Calculus of Variations

Final Examination

Duration : 3h; all kind of paper documents (notes, books...) are authorized.

Exercice 1 (6 points). Consider the problem

$$\min\left\{\int_0^1 e^{2t} \left(u'(t)^2 + 3u(t)^2\right) dt \quad : \quad u \in C^1([0,1]), \ u(1) = 1\right\}.$$

Prove that it admits a minimizer, that it is unique, and find it.

Exercice 2 (6 points). Let Ω be an open connected subset in \mathbb{R}^d , $a \in L^{\infty}(\Omega)$ be a function with $a \ge a_0$ where $a_0 > 0$ is a positive constant, and $b \in L^2(\Omega)$ be another function, which is not identically zero. Prove that the following minimization problem admits a solution

$$\min\left\{\frac{\int_{\Omega} a|\nabla u|^2 dx}{\left|\int_{\Omega} bu \, dx\right|^2} : u \in H_0^1(\Omega) : \int_{\Omega} bu \, dx \neq 0\right\},\$$

and write the PDE that such a solution satisfies. Finally, compute the value of the above minimum in the case $\Omega = B(0, 1) \subset \mathbb{R}^2$, a(x) = 1 and b(x) = |x|.

Exercice 3 (7 points). Let Ω be an open connected subset of \mathbb{R}^d and take $f \in L^2(\Omega)$ with $\int_{\Omega} f(x) dx = 0$. Consider the following minimization problem

$$\min\left\{\int_{\Omega} \left(\frac{1}{2}|\nabla u|^2 + |\nabla u| + fu\right) dx : u \in H^1(\Omega)\right\}$$

- 1. Prove that it admits a solution, which is unique up to an additive constant.
- 2. Write the PDE satisfied by the solution \bar{u} supposing $\nabla \bar{u} \neq 0$.
- 3. Find the dual of this problem.
- 4. Find a re-writing of the previous PDE which is also valid when $\nabla \bar{u} = 0$ (in the form "there exists v with $\nabla \cdot v = f$ and such that v is linked to $\nabla \bar{u}$ in some way").
- 5. Prove that any optimal u is $H^2_{loc}(\Omega)$ (or H^2 if we replace the domain Ω with a torus).

Exercice 4 (4 points). Given an open bounded set $\Omega \subset \mathbb{R}^d$ with volume $|\Omega| > 2$, prove that the following problem has a solution

$$\min\left\{Per(A) + Per(B) + \int_{\Omega} |\nabla u|^2 dx : A, B \subset \Omega, |A| = |B| = 1, u \in H^1(\Omega), u = 1 \text{ on } A, u = 0 \text{ on } B\right\}$$

Per(A) and Per(B) stand for the perimeters in the BV sense, i.e. the total variation of the corresponding indicator functions inside the open set Ω . Also compute the minimal value above when $\Omega =]0, L[\subset \mathbb{R} \text{ for } L > 2.$

Look at the back of the paper for the last exercise

Exercice 5 (7 points). Let X be the metric space $X = \{u \in L^2([0,1]) : |u| \leq M\}$, where M > 0 is a given constant, endowed with any distance inducing the weak convergence in L^2 . Let $W, U : \mathbb{R} \to \mathbb{R}$ be given by $W(t) = (1 - t^2)^2$ and $U(t) = ((1 - t^2)_-)^2$ (i.e. U = W outside [-1, 1] and U = 0 on [-1, 1]). Consider the functionals $F_n : X \to \mathbb{R} \cup +\infty$ defined through

 $F_n(u) := \begin{cases} \int_0^1 W(u(s))ds + \frac{1}{n} \int_0^1 |u'(s)|^2 ds & \text{if } u \in H^1([0,1]), \\ +\infty & \text{otherwise} \end{cases}$

and the functional F simply given by $F(u) = \int_0^1 U(u(s)) ds$.

- 1. Justify why $U = W^{**}$.
- 2. Prove that for any sequence u_n with $u_n \rightharpoonup u$ we have $\liminf_n F_n(u_n) \ge F(u)$.
- 3. Suppose that u is a piecewise constant (the pieces being intervals) taking only the values ± 1 , which implies F(u) = 0. Prove that there exists a sequence u_n such that $\lim_n F_n(u_n) = 0$ and $u_n \rightharpoonup u$.
- 4. Set $Y_1 = \{u \in X : u \text{ is a piecewise constant function taking only values in } [-M, 1] \cup [1, M] \}$ and $Y_2 = \{u \in X : u \text{ is a piecewise constant function} \}$. Prove that the same conclusion as before is true for every $u \in Y_1$.
- 5. Prove that Y_1 is dense in energy in Y_2 (i.e for every $u \in Y_2$ there is a sequence $u_k \in Y_1$ s.t. $u_k \rightharpoonup u$ and $F(u_k) \rightarrow F(u)$).
- 6. Prove that Y_2 is dense in energy in X.
- 7. Conclude $F_n \xrightarrow{\Gamma} F$.