Calculus of Variations

Final Examination

Duration: 3h; all kind of paper documents (notes, books...) are authorized.

The total score of this exam is much more than 20: you are not expected to deal with all the exercises (but of course you can). The grade will just be truncated at 20.

Exercice 1 (6 points). Consider the minimization problem

$$\min\left\{\int_0^1 e^{-2t} \left(\frac{1}{2}u'(t)^2 + \frac{3}{2}u(t)^2 + \frac{5}{2}u(t)\right) dt : u \in C^1([0,1]), \ u(0) = u(1) = a\right\}$$

and prove that it admits a minimizer, that it is unique, and find it, in the two cases a = -5/6 and a = 5/6.

Solution

The minimization problem above is convex, and even strictly convex. Hence, it admits at most one soluton, and it is enough to write the Euler-Lagrange equation with its boundary conditions, and solve it: the solution of the equation will also be the unique solution of the minimization problem.

From $L(t, x, v) = e^{-2t} (\frac{|v|^2}{2} + \frac{3|x|^2}{2} + \frac{5x}{2})$ we find the Euler-Lagrange equation $(\partial_v L(t, u, u'))' = \partial_x L(t, u, u')$, which, after simplifying e^{-2t} , reads u'' - 2u' = 3u + 5/2.

First notice that the constant u = -5/6 is a solution of the equation, so, in case a = -5/6, the answer is just u(t) = -5/6, which is a C^1 function and solves the problem.

For a = 5/6 we have to solve the equation. The solution is of the form

$$u(t) = Ae^{-t} + Be^{3t} - \frac{5}{6},$$

which is found by using the particular solution -5/6 and adding arbitrary solutions of the homogeneous equation u'' - 2u' - 3u = 0 (a basis of the space of solutions is given by the functions of the form $e^{\lambda t}$ for λ solving $\lambda^2 - 2\lambda = 3 = 0$, i.e. $\lambda = -1$ and $\lambda = 3$).

Imposing u(0) = u(1) = 5/6 we can find

$$A = \frac{5}{3} \cdot \frac{e^4 - e}{e^4 - 1}, \quad B = \frac{5}{3} \cdot \frac{e - 1}{e^4 - 1}.$$

Exercice 2 (5 points). Let Ω be an open and bounded subset of \mathbb{R}^d , p > 1 and $h : \mathbb{R} \to \mathbb{R}_+$ a continuous function. Consider the following minimization problem

$$\min \left\{ \int_{\Omega} \sqrt{h(u(x)) + |\nabla u(x)|^{2p}} \, dx : u \in W_0^{1,p}(\Omega) \right\}.$$

Prove that it admits a solution. Also prove that its minimal value is strictly positive if h(0) > 0.

Consider now

$$\inf \left\{ \int_{\Omega} \sqrt{\frac{1 + |\nabla \varphi(x)|^{2p}}{1 + |\varphi(x)|^{2p}}}, dx : \varphi \in C_c^{\infty}(\Omega) \right\}.$$

Prove that the value of this infimum is strictly positive.

Solution

For the first part, notice that by $h \geq 0$ any minimizing sequence u_n will be such that $\int \sqrt{|\nabla u_n|^{2p}} = ||\nabla u_n||_{L^p}^p$ will be bounded and, using the Poincaré inequality (since we are in $W_0^{1,p}$), any minimizing sequence is bounded in $W_0^{1,p}$. We can extract a weakly converging subsequence. The functional is of the form $u \mapsto \int L(u, \nabla u)$ with L continuous in the first variable and convex in the second. Hence it is l.s.c. for the weak $W^{1,p}$ convergence, and the limit of the sequence is a minimizer. Warning: since the functional is not the sum of a part with u and a part with ∇u , the semicontinuity cannot be discussed by separating the two parts.

The minimum is for sure not negative, and could only be zero if the minimizer u satisfied both $|\nabla u| = 0$ and h(u) = 0 a.e. But the first condition implies that it is constant equal to 0 (because it is 0 on the boundary), and if h(0) > 0 then the minimum is strictly positive. Warning: unless you prove continuity of the minimizers up to $\partial\Omega$ (which is not a consequence of $u \in W^{1,p}$), saying that h(u) is strictly positive on $\partial\Omega$ and hence must be strictly positive on a neighborhood of the boundary does not work.

