Calculus of Variations –

Final Examination

– Duration : 3h; all kind of paper documents (notes, books...) are authorized.

The total score of this exam is much more than 20 : you are not expected to deal with all the exercises (but of course you can). The grade will just be truncated at 20.

Exercice 1 (6 points)**.** Consider the minimization problem

$$
\min\left\{\int_0^1 e^{-2t} \left(\frac{1}{2}u'(t)^2 + \frac{3}{2}u(t)^2 + \frac{5}{2}u(t)\right)dt \quad : \quad u \in C^1([0,1]), \ u(0) = u(1) = a\right\}
$$

and prove that it admits a minimizer, that it is unique, and find it, in the two cases $a = -5/6$ and $a = 5/6$.

Solution

The minimization problem above is convex, and even strictly convex. Hence, it admits at most one soluton, and it is enough to write the Euler-Lagrange equation with its boundary conditions, and solve it : the solution of the equation will also be the unique solution of the minimization problem.

From $L(t, x, v) = e^{-2t}(\frac{|v|^2}{2} + \frac{3|x|^2}{2} + \frac{5x}{2})$ we find the Euler-Lagrange equation $(\partial_v L(t, u, u'))' = \partial_x L(t, u, u'),$ which, after simplifying e^{-2t} , reads $u'' - 2u' = 3u + 5/2$.

First notice that the constant $u = -5/6$ is a solution of the equation, so, in case $a = -5/6$, the answer is just $u(t) = -5/6$, which is a $C¹$ function and solves the problem.

For $a = 5/6$ we have to solve the equation. The solution is of the form

$$
u(t) = Ae^{-t} + Be^{3t} - \frac{5}{6},
$$

which is found by using the particular solution −5*/*6 and adding arbitrary solutions of the homogeneous equation $u'' - 2u' - 3u = 0$ (a basis of the space of solutions is given by the functions of the form $e^{\lambda t}$ for λ solving $\lambda^2 - 2\lambda = 3 = 0$, i.e. $\lambda = -1$ and $\lambda = 3$).

Imposing $u(0) = u(1) = 5/6$ we can find

$$
A = \frac{5}{3} \cdot \frac{e^4 - e}{e^4 - 1}, \quad B = \frac{5}{3} \cdot \frac{e - 1}{e^4 - 1}.
$$

Exercice 2 (5 points). Let Ω be an open and bounded subset of \mathbb{R}^d , $p > 1$ and $h : \mathbb{R} \to \mathbb{R}_+$ a continuous function. Consider the following minimization problem

$$
\min\left\{\int_{\Omega}\sqrt{h(u(x))+|\nabla u(x)|^{2p}}\,dx\ :\ u\in W_0^{1,p}(\Omega)\right\}.
$$

Prove that it admits a solution. Also prove that its minimal value is strictly positive if $h(0) > 0$. Consider now

$$
\inf\left\{\int_\Omega\sqrt{\frac{1+|\nabla\varphi(x)|^{2p}}{1+|\varphi(x)|^{2p}}},dx\;:\;\varphi\in C^\infty_c(\Omega)\right\}.
$$

Prove that the value of this infimum is strictly positive.

Solution

For the first part, notice that by $h \geq 0$ any minimizing sequence u_n will be such that $\int \sqrt{|\nabla u_n|^2 p}$ $||\nabla u_n||_{L^p}^p$ will be bounded and, using the Poincaré inequality (since we are in $W_0^{1,p}$ $\binom{1,p}{0}$, any minimizing sequence is bounded in $W_0^{1,p}$ $_{0}^{1,p}$. We can extract a weakly converging subsequence. The functional is of the form $u \mapsto \int L(u, \nabla u)$ with *L* continuous in the first variable and convex in the second. Hence it is l.s.c. for the weak $W^{1,p}$ convergence, and the limit of the sequence is a minimizer. **Warning :** since the functional is not the sum of a part with *u* and a part with ∇u , the semicontinuity cannot be discussed by separating the two parts.

