |\nabla u| + 1$ in Ω . Prove that we have $u \in W^{2,p}(\Omega) \cap W^{3,p}_{loc}(\Omega)$ for every $p < \infty$. Also prove that u is a C^{∞} function outside a closed set of zero Lebesgue measure.

Exercice 5 (9 points). Let \mathbb{T}^d be the *d*-dimensional torus. Consider the following minimization problem

$$\inf\left\{\int_{\mathbb{T}^d} -\sqrt{1-|v(x)|^2} dx \ : \ v \in L^\infty(\mathbb{T}^d), \ |v| \le 1 \ a.e., \ \nabla \cdot v = f\right\},$$

where f is a given distribution on \mathbb{T}^d such that at least one admissible v exists.

- 1. Prove that the problem has a solution.
- 2. Formally find its dual as an optimization problem in the space $W^{1,1}$, via an inf-sup exchange. Explain why it is not clear whether the dual has a solution. Also explain why we should rather call dual the above problem and primal the other one.
- 3. Prove the duality result in this case, explaining why it does not fit the result we saw in class.
- 4. (More difficult) Adapt the regularity-via-duality proof to this case so as to prove that if f is a Lipschitz function such that there exists an admissible v_0 with $||v_0||_{L^{\infty}} < 1$, then the optimal v is H^1 .