
ENS Lyon and Université Claude Bernard Lyon 1, M2A
January 11th, 2020

Calculus of Variations and Elliptic PDEs
–

Final Exam
–

Duration: 3h. All kind of documents (notes, books. . . ) are authorized, but you cannot collab-
orate with anyone else. The total number of points is much larger than 20, which means that
attacking two or three exercises could be a reasonable option.

Exercice 1 (6 points). Consider the problem

min
{∫ 2π

0

|u′(t)|2

2 + sin tdt : u ∈ C1([0, 2π]), u(0) = 0, u(2π) = 1
}
.

Find the minimizer as well as its minimal value.
More generally, given a function h ∈ C0([a, b]), h > 0, characterize the solution and the find the
minimal value of

min
{∫ b

a

|u′(t)|2

h(t) dt : u ∈ C1([a, b]), u(a) = A, u(b) = B

}

in terms of h, A and B.

Solution: We directly look at the general case with the function h. Let us write the Euler-Lagrange
equation of the problem, which is

(2u
′

h
)′ = 0,

i.e. u′ = ch for a suitable cnstant c. The constant can be found by imposing B − A =
∫ b
a u
′ = c

∫ b
a h.

The solution of the Euler-Lagrange equation with the given Dirichlet data is then given by u = A+cH,
where H is the antiderivative of h, i.e. H ′ = h and H(a) = 0. This function is C1, and it minimizes
the functional since the functional is convex. The minimal value is given by∫ b

a

|ch|2

h
= c2

∫ b

a
h = |B −A|

2∫ b
a h

.

In the precise case where a = 0, b = 2π,A = 0, B = 1, h(t) = 2 + sin t we get u(t) = 1
4π (2t+ 1− cos t)

and the minimal value is 1
4π .

Exercice 2 (8 points). Let Ω be a bounded open subset of Rd and a, f : Ω → R two Lipschitz
functions. Suppose inf a > 0. Consider the following minimization problem

min
{
F (u) :=

∫
Ω
a

(
|∇u|2

2 + u2

2 + fu

)
dx : u ∈ C1(Ω) ∩ L2(Ω)

}
,

where the condition u ∈ C1(Ω) is to be intended locally in the interior of Ω (no behavior or regularity
on the boundary is imposed). Prove that the problem admits a solution. It can be useful to treat
separately the cases of dimension d = 1, d = 2, 3, and d > 3 and to prove the following lemmas

1. If we have d ≤ 3 and a function v satisfying v ∈ H1(Ω), then v can be written as v = ∇ · F
where F is locally Hölder continuous.



2. If u solves an equation of the form ∇ · (a∇u) = g, where a is Lipschitz continuous and bounded
from below by a strictly positive constant and g ∈ L1

loc, then we can also deduce, in the weak
sense, the equation ∆u = g

a −∇(log a) · ∇u ∈ L1
loc.

Solution: We will prove the existence of a soluzion by first minimizing in H1 and then proving
that the solution is C1 by regularity (being L2 is included in being H1). It is clear that we have
F (u) ≥ c||u||2H1−C||u||L2 ≥ c||u||2H1−C||u||H1 , which proves that any minimizing sequence is bounded
in H1. We can then extract a weakly converging subsequence and, since the integrand is convex in
∇u, continuous in u, and measurable in x, the functional is l.s.c. and the limit minimizes. We write
the Euler-Lagrange equation to study its regularity. We have

∇ · (a∇u) = a(u+ f).

From u ∈ H1 and a, f ∈ Lip we deduce that the right had side is H1. In dimension 1 this means
au′ ∈ H2 ⊂ C1, and using again a Lipschitz, as well as inf a > 0, we find u′ ∈ Lip. Thus u ∈ C1,1,
and the result is even global.
In dimension 2 and 3 we use point 1. Assuming we prove it, we have ∇·(∇u) = ∇·F with a, F ∈ C0,α.
Then ∇ ∈ C0,α, this result being true locally. It proves u ∈ C1.
In higher dimension we use point 2. The equation tells us ∆u = u + f − ∇(log a) · ∇u. In order to
prove u ∈ C1 it is enough to prove u ∈ W 2,p

loc with p large (larger than the dimension. Hence, it is
enough to prove that the right hand side is Lploc for p large. We first know that it is L2. Then, we
observe that if we have a right hand side in Lp we deduce u ∈ W 2,p

loc hence ∇u ∈ W 1,p
loc ⊂ Lp

∗

loc and
this improves the summability of the right hand side. We can then prove by induction that the right
hand side belong to Lpk

loc where pk+1 = (pk)∗ = dpk
d−pk

> pk if pk < d. In finitely many steps we obtain
pk > d (otherwise we have an increasing sequence with a limit ` ∈ [2, d] such that ` = d`