For the second part, define $g: \mathbb{R} \to \mathbb{R}$ by setting g(0) = 0 and $g'(t) = (1 + t^{2p})^{1/2p}$. The function g is C^1 and strictly increasing. Then we have

$$\sqrt{\frac{1+|\nabla\varphi|^{2p}}{1+|\varphi|^{2p}}} = \sqrt{\frac{1}{1+|\varphi|^{2p}} + |\nabla(g\circ\varphi)|^{2p}}$$

and

$$\frac{1}{1 + |\varphi|^{2p}} = \frac{1}{1 + |g^{-1}(g \circ \varphi)|^{2p}} = h(g \circ \varphi),$$

for a certain continuous function $h: \mathbb{R} \to \mathbb{R}_+$ with $h(0) = 1/(1+|g^{-1}(0)|^{2p}) = 1 > 0$.

Hence, the values in the inf below are all larger than the minimum above (by using $u = g \circ \varphi$, and not $u = \varphi$), which is strictly positive.

Exercice 3 (6 points). Let Ω be a given bounded d-dimensional domain, $f \in L^2(\Omega)$ with $\int_{\Omega} f(x) dx = 0$, and $L \leq \pi/2$ a given constant. Consider the following minimization problem

$$\min \left\{ \int_{\Omega} \left[1 - \cos(|\nabla u(x)|) + f(x)u(x) \right] dx : u \in \operatorname{Lip}(\Omega), |\nabla u| \le L \text{ a.e.,} \right\}.$$

- 1. Preliminarly, justify that the function $h: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ defined by $h(s) = 1 \cos(s)$ for $|s| \le L$ and $h(s) = +\infty$ for |s| > L and the function $H: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ defined by H(w) = h(|w|) are convex, and find their transforms h^* and H^* .
- 2. Prove that this problem admits a solution.
- 3. Prove that the solution is unique up to additive constants.
- 4. Formally write the dual of this problem ("formally" means that the proof of the duality result is not required, as the growth conditions assumed in class are not satisfied).
- 5. Assuming that duality holds, that Ω is the *d*-dimensional torus, that $L < \pi/2$ and that $f \in W^{1,1}(\Omega)$, prove that the solution u of the above problem belongs to $H^2(\Omega)$. Does it work also if $f \in BV(\Omega)$?

Solution

1. The function h is finite and C^2 on an interval, and its second derivative is non-negative on this interval: hence, it is convex. Moreover, h is increasing on \mathbb{R}_+ : when we compose it with $w \mapsto |w|$, which is convex and non-negative, the composition H is convex.

To compute h^* we write

$$h^*(t) = \sup_{s} ts - h(s) = \sup_{|s| \le L} st - 1 + \cos(s).$$

The function to maximize is concave in s and its derivative is given by $t - \sin(s)$. Hence, if there is $s \in [-L, L]$ with $\sin(s) = t$ (which means, if $|t| \le \sin L$), the maximizer is such a point. Otherwise it is $s = \pm L$, depending on the sign of t (same sign as t, in order to maximize the term ts). So we have

$$h^*(t) = \begin{cases} t \arcsin(t) - 1 + \cos(\arcsin(t)) = t \arcsin(t) - 1 + \sqrt{1 - t^2} & \text{if } |t| \le \sin(L), \\ tL - 1 + \cos(L) & \text{if } t > \sin(L), \\ -tL - 1 + \cos(L) & \text{if } t < -\sin(L) \end{cases}$$

One can check that this function is C^1 and convex.

As for H^* , we have $H^*(v) = \sup_w v \cdot w - h(|w|)$, and it is optimal to take v and w in the same direction, so that we have $H^*(v) = h^*(|v|)$.

- 2. Take a minimizing sequence u_n . Because of $\int f = 0$, we can assume $\int u_n = 0$ (adding a constant does not change the value of the functional). The sequence (u_n) is uniformly Lipschitz and uniformly bounded (because u_n vanishes somewhere, and is L-Lipschitz, so that we have $|u_n| \leq L \operatorname{diam}(\Omega)$). We can extract a subsequence which converges uniformly, and also weakly in $W^{1,p}$, for any p. The limit will also have the same Lipschitz constant, and the functional is l.s.c.. So, the limit is admissible and minimizes the functional.
- 3. The functional is strictly convex w.r.t. ∇u : any two minimizers must have the same gradient. Hence, they coincide up to additive constants. **Warning:** checking that the value for u+c is the same as that for u is not a valid answer, it only proves that you can add constants to minimizers, not that you can ONLY add constants to minimizers.
- 4. From the formulas we know the dual is given by

$$\min\left\{\int H^*(v)\,:\,\nabla\cdot v=f\right\},$$

where H is the function of Question 1. Hence, here we get the expression of H^* that we computed above. Note that this functional has lineargrowth in v.

