Calculus of Variations

2nd round Examination

Duration: 3h; all kind of paper documents (notes, books...) are authorized.

Exercice 1 (7 points). Consider the problem

$$\min \left\{ \int_0^{\pi/2} \left(u'(t)^2 + u(t)^2 + 2\sin(t)u(t) \right) dt \quad : \quad u \in C^1([0, \pi/2]), \ u(0) = 0 \right\}.$$

Prove that it admits a minimizer, that it is unique, find it, and compute the value of the minimum.

Exercice 2 (5 points). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the following minimization problem

$$\min \left\{ \int_{\Omega} (2 + \arctan(u))(1 + |\nabla u|^2) dx : u \in X \right\}.$$

- 1. If $X = H^1(\Omega)$, prove that the problem has no solution.
- 2. If $X = H_0^1(\Omega)$, prove that the problem admits at least a solution \bar{u} , prove that $\bar{u} \leq 0$, find the Euler-Lagrange equation solved by \bar{u} , and prove $\Delta \bar{u} \in L^1$.

Exercice 3 (8 points). Let Ω be the d-dimensional flat torus (just to avoid boundary conditions, think at a cube), p,q>1 two given exponents, a>0 and $f:\Omega\to\mathbb{R}$ a given Lipschitz continuous function. Consider the following minimization problem

$$\inf \left\{ \int_{\Omega} \left(\frac{1}{p} |\nabla u|^p - \frac{a}{q} |u|^q + fu \right) dx : u \in W^{1,p}(\Omega) \cap L^q(\Omega) \right\}.$$

- 1. Prove that, if q > p, the inf is $-\infty$ and the minimization problem has no solution.
- 2. Prove that, if q < p, the infimum is attained.
- 3. Prove that, if q = p, the infimum is attained, provided a is small enough.
- 4. In the cases where the infimum is attained, write the Euler-Lagrange equation solved by the minimizers.
- 5. Recall the condition on f which guarantee that solutions of $\Delta_p u = f$, satisfy $(\nabla u)^{p/2} \in H^1$ (remember that, for a vector v, the expression v^{α} is to be intended as equal to a vector w with $|w| = |v|^{\alpha}$ and $w \in \mathbb{R}_+ v$).
- 6. For $p \geq 2$ and $2 \leq q \leq p$, prove that the solution \bar{u} satisfies $(\nabla \bar{u})^{p/2} \in H^1$.

Exercice 4 (4 points). Given an open bounded set $\Omega \subset \mathbb{R}^d$ with volume $|\Omega| > 2\omega_d$ (ω_d denoting the volume of the unit ball in \mathbb{R}^d) and a function $f \in L^1(\Omega)$, prove that the following problem has a solution

$$\min \left\{ Per(A) + Per(B) + \int_{A \cap B} f(x) dx : A, B \subset \Omega, |A| = |B| = \omega_d \right\}.$$

Per(A) and Per(B) stand for the perimeters in the BV sense, i.e. the total variation of the corresponding indicator functions (considered as BV functions on the whole \mathbb{R}^d , not on Ω).

Also compute the minimal value above when Ω is the smallest convex domain containing B(e,1) and B(-e,1), where e is an arbitrary unit vector $e \in \mathbb{R}^d$ with |e| = 1, and f = 1 on Ω .

Exercice 5 (6 points). Let u_n, v_n be two sequences of functions belonging to $H^1([0,1])$. Suppose

$$u_n \rightharpoonup u_0, \quad v_n \rightharpoonup v_0, \quad E_n(u_n, v_n, [0, 1]) \le C$$

where E_n is the energy defined for every interval $J \subset [0,1]$ through

$$E_n(u, v, J) := \int_J \left(v(t)|u'(t)|^2 + \frac{1}{2n}|v'(t)|^2 + \frac{n}{2}|1 - v(t)|^2 \right) dt,$$

 $C \in \mathbb{R}$ is a given constant, the weak convergence of u_n and v_n occurr in $L^2([0,1])$, and u_0 is a function which is piecewise C^1 on [0,1] (i.e. there exists a partition $0=t_0 < t_1 < \cdots < t_N=1$ such that $u_0 \in C^1(]t_i,t_{i+1}[)$, and the limits of u_0 exist finite at $t=t_i^{\pm}$ but $u_0(t_i^-) \neq u_0(t_i^+)$ for $i=1,\ldots,N-1$).

Denote by \mathcal{J} the family of all the intervals J compactly contained in one of the open intervals $]t_i, t_{i+1}[$. Also suppose, for simplicity, that $u_n \rightharpoonup u_0$ in $H^1(J)$ for every interval $J \in \mathcal{J}$.

Prove that we necessarily have

- 1. v = 1 a.e. and $v_n \to v$ strongly in L^2 .
- 2. $\liminf_{n\to\infty} E_n(u_n, v_n, J) \ge \int_J |u_0'(t)|^2 dt$ for every interval $J \in \mathcal{J}$.
- 3. $\liminf_{n\to\infty} E_n(u_n,v_n,J) \geq 1$ for every interval J containing one of the points t_i .
- 4. $C \ge \liminf_{n \to \infty} E_n(u_n, v_n, [0, 1]) \ge \int_0^1 |u_0'(t)|^2 dt + (N 1).$