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The total score of this exam is much more than 20 : you are not expected to deal with all the

exercises (but of course you can). The grade will just be truncated at 20.

Exercice 1 (6 points). Consider the minimization problem

min
{∫ 1

0
e−2t

(1
2u
′(t)2 + 3

2u(t)2 + 5
2u(t)

)
dt : u ∈ C1([0, 1]), u(0) = u(1) = a

}
and prove that it admits a minimizer, that it is unique, and find it, in the two cases a = −5/6 and
a = 5/6.

Solution
The minimization problem above is convex, and even strictly convex. Hence, it admits at most one
soluton, and it is enough to write the Euler-Lagrange equation with its boundary conditions, and solve
it : the solution of the equation will also be the unique solution of the minimization problem.

From L(t, x, v) = e−2t( |v|
2

2 +3|x|2
2 +5x

2 we find the Euler-Lagrange equation (∂vL(t, u, u′))′ = ∂xL(t, u, u′),
which, after simplifying e−2t, reads u′′ − 2u′ = 3u+ 5/2.
First notice that the constant u = −5/6 is a solution of the equation, so, in case a = −5/6, the answer
is just u(t) = −5/6, which is a C1 function and solves the problem.
For a = 5/6 we have to solve the equation. The solution is of the form

u(t) = Ae−t +Be3t − 5
6 ,

which is found by using the particular solution−5/6 and adding arbitrary solutions of the homogeneous
equation u′′ − 2u′ − 3u = 0 (a basis of the space of solutions is given by the functions of the form eλt

for λ solving λ2 − 2λ = 3 = 0, i.e. λ = −1 and λ = 3).
Imposing u(0) = u(1) = 5/6 we can find

A = 5
3 ·

e4 − e
e4 − 1 , B = 5

3 ·
e− 1
e4 − 1 .

Exercice 2 (5 points). Let Ω be an open and bounded subset of Rd, p > 1 and h : R → R+ a
continuous function. Consider the following minimization problem

min
{∫

Ω

√
h(u(x)) + |∇u(x)|2p dx : u ∈W 1,p

0 (Ω)
}
.

Prove that it admits a solution. Also prove that its minimal value is strictly positive if h(0) > 0.
Consider now

inf
{∫

Ω

√
1 + |∇ϕ(x)|2p
1 + |ϕ(x)|2p , dx : ϕ ∈ C∞c (Ω)

}
.

Prove that the value of this infimum is strictly positive.



Solution
For the first part, notice that by h ≥ 0 any minimizing sequence un will be such that

∫ √
|∇un|2p =

||∇un||pLp will be bounded and, using the Poincaré inequality (since we are in W 1,p
0 ), any minimizing

sequence is bounded in W 1,p
0 . We can extract a weakly converging subsequence. The functional is of

the form u 7→
∫
L(u,∇u) with L continuous in the first variable and convex in the second. Hence

it is l.s.c. for the weak W 1,p convergence, and the limit of the sequence is a minimizer. Warning :
since the functional is not the sum of a part with u and a part with ∇u, the semicontinuity cannot
be discussed by separating the two parts.
The minimum is for sure not negative, and could only be zero if the minimizer u satisfied both |∇u| = 0
and h(u) = 0 a.e. But the first condition implies that it is constant equal to 0 (because it is 0 on
the boundary), and if h(0) > 0 then the minimum is strictly positive. . Warning : unless you prove
continuity of the minimizers up to ∂Ω (which is not a consequence of u ∈ W 1,p), saying that h(u) is
strictly positive on ∂Ω and hence must be strictly positive on a neighborhood of the boundary does
not work.
For the second part, define g : R→ R by setting g(0) = 0 and g′(t) = (1 + t2p)1/2p. The function g is
C1 and strictly increasing. Then we have√

1 + |∇ϕ|2p
1 + |ϕ|2p =

√
1

1 + |ϕ|2p + |∇(g ◦ ϕ)|2p

and
1

1 + |ϕ|2p = 1
1 + |g−1(g ◦ ϕ)|2p = h(g ◦ ϕ),

for a certain continuous function h : R→ R+ with h(0) = 1/(1 + |g−1(0)|2p = 1 > 0.
Hence, the values in the inf below are all larger than the minimum above (by using u = g ◦ϕ, and not
u = ϕ), which is strictly positive.

Exercice 3 (6 points). Let Ω be a given bounded d−dimensional domain, f ∈ L2(Ω) with
∫

Ω f(x)dx =
0, and L ≤ π/2 a given constant. Consider the following minimization problem

min
{∫

Ω

[
1− cos(|∇u(x)|) + f(x)u(x)

]
dx : u ∈ Lip(Ω), |∇u| ≤ L a.e.,

}
.