5. The usual argument from "regularity via duality" is the following: suppose $H(w) + H^*(v) \ge v \cdot w + c|J_*(v) - J(w)|^2$, and denote by u_h the translation of u ($u_h(x) = u(x+h)$); let F be the functional we minimize in the primal problem, then we have

$$c \int |J(\nabla u_h) - J(\nabla u)|^2 = c \int |J(\nabla u_h) - J_*(v)|^2 \le F(u_h) - F(u).$$

Here $D^2H \geq cI$ (this is why we suppose $L < \pi/2$, since the second derivative of the cosinus vanishes at $\pi/2$), so that we know that we can take J(w) = w and $J_*(v) = \nabla H^*(v)$. We are just left to prove that $F(u_h) - F(u) = o(|h|^2)$, which would give $\nabla u \in H^1$, hence $u \in H^2$. We know that it is enough to prove that $h \mapsto F(u_h)$ is $C^{1,1}$, and we know that we just need to consider $h \mapsto \int fu_h$, since the first part of the functional, by change-of-variable, does not depend on h. The Hessian if this quantity (standard computations) is given by

$$\int \nabla f \otimes \nabla u_h$$

and we just need $f \in W^{1,1}$ and $u \in W^{1,\infty}$ (which is the case) in order to bound it by a constant. The case $f \in BV$ can be justified, for instance, by approximation (it has no meaning to integrate ∇f times ∇u_h if one is a measure and the other L^{∞}).

Exercice 4 (7 points). Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain. On the space $H_0^1(\Omega)$ consider the sequence of functionals

$$F_{\varepsilon}(u) = \int_{\Omega} \left[\frac{|\nabla u(x)|^2}{2} + \frac{\sin(\varepsilon u(x))}{\varepsilon} \right] dx.$$

- 1. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} .
- 2. Prove that the minimizers u_{ε} satisfy $||\nabla u_{\varepsilon}||_{L^{2}}^{2} \leq 2||u_{\varepsilon}||_{L^{1}}$ and that the norm $||u_{\varepsilon}||_{H_{0}^{1}}$ is bounded by a constant independent of ε .
- 3. Find the Γ -limit F_0 , in the weak H_0^1 topology, of the functionals F_{ε} as $\varepsilon \to 0$.
- 4. Characterize via a PDE the unique minimizer u_0 of the limit functional F_0 .
- 5. Prove $u_{\varepsilon} \rightharpoonup u_0$ in the weak H_0^1 topology.
- 6. Prove that the convergence $u_{\varepsilon} \to u_0$ is actually strong in H_0^1 .
- 7. Prove that all minimizers u_{ε} satisfy $-\frac{\pi}{2\varepsilon} \leq u_{\varepsilon} \leq 0$, and that for each ε the minimizer is unique.

Solution

- 1. Using the lower bound $\sin(\varepsilon u) \ge -1$ we see that any minimizing sequence is bounded in H_0^1 . We extract a weakly converging subsequence, and the functional is l.s.c., since the integrand is convex in the gradient part and continuous in u. Hence, the limit minimizes.
- 2. The estimate can be obtained by comparing with u=0: we have $F_{\varepsilon}(u_{\varepsilon}) \leq F_{\varepsilon}(0) = 0$. This gives $||\nabla u_{\varepsilon}||_{L^{2}}^{2} \leq 2 \int -\frac{\sin(\varepsilon u_{\varepsilon}(x))}{\varepsilon} dx \leq \int |u_{\varepsilon}|$ (by the way, using the Euler-Lagrange equation it is also possible to obtain the same estimate without the factor 2). Bounding the L^{1} norm with the L^{2} norm, and using Poincaré, we get

$$||\nabla u_{\varepsilon}||_{L^{2}}^{2} \leq C||\nabla u_{\varepsilon}||_{L^{2}},$$

which gives a bound on $||\nabla u_{\varepsilon}||_{L^2}$ and the sequence is bounded in H_0^1 .

3. We can guess the Γ -limit by looking at the pointwise limit. If we fix u, we have $\sin(\varepsilon u)/\varepsilon \to u$, hence we guess

$$F_0(u) = \int_{\Omega} \left[\frac{|\nabla u(x)|^2}{2} + u(x) \right] dx.$$

Since it is a pointwise limit, the Γ -limsup part is easy: just take the constant sequence $u_{\varepsilon} = u$. For the Γ -liminf, we take $u_{\varepsilon} \rightharpoonup u$ (weak convergence in H_0^1 , hence strong in L^2) and write, using $\sin(s) \geq s - Cs^2$ (Taylor expansion)

$$F_{\varepsilon}(u_{\varepsilon}) \ge F_0(u_{\varepsilon}) - C\varepsilon \int u_{\varepsilon}^2.$$

We then use the semicontinuity of F_0 and the fact that u_{ε} is bounded in L^2 to get that the liminf is at least $F_0(u)$.