The minimum is for sure not negative, and could only be zero if the minimizer *u* satisfied both $|\nabla u| = 0$ and $h(u) = 0$ a.e. But the first condition implies that it is constant equal to 0 (because it is 0 on the boundary), and if $h(0) > 0$ then the minimum is strictly positive. **Warning :** unless you prove continuity of the minimizers up to $\partial\Omega$ (which is not a consequence of $u \in W^{1,p}$), saying that $h(u)$ is strictly positive on *∂*Ω and hence must be strictly positive on a neighborhood of the boundary does not work.

For the second part, define $g : \mathbb{R} \to \mathbb{R}$ by setting $g(0) = 0$ and $g'(t) = (1 + t^{2p})^{1/2p}$. The function *g* is $C¹$ and strictly increasing. Then we have

$$
\sqrt{\frac{1+|\nabla \varphi|^{2p}}{1+|\varphi|^{2p}}}=\sqrt{\frac{1}{1+|\varphi|^{2p}}+|\nabla (g\circ \varphi)|^{2p}}
$$

and

$$
\frac{1}{1+|\varphi|^{2p}} = \frac{1}{1+|g^{-1}(g\circ\varphi)|^{2p}} = h(g\circ\varphi),
$$

for a certain continuous function $h : \mathbb{R} \to \mathbb{R}_+$ with $h(0) = 1/(1 + |g^{-1}(0)|^{2p} = 1 > 0$.

Hence, the values in the inf below are all larger than the minimum above (by using $u = q \circ \varphi$, and not $u = \varphi$, which is strictly positive.

Exercice 3 (6 points). Let Ω be a given bounded *d*−dimensional domain, $f \in L^2(\Omega)$ with $\int_{\Omega} f(x)dx$ = 0, and $L \leq \pi/2$ a given constant. Consider the following minimization problem

$$
\min\left\{\int_{\Omega} \left[1 - \cos(|\nabla u(x)|) + f(x)u(x)\right] dx \ : \ u \in \text{Lip}(\Omega), \ |\nabla u| \le L \text{ a.e.},\right\}.
$$

- 1. Preliminarly, justify that the function $h : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ defined by $h(s) = 1 \cos(s)$ for $|s| \leq L$ and $h(s) = +\infty$ for $|s| > L$ and the function $H : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ defined by $H(w) = h(|w|)$ are convex, and find their transforms h^* and H^* .
- 2. Prove that this problem admits a solution.
- 3. Prove that the solution is unique up to additive constants.
- 4. Formally write the dual of this problem ("formally" means that the proof of the duality result is not required, as the growth conditions assumed in class are not satisfied).
- 5. Assuming that duality holds, that Ω is the *d*-dimensional torus, that $L < \pi/2$ and that $f \in$ $W^{1,1}(\Omega)$, prove that the solution *u* of the above problem belongs to $H^2(\Omega)$. Does it work also if $f \in BV(\Omega)$?

Solution

1. The function h is finite and C^2 on an interval, and its second derivative is non-negative on this interval : hence, it is convex. Moreover, h is increasing on \mathbb{R}_+ : when we compose it with $w \mapsto |w|$, which is convex and non-negative, the composition *H* is convex. To compute *h* [∗] we write

$$
h^*(t) = \sup_s ts - h(s) = \sup_{|s| \le L} st - 1 + \cos(s).
$$

The function to maximize is concave in *s* and its derivative is given by $t - \sin(s)$. Hence, if there is $s \in [-L, L]$ with $\sin(s) = t$ (which means, if $|t| \le \sin L$), the maximizer is such a point. Otherwise it is $s = \pm L$, depending on the sign of t (same sign as t, in order to maximize the term *ts*). So we have

$$
h^*(t) = \begin{cases} t \arcsin(t) - 1 + \cos(\arcsin(t)) = t \arcsin(t) - 1 + \sqrt{1 - t^2} & \text{if } |t| \le \sin(L), \\ tL - 1 + \cos(L) & \text{if } t > \sin(L), \\ -tL - 1 + \cos(L) & \text{if } t < -\sin(L) \end{cases}
$$

One can check that this function is $C¹$ and convex.