1. Preliminarly, justify that the function h : R→ R∪{+∞} defined by h(s) = 1−cos(s) for |s| ≤ L
and h(s) = +∞ for |s| > L and the function H : Rd → R ∪ {+∞} defined by H(w) = h(|w|)
are convex, and find their transforms h∗ and H∗.

2. Prove that this problem admits a solution.
3. Prove that the solution is unique up to additive constants.
4. Formally write the dual of this problem (“formally” means that the proof of the duality result

is not required, as the growth conditions assumed in class are not satisfied).
5. Assuming that duality holds, that Ω is the d-dimensional torus, that L < π/2 and that f ∈
W 1,1(Ω), prove that the solution u of the above problem belongs to H2(Ω). Does it work also
if f ∈ BV (Ω) ?

Solution

1. The function h is finite and C2 on an interval, and its second derivative is non-negative on
this interval : hence, it is convex. Moreover, h is increasing on R+ : when we compose it with
w 7→ |w|, which is convex and non-negative, the composition H is convex.
To compute h∗ we write

h∗(t) = sup
s
ts− h(s) = sup

|s|≤L
st− 1 + cos(s).



The function to maximize is concave in s and its derivative is given by t − sin(s). Hence, if
there is s ∈ [−L,L] with sin(s) = t (which means, if |t| ≤ sinL), the maximizer is such a point.
Otherwise it is s = ±L, depending on the sign of t (same sign as t, in order to maximize the
term ts). So we have

h∗(t) =


t arcsin(t)− 1 + cos(arcsin(t)) = t arcsin(t)− 1 +

√
1− t2 if |t| ≤ sin(L),

tL− 1 + cos(L) if t > sin(L),
−tL− 1 + cos(L) if t < − sin(L)

.

One can check that this function is C1 and convex.
As for H∗, we have H∗(v) = supw v ·w− h(|w|), and it is optimal to take v and w in the same
direction, so that we have H∗(v) = h∗(|v|).

2. Take a minimizing sequence un. Because of
∫
f = 0, we can assume

∫
un = 0 (adding a

constant does not change the value of the functional). The sequence (un) is uniformly Lipschitz
and uniformly bounded (because un vanishes somewhere, and is L-Lipschitz, so that we have
|un| ≤ Ldiam(Ω)). We can extract a subsequence which converges uniformly, and also weakly
in W 1,p, for any p. The limit will also have the same Lipschitz constant, and the functional is
l.s.c.. So, the limit is admissible and minimizes the functional.

3. The functional is strictly convex w.r.t. ∇u : any two minimizers mus thave the same gradient.
Hence, they coincide up to additive constants. Warning : checking that the value for u + c
is the same as that for u is not a valid answer, it only proves that you can add constants to
minimizers, not that you can ONLY add constants to minimizers.

4. From the formulas we know the dual is given by

min
{∫

H∗(v) : ∇ · v = f

}
,

where H is the function of Question 1. Hence, here we get the expression of H∗ that we
computed above. Note that this functional has lineargrowth in v.

5. The usual argument from “regularity via duality” is the following : suppose H(w) + H∗(v) ≥
v · w + c|J∗(v) − J(w)|2, and denote by uh the translation of u (uh(x) = u(x + h)) ; let F be
the functional we minimize in the primal problem, then we have

c

∫
|J(∇uh)− J(∇u)|2 = c

∫
|J(∇uh)− J∗(v)|2 ≤ F (uh)− F (u).

Here D2H ≥ cI (this is why we suppose L < π/2, since the second derivative of the cosinus
vanishes at π/2), so that we know that we can take J(w) = w and J∗(v) = ∇H∗(v). We are just
left to prove that F (uh)−F (u) = o(|h|2), which would give ∇u ∈ H1, hence u ∈ H2. We know
that it is enough to prove that h 7→ F (uh) is C1,1, and we know that we just need to consider
h 7→

∫
fuh, since the first part of the functional, by change-of-variable, does not depend on h.

The Hessian if this quantity (standard computations) is given by∫
∇f ⊗∇uh

and we just need f ∈ W 1,1 and u ∈ W 1,∞ (which is the case) in order to bound it by a
constant. The case f ∈ BV can be justified, for instance, by approximation (it has no meaning
to integrate ∇f times ∇uh if one is a measure and the other L∞).



Exercice 4 (7 points). Let Ω ⊂ Rd be an open and bounded domain. On the space H1
0 (Ω) consider

the sequence of functionals

Fε(u) =
∫

Ω

[
|∇u(x)|2

2 + sin(εu(x))
ε

]
dx.