d−` , which is
impossible). Hence we have u ∈W 2,p

loc with p > d.
We need now to prove points 1. and 2.
For point 1. we solve ∆ϕ = v and elliptic regularity tells us v ∈ H1 ⇒ ϕ ∈ H3. Hence v = ∇ · F
with F = ∇ϕ ∈ H2. In dimension 2 we have H2 ⊂ W 1,p for every p, and if we choose p > 2 we have
H2 ⊂ C0,α. In dimension 3 we have H2 ⊂W 1,6 and again, using 6 > 3, we have H2 ⊂ C0,α.
For point 2. we know ∫

a∇u · ∇ϕ = −
∫
gϕ

for every test function in H1
0 . If we take ψ ∈ H1

0 and we use ϕ = a−1ψ, we also have ϕ ∈ H1
0 as the

product of an H1
0 function and a Lipschitz function. We then obtain

−
∫
g

a
ψ = −

∫
gϕ =

∫
a∇u · ∇ϕ =

∫
∇u · ∇ψ −

∫
a∇u · ∇a

a2 ψ,

which is the weak formuation of the desired equation ∆u = g
a −∇(log a) · ∇u.

Exercice 3 (8 points). Let H : Rd → R be given by H(z) =
√

1 + |z|2 + |z|4 and Ω be the d-
dimensional torus. Consider the equation

∇ ·
(

(1 + 2|∇u|2)∇u
H(∇u)

)
= f.

1. Given f ∈ H−1(Ω) such that 〈f, 1〉 = 0 (i.e. f has zero average), prove that there exists a
solution u ∈ H1(Ω) to this equation, which is unique up to additive constants.

2. If f ∈ C∞, prove that the solution u is also C∞.

Solution: First let us note that H is a convex function which satisfies max{1, |z|2} ≤ H(z) ≤
1 + |z|+ |z|2 ≤ 2 + 2|z|2, and let us compute its gradient and Hessian. We have

∇H(z) = 1
2

2z + 4|z|2z
H(z) = (1 + 2|z|2)z

H(z)



and
D2H(z) = (1 + 2|z|2)

H(z) I + 4z ⊗ z
H(z) −

(1 + 2|z|2)z
H2(z) ⊗∇H(z),

hence, finally

D2H(z) = (1 + 2|z|2)
H(z) I + 4H2(z)− (1 + 2|z|2)2

H3(z) z ⊗ z.

From 4H2(z) = 4 + 4|z|2 + 4|z|4 and (1 + 2|z|2)2 = 1 + 4|z|2 + 4|z|4 we then simplify this into

D2H(z) = (1 + 2|z|2)
H(z) I + 3

H3(z)z ⊗ z.

This allows to see that we have D2H(z) ≥ (1+2|z|2)
2+2|z|2 I ≥

1
2I and D2H(z) ≤ (1+2|z|2)

H(z) I + 3
H2(z)

z⊗z
H(z) ≤ 6I.

Hence, H is a convex function which is both elliptic and C1,1.
The PDE that we are considering is of the form ∇ · ∇H(∇u) = f , which is the Euler-Lagrange
equation of min

∫
H(∇u) + fu. Since f has zero average, the minimization can be performed among

zero-average functions u, since adding a constant does not change the value of the functional. Since
H grows quadratically while the term u 7→

∫
fu has linear growth in ||u||H1 , any minimizing sequence

with zero average is bounded in H1 and admits a weakly converging subsequence. The functional is
l.s.c. for this convergence, hence a minimizer exists, which is also a solution of the equation.
The uniqueness of the solution up to additive constants comes the uniqueness of the minimizers up to
the same constants, and is due to the strict convexity of the function w.r.t. ∇u.
We know from the regularity via duality that f ∈ W 1,2 is enough to guarantee ∇u ∈ H1 (here, since
H is elliptic, we can obtain H(z) +H∗(v) ≥ z · v + c|z −∇H∗(v)|2, which provides H1 regularity on
∇u). This allows to differentiate the equation and obtain, if u′ denotes the derivative of u in a certain
direction, ∇ ·D2H(∇u)∇u′) = f ′. To rigorously prove this differentiation one can write∫

∇H(∇u) · ∇ϕ =
∫
fϕ,

which is the weak formulation of the PDE and is valid for arbitrary ϕ ∈ C∞, and apply it to ϕ = ψ′.
The, using the fact that ∇H is Lipschitz continuous (since H ∈ C1,1) and ∇u ∈ H1, we can integrate
by parts putting the derivatives on ∇H(∇u) and f , thus obtaining the weak formulation of the
differentiated equation.
We now have a function u′ ∈ H1 which solves a PDE of the form ∇ · (a(x)∇u′) = g, with g ∈ C∞.
From the bounds on a = D2H(∇u) we can adapt the De Giorgi-Nash-Moser theorem (that we saw
for the case g = 0) and obtain u′ ∈ C0,α. The adaptation of the proof is long, but works for much
more general g (here we have g ∈ C∞, but it works for g = ∇ ·G, G ∈ Lp, p > d).
Since u′ ∈ C0,α is true for arbitrary derivative directions, we obtain u ∈ C1,α. We can then apply the
Hölder regularity theory with Campanato spaces to prove by induction u ∈ Ck,α and finally u ∈ C∞.