As for H^* , we have $H^*(v) = \sup_w v \cdot w - h(|w|)$, and it is optimal to take *v* and *w* in the same direction, so that we have $H^*(v) = h^*(|v|)$.

- 2. Take a minimizing sequence u_n . Because of $\int f = 0$, we can assume $\int u_n = 0$ (adding a constant does not change the value of the functional). The sequence (u_n) is uniformly Lipschitz and uniformly bounded (because u_n vanishes somewhere, and is L -Lipschitz, so that we have $|u_n| \leq L$ diam (Ω)). We can extract a subsequence which converges uniformly, and also weakly in $W^{1,p}$, for any *p*. The limit will also have the same Lipschitz constant, and the functional is l.s.c.. So, the limit is admissible and minimizes the functional.
- 3. The functional is strictly convex w.r.t. ∇u : any two minimizers mus thave the same gradient. Hence, they coincide up to additive constants. **Warning :** checking that the value for $u + c$ is the same as that for *u* is not a valid answer, it only proves that you can add constants to minimizers, not that you can ONLY add constants to minimizers.
- 4. From the formulas we know the dual is given by

$$
\min\left\{\int H^*(v) : \nabla \cdot v = f\right\},\
$$

where H is the function of Question 1. Hence, here we get the expression of H^* that we computed above. Note that this functional has lineargrowth in *v*.

5. The usual argument from "regularity via duality" is the following : suppose $H(w) + H^*(v) \ge$ $v \cdot w + c|J_*(v) - J(w)|^2$, and denote by u_h the translation of $u(u_h(x) = u(x + h))$; let *F* be the functional we minimize in the primal problem, then we have

$$
c\int |J(\nabla u_h) - J(\nabla u)|^2 = c\int |J(\nabla u_h) - J_*(v)|^2 \leq F(u_h) - F(u).
$$

Here $D^2H > cI$ (this is why we suppose $L < \pi/2$, since the second derivative of the cosinus vanishes at $\pi/2$, so that we know that we can take $J(w) = w$ and $J_*(v) = \nabla H^*(v)$. We are just left to prove that $F(u_h) - F(u) = o(|h|^2)$, which would give $\nabla u \in H^1$, hence $u \in H^2$. We know that it is enough to prove that $h \mapsto F(u_h)$ is $C^{1,1}$, and we know that we just need to consider $h \mapsto \int f u_h$, since the first part of the functional, by change-of-variable, does not depend on *h*. The Hessian if this quantity (standard computations) is given by

$$
\int \nabla f \otimes \nabla u_h
$$

and we just need $f \in W^{1,1}$ and $u \in W^{1,\infty}$ (which is the case) in order to bound it by a constant. The case $f \in BV$ can be justified, for instance, by approximation (it has no meaning to integrate ∇f times ∇u_h if one is a measure and the other L^{∞}).

Exercice 4 (7 points). Let $\Omega \subset \mathbb{R}^d$ be an open and bounded domain. On the space $H_0^1(\Omega)$ consider the sequence of functionals

$$
F_{\varepsilon}(u) = \int_{\Omega} \left[\frac{|\nabla u(x)|^2}{2} + \frac{\sin(\varepsilon u(x))}{\varepsilon} \right] dx.
$$

- 1. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} .
- 2. Prove that the minimizers u_{ε} satisfy $||\nabla u_{\varepsilon}||_{L^2}^2 \leq 2||u_{\varepsilon}||_{L^1}$ and that the norm $||u_{\varepsilon}||_{H_0^1}$ is bounded by a constant independent of *ε*.
- 3. Find the Γ-limit F_0 , in the weak H_0^1 topology, of the functionals F_ε as $\varepsilon \to 0$.
- 4. Characterize via a PDE the unique minimizer u_0 of the limit functional F_0 .
- 5. Prove $u_{\varepsilon} \rightharpoonup u_0$ in the weak H_0^1 topology.
- 6. Prove that the convergence $u_{\varepsilon} \to u_0$ is actually strong in H_0^1 .
- 7. Prove that all minimizers u_{ε} satisfy $-\frac{\pi}{2\varepsilon} \leq u_{\varepsilon} \leq 0$, and that for each ε the minimizer is unique.