1. Prove that, for each ε > 0, the functional Fε admits at least a minimizer uε.
2. Prove that the minimizers uε satisfy ||∇uε||2L2 ≤ 2||uε||L1 and that the norm ||uε||H1

0
is bounded

by a constant independent of ε.
3. Find the Γ-limit F0, in the weak H1

0 topology, of the functionals Fε as ε→ 0.
4. Characterize via a PDE the unique minimizer u0 of the limit functional F0.
5. Prove uε ⇀ u0 in the weak H1

0 topology.
6. Prove that the convergence uε → u0 is actually strong in H1

0 .
7. Prove that all minimizers uε satisfy − π

2ε ≤ uε ≤ 0, and that for each ε the minimizer is unique.

Solution

1. Using the lower bound sin(εu) ≥ −1 we see that any minimizing sequence is bounded in H1
0 .

We extract a weakly converging subsequence, and the functional is l.s.c., since the integrand is
convex in the gradient part and continuous in u. Hence, the limit minimizes.

2. The estimate can be obtained by comparing with u = 0 : we have Fε(uε) ≤ Fε(0) = 0. This
gives ||∇uε||2L2 ≤ 2

∫
− sin(εuε(x))

ε dx ≤
∫
|uε| (by the way, using the Euler-Lagrange equation it

is also possible to obtain the same estimate without the factor 2). Bounding the L1 norm with
the L2 norm, and using Poincaré, we get

||∇uε||2L2 ≤ C||∇uε||L2 ,

which gives a bound on ||∇uε||L2 and the sequence is bounded in H1
0 .

3. We can guess the Γ-limit by looking at the pointwise limit. If we fix u, we have sin(εu)/ε→ u,
hence we guess

F0(u) =
∫

Ω

[
|∇u(x)|2

2 + u(x)
]
dx.

Since it is a pointwise limit, the Γ-limsup part is easy : just take the constant sequence uε = u.
For the Γ-liminf, we take uε ⇀ u (weak convergence in H1

0 , hence strong in L2) and write, using
sin(s) ≥ s− Cs2 (Taylor expansion)

Fε(uε) ≥ F0(uε)− Cε
∫
u2
ε.

We then use the semicontinuity of F0 and the fact that uε is bounded in L2 to get that the
liminf is at least F0(u).

4. The solution u0 of min{F0(u) : u ∈ H1
0 (Ω)} is the solution of{

∆u = 1 in Ω,
u = 0 on∂Ω.

5. The sequence of minimizers uε is bounded in H1
0 , hence compact for the weak convergence. Any

limit must minimize F0, but the minimizer is unique, so the whole sequence converges to u0.
6. Since the minimizers of Fε stay in a same compact set (a bounded set in H1

0 ), we have the
compactness assumption (equicoercivity) which guarantees minFε → minF0. But this means
Fε(uε) → F0(u0) and implies ||∇uε||L2 → ||∇u0||L2 . Together with the weak converge,ce this
gives strong convergence.



7. Consider the function f : R → R defined by f(s) = −|s| for |s| ≤ π/2, and extended by
periodicity on R. This function is Lipschitz with constant 1, and we can check that we have
sin(f(s)) ≤ sin(s). Hence, if we define ũε = ε−1f(εuε), we have Fε(ũε) ≤ Fε(uε). Moreover, as
soon as there is a non-negligible set where εuε belongs to ]− 2π,−π[ or ]0, π[, the inequality in
the sinus is strict, hence uε could not be a minimizer. This proves that uε cannot take values
outside [−π/ε, 0] (we can prove, by using the regularity associated with the Euler-Lagrange
equation, that uε is continuous, so that if εuε takes values outside [−π/ε, 0] then it takes values
in ] − 2π,−π[ or ]0, π[ on a non-negligible set). In order to prove that it actually takes values
in [−π/(2ε), 0], we can define ûε = max{−π/(2ε), uε} and see that also in this case we would
have a strict inequality if εuε takes values smaller than −π/2.
Once that we know that the minimizers take value in [−π/(2ε), 0], we see that the functional
is strictly convex on these functions, and the minimizer is unique.

Exercice 5 (7 points). Let Ω ⊂ R2 be the ball B(0, 2). On the space L1(Ω) consider the sequence of
functionals

Fε(u) =


∫
Ω

[
ε
2 |∇u(x)|2 + 1

2ε

(
1

1+(2u(x)−1)2 − 1
2

)2
+ 2(|x| − 1)u(x)

]
dx if u ∈ H1

0 (Ω), 0 ≤ u ≤ 1,

+∞ otherwise.

1. Find the Γ-limit, in the strong L1 topology, of the functionals Fε as ε→ 0.
2. Prove that the unique minimizer of the limit functional is the indicator function of a ball, and

find it.
3. Prove that, for each ε > 0, the functional Fε admits at least a minimizer uε, and prove that uε

admits a strong L1 limit as ε→ 0, and find it.
4. Prove that, for each ε > 0, the functional Fε admits at least a radially decreasing minimizer uε.

