Calculus of Variations

Final Examination

Duration: 3h; all kind of paper documents (notes, books...) are authorized.

The total score of this exam is much more than 20: you are not expected to deal with all the exercises (but of course you can). The grade will just be truncated at 20.

Exercice 1 (6 points). Consider the minimization problem

$$\min\left\{\int_0^1 e^{-2t} \left(\frac{1}{2}u'(t)^2 + \frac{3}{2}u(t)^2 + \frac{5}{2}u(t)\right) dt \quad : \quad u \in C^1([0,1]), \ u(0) = u(1) = a\right\}$$

and prove that it admits a minimizer, that it is unique, and find it, in the two cases a = -5/6 and a = 5/6.

Exercice 2 (5 points). Let Ω be an open and bounded subset of \mathbb{R}^d , p > 1 and $h : \mathbb{R} \to \mathbb{R}_+$ a continuous function. Consider the following minimization problem

$$\min \left\{ \int_{\Omega} \sqrt{h(u(x)) + |\nabla u(x)|^{2p}} \, dx : u \in W_0^{1,p}(\Omega) \right\}.$$

Prove that it admits a solution. Also prove that its minimal value is strictly positive if h(0) > 0.

Consider now

$$\inf \left\{ \int_{\Omega} \sqrt{\frac{1 + |\nabla \varphi(x)|^{2p}}{1 + |\varphi(x)|^{2p}}}, dx : \varphi \in C_c^{\infty}(\Omega) \right\}.$$

Prove that the value of this infimum is strictly positive.

Exercice 3 (6 points). Let Ω be a given bounded d-dimensional domain, $f \in L^2(\Omega)$ with $\int_{\Omega} f(x) dx = 0$, and $L \leq \pi/2$ a given constant. Consider the following minimization problem

$$\min \left\{ \int_{\Omega} \left[1 - \cos(|\nabla u(x)|) + f(x)u(x) \right] dx : u \in \operatorname{Lip}(\Omega), |\nabla u| \le L \text{ a.e.,} \right\}.$$

- 1. Preliminarly, justify that the function $h: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ defined by $h(s) = 1 \cos(s)$ for $|s| \leq L$ and $h(s) = +\infty$ for |s| > L and the function $H: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ defined by H(w) = h(|w|) are convex, and find their transforms h^* and H^* .
- 2. Prove that this problem admits a solution.
- 3. Prove that the solution is unique up to additive constants.
- 4. Formally write the dual of this problem ("formally" means that the proof of the duality result is not required, as the growth conditions assumed in class are not satisfied).
- 5. Assuming that duality holds, that Ω is the *d*-dimensional torus, that $L < \pi/2$ and that $f \in W^{1,1}(\Omega)$, prove that the solution u of the above problem belongs to $H^2(\Omega)$. Does it work also if $f \in BV(\Omega)$?

Exercice 4 (7 points). Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain. On the space $H_0^1(\Omega)$ consider the sequence of functionals

$$F_{\varepsilon}(u) = \int_{\Omega} \left[\frac{|\nabla u(x)|^2}{2} + \frac{\sin(\varepsilon u(x))}{\varepsilon} \right] dx.$$

- 1. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} .
- 2. Prove that the minimizers u_{ε} satisfy $||\nabla u_{\varepsilon}||_{L^{2}}^{2} \leq 2||u_{\varepsilon}||_{L^{1}}$ and that the norm $||u_{\varepsilon}||_{H_{0}^{1}}$ is bounded by a constant independent of ε .
- 3. Find the Γ -limit F_0 , in the weak H_0^1 topology, of the functionals F_{ε} as $\varepsilon \to 0$.
- 4. Characterize via a PDE the unique minimizer u_0 of the limit functional F_0 .
- 5. Prove $u_{\varepsilon} \rightharpoonup u_0$ in the weak H_0^1 topology.
- 6. Prove that the convergence $u_{\varepsilon} \to u_0$ is actually strong in H_0^1 .
- 7. Prove that all minimizers u_{ε} satisfy $-\frac{\pi}{2\varepsilon} \leq u_{\varepsilon} \leq 0$, and that for each ε the minimizer is unique.

Exercice 5 (7 points). Let $\Omega \subset \mathbb{R}^2$ be the ball B(0,2). On the space $L^1(\Omega)$ consider the sequence of functionals

$$F_{\varepsilon}(u) = \begin{cases} \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla u(x)|^2 + \frac{1}{2\varepsilon} \left(\frac{1}{1 + (2u(x) - 1)^2} - \frac{1}{2} \right)^2 + 2(|x| - 1)u(x) \right] dx & \text{if } u \in H_0^1(\Omega), 0 \le u \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

- 1. Find the Γ -limit, in the strong L^1 topology, of the functionals F_{ε} as $\varepsilon \to 0$.
- 2. Prove that the unique minimizer of the limit functional is the indicator function of a ball, and find it.
- 3. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} , and prove that u_{ε} admits a strong L^1 limit as $\varepsilon \to 0$, and find it.
- 4. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a radially decreasing minimizer u_{ε} .