Solution

- 1. Using the lower bound $\sin(\varepsilon u) \geq -1$ we see that any minimizing sequence is bounded in H_0^1 . We extract a weakly converging subsequence, and the functional is l.s.c., since the integrand is convex in the gradient part and continuous in *u*. Hence, the limit minimizes.
- 2. The estimate can be obtained by comparing with $u = 0$: we have $F_{\varepsilon}(u_{\varepsilon}) \leq F_{\varepsilon}(0) = 0$. This gives $||\nabla u_{\varepsilon}||_{L^2}^2 \leq 2 \int -\frac{\sin(\varepsilon u_{\varepsilon}(x))}{\varepsilon}$ $\frac{u_{\varepsilon}(x)}{\varepsilon}dx \leq \int |u_{\varepsilon}|$ (by the way, using the Euler-Lagrange equation it is also possible to obtain the same estimate without the factor 2). Bounding the L^1 norm with the L^2 norm, and using Poincaré, we get

$$
||\nabla u_{\varepsilon}||_{L^2}^2 \leq C||\nabla u_{\varepsilon}||_{L^2},
$$

which gives a bound on $||\nabla u_{\varepsilon}||_{L^2}$ and the sequence is bounded in H_0^1 .

3. We can guess the Γ-limit by looking at the pointwise limit. If we fix *u*, we have $\sin(\varepsilon u)/\varepsilon \to u$, hence we guess

$$
F_0(u) = \int_{\Omega} \left[\frac{|\nabla u(x)|^2}{2} + u(x) \right] dx.
$$

Since it is a pointwise limit, the Γ-limsup part is easy : just take the constant sequence $u_{\varepsilon} = u$. For the Γ-liminf, we take $u_{\varepsilon} \to u$ (weak convergence in H_0^1 , hence strong in L^2) and write, using $\sin(s) \geq s - Cs^2$ (Taylor expansion)

$$
F_{\varepsilon}(u_{\varepsilon}) \geq F_0(u_{\varepsilon}) - C\varepsilon \int u_{\varepsilon}^2.
$$

We then use the semicontinuity of F_0 and the fact that u_ε is bounded in L^2 to get that the liminf is at least $F_0(u)$.

4. The solution u_0 of $\min\{F_0(u) : u \in H_0^1(\Omega)\}$ is the solution of

$$
\begin{cases} \Delta u = 1 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

- 5. The sequence of minimizers u_{ε} is bounded in H_0^1 , hence compact for the weak convergence. Any limit must minimize F_0 , but the minimizer is unique, so the whole sequence converges to u_0 .
- 6. Since the minimizers of F_{ε} stay in a same compact set (a bounded set in H_0^1), we have the compactness assumption (equicoercivity) which guarantees min $F_{\varepsilon} \to \min F_0$. But this means $F_{\varepsilon}(u_{\varepsilon}) \to F_0(u_0)$ and implies $||\nabla u_{\varepsilon}||_{L^2} \to ||\nabla u_0||_{L^2}$. Together with the weak converge,ce this gives strong convergence.