Exercice 4 (8 points). The goal is to find the limit as ε→ 0 of the following minimal value

min

ε2
∫
B(0,R0)

|∇u|2 + 1
2ε

∫
B(0,R0)

u2(1− u)2 +
(∫

B(0,R0)
u

)−1

: u ∈ H1
0 (B(0, R0)), 0 ≤ u ≤ 1

 .
In order to find and justify this limit one can go through the following steps.

1. Prove that the functionals Fε defined on L1(B(0, R0)) through

Fε(u) :=
{
ε
2
∫
B(0,R0) |∇u|2 + 1

2ε
∫
B(0,R0) u

2(1− u)2 ifu ∈ H1
0 (B(0, R0)), 0 ≤ u ≤ 1

+∞ if not

Γ-converge for the strong L1 topology to F given by

F (u) :=
{
cPer(A) ifu = IA, A ⊂ B(0, R0)
+∞ if not



where c is a suitable constant (to be found) and Per(A) is the perimeter in the BV sense of the
set A ⊂ Rd viewed as a subset of the whole space. For this proof, it is enough to explain which
arguments have to be modified compared to the result seen in class.

2. Find and characterize the minimizers of u 7→ F (u) + (
∫
u)−1 making use, if needed, of the

isoperimetric inequality.

3. Conclude and compute the limit value, which can depend on the dimension d and on R0.

Solution:

1. The standard proof of the Modica-Mortola Γ-convergence result ignores the constraints u ∈
H1

0 (B(0, R0)), 0 ≤ u ≤ 1. The only point where we need to enforce them is in the Γ-limsup
inequality. We usually take a smooth set A and define uε = φ( sdA

ε ). If d(A, ∂Ω) > 0 and φ is
a function which arrives in finite time to the value 0 and takes value in [0, 1], the constructed
sequence satisfies the constraints. It is not a problem to choose φ in this way (the Γ-limsup
inequality can be obtained by taking the infimum among those functions), but the class of
smooth sets far from the boundary has to be proven to be dense in energy. This can be easily
proven, in the case where Ω is the ball (or convex), by scaling: any set A can be approximated
by sets of the form Ak = (1− 1/k)A.
The value of the constant c is known to be

∫ 1
0
√
W (s)ds, where here W (s) = s2(1 − s)2, hence

c = 1/6.

2. When we want to minimize u 7→ F (u)+G(u), where G(u) = (
∫
u)−1, we can first take a function

u (of the form u = IA) and replace it with the bsest function having the same integral (i.e. an
indicator function of a set with the same volume). Thanks to the isoperimetric inequality, we
can reduce to the minimization among functions of the form IBR

.
We have

F (IBR
) = 1

6dωdR
d−1 + (ωdRd)−1,

where ωd is the volume of the unit ball in dimension d. The minimizer has hence to be a ball
with a radius R which minimizes this expression in [0, R0]. This function is convex in R and its
minimum is realized at a unique R1 such that

1
6d(d− 1)ωdRd−2

1 = d

ωd
R−d−1

1

If R0 ≤ R1 then the optimum is realized taking R = R0, otherwise we take R = R1. We can
also compute the value of R1, which is given by

R1 =
(

6
ω2
d(d− 1)

) 1
2d−1

.

3. We first need to prove that the limit of the minimal value is the minimal value of the limit. We
have Γ-convergence of Fε to F and G is continuous for the L1 convergence, hence we preserve
the Γ-convergence. We then need to prove that a sequence of minimizers uε is compact in L1.
Since we have 0 ≤ uε ≤ 1, strong convergence in L1 is equivalent to a.e. convergence (by
dominated convergence) and we know from the estimates used in the Γ-convergence proof that
Φ(uε) is bounded in BV where Φ′ =

√
W . In particular, up to subsequences, using the compact

embedding of BV into L1 (on a bounded set, the ball), we can assume strong L1 convergence for
Φ(uε) and, extracting again, also a.e. convergence. Since Φ : R → R is a homeomorphism as it
is continuous and strictly incresing we can compose with Φ−1 and preserve the a.e. convergence.
This shows compactness of the minimizers and hence the minimal value passes to the limit.
The limit minimal value is thus given by 1

6dωdR
d−1 + (ωdRd)−1 with R = R0 or R1 as explained

above. It indeed depends on d and R0