4. The solution u_0 of $\min\{F_0(u): u \in H_0^1(\Omega)\}\$ is the solution of

$$\begin{cases} \Delta u = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

- 5. The sequence of minimizers u_{ε} is bounded in H_0^1 , hence compact for the weak convergence. Any limit must minimize F_0 , but the minimizer is unique, so the whole sequence converges to u_0 .
- 6. Since the minimizers of F_{ε} stay in a same compact set (a bounded set in H_0^1), we have the compactness assumption (equicoercivity) which guarantees $\min F_{\varepsilon} \to \min F_0$. But this means $F_{\varepsilon}(u_{\varepsilon}) \to F_0(u_0)$ and implies $||\nabla u_{\varepsilon}||_{L^2} \to ||\nabla u_0||_{L^2}$. Together with the weak converge,ce this gives strong convergence.

7. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(s) = -|s| for $|s| \leq \pi/2$, and extended by periodicity on \mathbb{R} . This function is Lipschitz with constant 1, and we can check that we have $\sin(f(s)) \leq \sin(s)$. Hence, if we define $\tilde{u}_{\varepsilon} = \varepsilon^{-1} f(\varepsilon u_{\varepsilon})$, we have $F_{\varepsilon}(\tilde{u}_{\varepsilon}) \leq F_{\varepsilon}(u_{\varepsilon})$. Moreover, as soon as there is a non-negligible set where $\varepsilon u_{\varepsilon}$ belongs to $] - 2\pi, -\pi[$ or $]0, \pi[$, the inequality in the sinus is strict, hence u_{ε} could not be a minimizer. This proves that u_{ε} cannot take values outside $[-\pi/\varepsilon, 0]$ (we can prove, by using the regularity associated with the Euler-Lagrange equation, that u_{ε} is continuous, so that if $\varepsilon u_{\varepsilon}$ takes values outside $[-\pi/\varepsilon, 0]$ then it takes values in $] - 2\pi, -\pi[$ or $]0, \pi[$ on a non-negligible set). In order to prove that it actually takes values in $[-\pi/(2\varepsilon), 0]$, we can define $\hat{u}_{\varepsilon} = \max\{-\pi/(2\varepsilon), u_{\varepsilon}\}$ and see that also in this case we would have a strict inequality if $\varepsilon u_{\varepsilon}$ takes values smaller than $-\pi/2$.

Once that we know that the minimizers take value in $[-\pi/(2\varepsilon), 0]$, we see that the functional is strictly convex on these functions, and the minimizer is unique.

Exercice 5 (7 points). Let $\Omega \subset \mathbb{R}^2$ be the ball B(0,2). On the space $L^1(\Omega)$ consider the sequence of functionals

$$F_{\varepsilon}(u) = \begin{cases} \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla u(x)|^2 + \frac{1}{2\varepsilon} \left(\frac{1}{1 + (2u(x) - 1)^2} - \frac{1}{2} \right)^2 + 2(|x| - 1)u(x) \right] dx & \text{if } u \in H_0^1(\Omega), 0 \le u \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

- 1. Find the Γ -limit, in the strong L^1 topology, of the functionals F_{ε} as $\varepsilon \to 0$.
- 2. Prove that the unique minimizer of the limit functional is the indicator function of a ball, and find it.
- 3. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} , and prove that u_{ε} admits a strong L^1 limit as $\varepsilon \to 0$, and find it.
- 4. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a radially decreasing minimizer u_{ε} .

Solution

1. The first part of the functional is a Modica-Mortola term, with a double-well function given by

$$W(s) = \left(\frac{1}{1 + (2s - 1)^2} - \frac{1}{2}\right)^2,$$

which only vanishes at s = 0, 1. We know that it Γ -converges, for the strong L^1 topology, to the functional

$$F(u) = \begin{cases} c \operatorname{Per}(A) & \text{if } u = I_A \in BV(\Omega), \\ +\infty & \text{otherwise,} \end{cases}$$

where $c = \int_0^1 \sqrt{W(s)} ds$. Notice that we can include the constraint $0 \le u \le 1$ in the Γ -convergence since the construction of the recovery sequence in the Γ -lim sup preserves it. Also notice that the constraint $u \in H_0^1$ means that, in the limit, the perimeter also counts the part of boundary of A which is on the boundary of Ω (even if u = 1 close to the boundary, one has to go down to 0... the recovery sequence in the Γ -lim sup is built by first supposing $d(A, \partial\Omega) > 0$, and the proving that we have a dense-in-energy sequence).