7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(s) = -|s|$ for $|s| \leq \pi/2$, and extended by periodicity on R. This function is Lipschitz with constant 1, and we can check that we have $\sin(f(s)) \leq \sin(s)$. Hence, if we define $\tilde{u}_{\varepsilon} = \varepsilon^{-1} f(\varepsilon u_{\varepsilon})$, we have $F_{\varepsilon}(\tilde{u}_{\varepsilon}) \leq F_{\varepsilon}(u_{\varepsilon})$. Moreover, as soon as there is a non-negligible set where $\varepsilon u_{\varepsilon}$ belongs to $]-2\pi, -\pi$ or $[0, \pi]$, the inequality in the sinus is strict, hence u_{ε} could not be a minimizer. This proves that u_{ε} cannot take values outside $[-\pi/\varepsilon, 0]$ (we can prove, by using the regularity associated with the Euler-Lagrange equation, that u_{ε} is continuous, so that if $\varepsilon u_{\varepsilon}$ takes values outside $[-\pi/\varepsilon, 0]$ then it takes values in $]-2\pi, -\pi[$ or $]0, \pi[$ on a non-negligible set). In order to prove that it actually takes values in $[-\pi/(2\varepsilon), 0]$, we can define $\hat{u}_{\varepsilon} = \max\{-\pi/(2\varepsilon), u_{\varepsilon}\}\$ and see that also in this case we would have a strict inequality if $\varepsilon u_{\varepsilon}$ takes values smaller than $-\pi/2$.

Once that we know that the minimizers take value in $[-\pi/(2\varepsilon), 0]$, we see that the functional is strictly convex on these functions, and the minimizer is unique.

Exercice 5 (7 points). Let $\Omega \subset \mathbb{R}^2$ be the ball $B(0, 2)$. On the space $L^1(\Omega)$ consider the sequence of functionals

$$
F_{\varepsilon}(u) = \begin{cases} \int_{\Omega} \left[\frac{\varepsilon}{2} |\nabla u(x)|^{2} + \frac{1}{2\varepsilon} \left(\frac{1}{1 + (2u(x) - 1)^{2}} - \frac{1}{2} \right)^{2} + 2(|x| - 1)u(x) \right] dx & \text{if } u \in H_{0}^{1}(\Omega), 0 \le u \le 1, \\ +\infty & \text{otherwise.} \end{cases}
$$

- 1. Find the Γ-limit, in the strong L^1 topology, of the functionals F_ε as $\varepsilon \to 0$.
- 2. Prove that the unique minimizer of the limit functional is the indicator function of a ball, and find it.
- 3. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a minimizer u_{ε} , and prove that u_{ε} admits a strong L^1 limit as $\varepsilon \to 0$, and find it.
- 4. Prove that, for each $\varepsilon > 0$, the functional F_{ε} admits at least a radially decreasing minimizer u_{ε} .

Solution

1. The first part of the functional is a Modica-Mortola term, with a double-well function given by

$$
W(s) = \left(\frac{1}{1 + (2s - 1)^2} - \frac{1}{2}\right)^2,
$$

which only vanishes at $s = 0, 1$. We know that it Γ-converges, for the strong L^1 topology, to the functional

$$
F(u) = \begin{cases} c\text{Per}(A) & \text{if } u = I_A \in BV(\Omega), \\ +\infty & \text{otherwise,} \end{cases}
$$

where $c = \int_0^1 \sqrt{W(s)} ds$. Notice that we can include the constraint $0 \le u \le 1$ in the Γconvergence since the construction of the recovery sequence in the Γ – lim sup preserves it. Also notice that the constraint $u \in H_0^1$ means that, in the limit, the perimeter also counts the part of boundary of A which is on the boundary of Ω (even if $u = 1$ close to the boundary, one has to go down to 0... the recovery sequence in the Γ – lim sup is built by first supposing $d(A, \partial \Omega) > 0$, and the proving that we have a dense-in-energy sequence).

