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Exercice 1 (7 points). Consider the problem

min
{∫ π/2

0

(
u′(t)2 + u(t)2 + 2 sin(t)u(t)

)
dt : u ∈ C1([0, π/2]), u(0) = 0

}
.

Prove that it admits a minimizer, that it is unique, find it, and compute the value of the minimum.

Exercice 2 (5 points). Let Ω be a bounded open subset of Rd. Consider the following minimization
problem

min
{∫

Ω
(2 + arctan(u))(1 + |∇u|2)dx : u ∈ X

}
.

1. If X = H1(Ω), prove that the problem has no solution.
2. If X = H1

0 (Ω), prove that the problem admits at least a solution ū, prove that ū ≤ 0, find the
Euler-Lagrange equation solved by ū, and prove ∆ū ∈ L1.

Exercice 3 (8 points). Let Ω be the d−dimensional flat torus (just to avoid boundary conditions,
think at a cube), p, q > 1 two given exponents, a > 0 and f : Ω → R a given Lipschitz continuous
function. Consider the following minimization problem

inf
{∫

Ω

(1
p
|∇u|p − a

q
|u|q + fu

)
dx : u ∈W 1,p(Ω) ∩ Lq(Ω)

}
.

1. Prove that, if q > p, the inf is −∞ and the minimization problem has no solution.
2. Prove that, if q < p, the infimum is attained.
3. Prove that, if q = p, the infimum is attained, provided a is small enough.
4. In the cases where the infimum is attained, write the Euler-Lagrange equation solved by the

minimizers.
5. Recall the condition on f which guarantee that solutions of ∆pu = f , satisfy (∇u)p/2 ∈ H1

(remember that, for a vector v, the expression vα is to be intended as equal to a vector w with
|w| = |v|α and w ∈ R+v).

6. For p ≥ 2 and 2 ≤ q ≤ p, prove that the solution ū satisfies (∇ū)p/2 ∈ H1.

Exercice 4 (4 points). Given an open bounded set Ω ⊂ Rd with volume |Ω| > 2ωd (ωd denoting
the volume of the unit ball in Rd) and a function f ∈ L1(Ω), prove that the following problem has a
solution

min
{
Per(A) + Per(B) +

∫
A∩B

f(x)dx : A,B ⊂ Ω, |A| = |B| = ωd

}
.

P er(A) and Per(B) stand for the perimeters in the BV sense, i.e. the total variation of the corres-
ponding indicator functions (considered as BV functions on the whole Rd, not on Ω).
Also compute the minimal value above when Ω is the smallest convex domain containing B(e, 1) and
B(−e, 1), where e is an arbitrary unit vector e ∈ Rd with |e| = 1, and f = 1 on Ω.

Look at the back of the paper for the last exercise



Exercice 5 (6 points). Let un, vn be two sequences of functions belonging to H1([0, 1]). Suppose

un ⇀ u0, vn ⇀ v0, En(un, vn, [0, 1]) ≤ C

where En is the energy defined for every interval J ⊂ [0, 1] through

En(u, v, J) :=
∫
J

(
v(t)|u′(t)|2 + 1

2n |v
′(t)|2 + n

2 |1− v(t)|2
)
dt,

C ∈ R is a given constant, the weak convergence of un and vn occurr in L2([0, 1]), and u0 is a function
which is piecewise C1 on [0, 1] (i.e. there exists a partition 0 = t0 < t1 < · · · < tN = 1 such that
u0 ∈ C1(]ti, ti+1[), and the limits of u0 exist finite at t = t±i but u0(t−i ) 6= u0(t+i ) for i = 1, . . . , N − 1).
Denote by J the family of all the intervals J compactly contained in one of the open intervals ]ti, ti+1[.
Also suppose, for simplicity, that un ⇀ u0 in H1(J) for every interval J ∈ J .
Prove that we necessarily have

1. v = 1 a.e. and vn → v strongly in L2.
2. lim infn→∞En(un, vn, J) ≥

∫
J |u′0(t)|2dt for every interval J ∈ J .

3. lim infn→∞En(un, vn, J) ≥ 1 for every interval J containing one of the points ti.
4. C ≥ lim infn→∞En(un, vn, [0, 1]) ≥

∫ 1
0 |u′0(t)|2dt+ (N − 1).