The other part of the functional is continuous for the convergence we use, so it can added to the Γ -convergence result. Hence we have a Γ -limit F_0 given by

$$F(u) = \begin{cases} c \operatorname{Per}(A) + \int_A 2(|x| - 1) dx & \text{if } u = I_A \in BV(\Omega), \\ +\infty & \text{otherwise.} \end{cases}$$

In our case we can compute the constant c

$$c = \int_0^1 \left(\frac{1}{1 + (2s - 1)^2} - \frac{1}{2} \right) ds = \int_{-1}^1 \left(\frac{1}{1 + t^2} - \frac{1}{2} \right) \frac{dt}{2} = \frac{\pi - 2}{4} \approx 0.27.$$

2. By symmetrization, any set A can be replaced by a ball with the same volume, and this reduces the perimeter. Moreover, if we choose to center this ball at the origin and we call it B, we also have $\int_A 2(|x|-1) \ge \int_B 2(|x|-1)$ since the values of the function 2(|x|-1) are radially increasing, and concentrating the same measure where it is minimal decreases the integral. By the way, the integral strictly decreases unless A was already equal to B. Hence, the minimum is a given by $u = I_A$, with A a ball centered at the origin. Set A = B(0, R), and compute the value fo the functional: we have

$$F(I_{B(0,R)}) = c2\pi R + 4\pi (\frac{R^3}{3} - \frac{R^2}{2}).$$

This function is minimized on the positive values of R by

$$R = \frac{1}{2} + \sqrt{\frac{1-2c}{4}}$$

(the derivative vanishes in two points, but $\frac{1}{2} - \sqrt{\frac{1-2c}{4}}$ is a local maximum). We have found the unique minimizer of the limit functional.

- 3. Using $W \geq 0$ and $2(|x|-1)u \geq -2$ we see that any minimizing sequence is bounded (for fixed $\varepsilon > 0$) in H_0^1 , and the functional is l.s.c. for the weak H_0^1 convergence. We deduce the existence of a minimizer. From the proof of the lower bounds in the Γ -convergence, we have a strictly increasing function $\phi : \mathbb{R} \to \mathbb{R}$ (the anti-derivative of \sqrt{W}) such that $\int |\nabla(\phi \circ u_{\varepsilon})|$ is bounded. This proves that, up to subsequences, $\phi \circ u_{\varepsilon}$ converges strongly in L^1 (we use the compact injection of BV into L^1) to something, and in particular it converges a.e. Composing with ϕ^{-1} , also u_{ε} converges a.e. to something and, because of the bounds $0 \leq u_{\varepsilon} \leq 1$, it converges strongly in L^1 since it is domainated. The limit can only by a minimizer of F_0 , i.e. the indicator of the ball of the radius we just found.
- 4. We can symmetrize the minimizers u_{ε} . The symmetrization will provide a better result (and hence a contradiction, unless u_{ε} is already symmetric, i.e. radially discreasing) provided we can prove

$$\int fu \ge \int fu^*$$

as soon as f is a radially increasing function (here f(x) = 2(|x|-1); we also need strict inequality as soon as $u \neq u_*$. To do this, use u and u^* as measures (they are positive, and have the same mass) and remember $\int f d\mu = \int \mu(\{f > t\}) dt$. Now, for each t, we have $\int_{\{f > t\}} u \geq \int_{\{f > t\}} u^*$ via a similar argument as before: u^* brings more mass closer to the origin. Indeed,

$$\int_{\{f>t\}}u=\int|\{u>s\}\cap\{f>t\}|ds$$

and $|\{u>s\}\cap \{f>t\}|\geq |\{u^*>s\}\cap \{f>t\}|$ since $\{f>t\}$ is the complement of a centered ball, and $\{u^*>s\}$ has the same volume as $\{u>s\}$, but is more contained in the ball $\{f\leq t\}$. We also see that the inequality is strict as soon as the sublevel sets of u and u^* have not the same measure in all the balls.

Actually, there is a more general inequality that one could prove : $\int u^*v^* \ge \int uv$ for every u, v (but in our case, one of the two functions is already radial).