The other part of the functional is continuous for the convergence we use, so it canbe added to the Γ-convergence result. Hence we have a Γ-limit *F*⁰ given by

$$
F(u) = \begin{cases} c\text{Per}(A) + \int_A 2(|x| - 1)dx & \text{if } u = I_A \in BV(\Omega), \\ +\infty & \text{otherwise.} \end{cases}
$$

In our case we can compute the constant *c*

$$
c = \int_0^1 \left(\frac{1}{1 + (2s - 1)^2} - \frac{1}{2} \right) ds = \int_{-1}^1 \left(\frac{1}{1 + t^2} - \frac{1}{2} \right) \frac{dt}{2} = \frac{\pi - 2}{4} \approx 0.27.
$$

2. By symmetrization, any set *A* can be replaced by a ball with the same volume, and this reduces the perimeter. Moreover, if we choose to center this ball at the origin and we call it *B*, we also have $\int_A 2(|x|-1) \ge \int_B 2(|x|-1)$ since the values of the function $2(|x|-1)$ are radially increasing, and concentrating the same measure where it is minimal decreases the integral. By the way, the integral strictly decreases unless *A* was already equal to *B*. Hence, the minimum is a given by $u = I_A$, with *A* a ball centered at the origin. Set $A = B(0, R)$, and compute the value fo the functional : we have

$$
F(I_{B(0,R)}) = c2\pi R + 4\pi \left(\frac{R^3}{3} - \frac{R^2}{2}\right).
$$

This function is minimized on the positive values of *R* by

$$
R = \frac{1}{2} + \sqrt{\frac{1 - 2c}{4}}
$$

(the derivative vanishes in two points, but $\frac{1}{2} - \sqrt{\frac{1-2c}{4}}$ $\frac{-2c}{4}$ is a local maximum). We have found the unique minimizer of the limit functional.

- 3. Using $W \ge 0$ and $2(|x|-1)u \ge -2$ we see that any minimizing sequence is bounded (for fixed $\varepsilon > 0$) in H_0^1 , and the functional is l.s.c. for the weak H_0^1 convergence. We deduce the existence of a minimizer. From the proof of the lower bounds in the Γ-convergence, we have a strictly or a minimizer. From the proof of the lower bounds in the 1-convergence, we have a strictly
increasing function $\phi : \mathbb{R} \to \mathbb{R}$ (the anti-derivative of \sqrt{W}) such that $\int |\nabla(\phi \circ u_{\varepsilon})|$ is bounded. This proves that, up to subsequences, $\phi \circ u_{\varepsilon}$ converges strongly in L^1 (we use the compact injection of BV into L^1) to something, and in particular it converges a.e. Composing with ϕ^{-1} , also u_{ε} converges a.e. to something and, because of the bounds $0 \le u_{\varepsilon} \le 1$, it converges strongly in L^1 since it is domainated. The limit can only by a minimizer of F_0 , i.e. the indicator of the ball of the radius we just found.
- 4. We can symmetrize the minimizers u_{ε} . The symmetrization will provide a better result (and hence a contradiction, unless u_{ε} is already symmetric, i.e. radially diecreasing) provided we can prove

$$
\int fu \geq \int fu^*
$$

as soon as *f* is a radially increasing function (here $f(x) = 2(|x|-1)$; we also need strict inequality as soon as $u \neq u_*$. To do this, use *u* and u^* as measures (they are positive, and have the same mass) and remember $\int f d\mu = \int \mu({f > t}) dt$. Now, for each *t*, we have $\int_{f > t} u \ge \int_{f > t} u^*$ via a similar argument as before $: u^*$ brings more mass closer to the origin. Indeed,

$$
\int_{\{f > t\}} u = \int |\{u > s\} \cap \{f > t\}| ds
$$

and $|\{u > s\} \cap \{f > t\}| \geq |\{u^* > s\} \cap \{f > t\}|$ since $\{f > t\}$ is the complement of a centered ball, and $\{u^* > s\}$ has the same volume as $\{u > s\}$, but is more contained in the ball $\{f \le t\}$. We also see that the inequality is strict as soon as the sublevel sets of u and u^* have not the same measure in all the balls.

Actually, there is a more general inequality that one could prove : $\int u^*v^* \geq \int uv$ for every *u*, *v* (but in our case, one of the two functions is already radial).