Solution

1. The first part of the functional is a Modica-Mortola term, with a double-well function given by

W (s) =
( 1

1 + (2s− 1)2 −
1
2

)2
,

which only vanishes at s = 0, 1. We know that it Γ-converges, for the strong L1 topology, to
the functional

F (u) =
{
cPer(A) if u = IA ∈ BV (Ω),
+∞ otherwise,

where c =
∫ 1

0
√
W (s)ds. Notice that we can include the constraint 0 ≤ u ≤ 1 in the Γ-

convergence since the construction of the recovery sequence in the Γ − lim sup preserves it.
Also notice that the constraint u ∈ H1

0 means that, in the limit, the perimeter also counts the
part of boundary of A which is on the boundary of Ω (even if u = 1 close to the boundary,
one has to go down to 0. . . the recovery sequence in the Γ− lim sup is built by first supposing
d(A, ∂Ω) > 0, and the proving that we have a dense-in-energy sequence).
The other part of the functional is continuous for the convergence we use, so it canbe added to
the Γ-convergence result. Hence we have a Γ-limit F0 given by

F (u) =
{
cPer(A) +

∫
A 2(|x| − 1)dx if u = IA ∈ BV (Ω),

+∞ otherwise.

In our case we can compute the constant c

c =
∫ 1

0

( 1
1 + (2s− 1)2 −

1
2

)
ds =

∫ 1

−1

( 1
1 + t2

− 1
2

)
dt

2 = π − 2
4 ≈ 0.27.



2. By symmetrization, any set A can be replaced by a ball with the same volume, and this reduces
the perimeter. Moreover, if we choose to center this ball at the origin and we call it B, we also
have

∫
A 2(|x|−1) ≥

∫
B 2(|x|−1) since the values of the function 2(|x|−1) are radially increasing,

and concentrating the same measure where it is minimal decreases the integral. By the way,
the integral strictly decreases unless A was already equal to B. Hence, the minimum is a given
by u = IA, with A a ball centered at the origin. Set A = B(0, R), and compute the value fo the
functional : we have

F (IB(0,R)) = c2πR+ 4π(R
3

3 −
R2

2 ).

This function is minimized on the positive values of R by

R = 1
2 +

√
1− 2c

4

(the derivative vanishes in two points, but 1
2 −

√
1−2c

4 is a local maximum). We have found the
unique minimizer of the limit functional.

3. Using W ≥ 0 and 2(|x| − 1)u ≥ −2 we see that any minimizing sequence is bounded (for fixed
ε > 0) in H1

0 , and the functional is l.s.c. for the weak H1
0 convergence. We deduce the existence

of a minimizer. From the proof of the lower bounds in the Γ-convergence, we have a strictly
increasing function φ : R→ R (the anti-derivative of

√
W ) such that

∫
|∇(φ ◦ uε)| is bounded.

This proves that, up to subsequences, φ ◦ uε converges strongly in L1 (we use the compact
injection of BV into L1) to something, and in particular it converges a.e. Composing with φ−1,
also uε converges a.e. to something and, because of the bounds 0 ≤ uε ≤ 1, it converges strongly
in L1 since it is domainated. The limit can only by a minimizer of F0, i.e. the indicator of the
ball of the radius we just found.

4. We can symmetrize the minimizers uε. The symmetrization will provide a better result (and
hence a contradiction, unless uε is already symmetric, i.e. radially diecreasing) provided we can
prove ∫

fu ≥
∫
fu∗

as soon as f is a radially increasing function (here f(x) = 2(|x|−1) ; we also need strict inequality
as soon as u 6= u∗. To do this, use u and u∗ as measures (they are positive, and have the same
mass) and remember

∫
fdµ =

∫
µ({f > t})dt. Now, for each t, we have

∫
{f>t} u ≥

∫
{f>t} u

∗ via
a similar argument as before : u∗ brings more mass closer to the origin. Indeed,∫

{f>t}
u =

∫
|{u > s} ∩ {f > t}|ds

and |{u > s} ∩ {f > t}| ≥ |{u∗ > s} ∩ {f > t}| since {f > t} is the complement of a centered
ball, and {u∗ > s} has the same volume as {u > s}, but is more contained in the ball {f ≤ t}.
We also see that the inequality is strict as soon as the sublevel sets of u and u∗ have not the
same measure in all the balls.
Actually, there is a more general inequality that one could prove :

∫
u∗v∗ ≥

∫
uv for every u, v

(but in our case, one of the two functions is already radial).


