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Transport Optimal pour l’Apprentissage – Final Exam

Duration: 1h30. All kind of documents (notes, books. . . ) are authorized.
Each exercise is worth 10 points, so that solving two of them could be enough (but you can of course
attack thel all).

Exercice 1 (10 points). Let µε be the uniform probability measure on the rectangle [−1, 1] × [−ε, ε] ⊂ R2 and
νε the uniform probability measure on the rectangle [−ε, ε] × [−1, 1] ⊂ R2. Fid the unique optimal transport
map (for the quadratic cost c(x, y) = ||x − y||2) from µε to νε.

As ε→ 0 the measures µε and νε weakly-* converge to two measures µ0 and ν0. Determine those limit measures
and find all the optimal transport plans between them (for the same cost).

Answer: The map Tε(x1, x2) := (εx1, ε
−1x2) maps µε onto νε. Moreover, Tε = ∇uε, where uε(x1, x2) =

ε
x2

1
2 + ε−1 x2

2
2 , which is a convex function, so Tε is the optimal map.

The limit as ε → 0 of µε nd νε are the uniform measures on the segments [−1, 1] × {0} and {0} × [−1, 1],
respectively. For those measures, we have the following property: x ∈ spt µ0, y ∈ spt ν0 implies x · y = 0. So,
on the product of the two supports, we have c(x, y) = ||x − y||2 = ||x||2 + ||y||2. Since the cost coincides with a
separable function, sum of a function of x and a function of y, we have

∫
c(x, y)dγ =

∫
||x||2dµ0 +

∫
||y|2dν0 for

any admissible γ, a result which is independent of the transport plan γ. Hence, any admissible transport plan s
optimal.

Exercice 2 (10 points). Let µ0 be the uniform probability measure on the square [−1, 1] × [−1, 1] ⊂ R2 and µ1
the uniform probability measure on the union of the two segments {−1} × [−1, 1] and {+1} × [−1, 1] (i.d. µ1
is a measure with constant density w.r.t. to the length measure on these segments). Find the constant-speed
geodesic µt connecting µ0 to µ1 in the Wasserstein space W2. Can we say that, for each t > 0, the measure µt is
the uniform measure on a certain set? which set?

Answer: The optimal transport map from µ0 to µ1 is given by T (x1, x2) = (sign(x1), x2). It transports µ0 to

µ1 and it is the gradient of the convex function u(x1, x2) := |x1| +
x2

2
2 , hence it is optimal. The geodesic µt is

then obtained as µt := (1 − t)id + tT )#µ0. On [0, 1] × [−1, 1] we have Tt(x1, x2) = (1 − tx1 + t, x2) and on
[−1, 0]× [−1, 1] we have Tt(x1, x2) = (1− tx1− t, x2). In both cases Tt is affine and hence its transforms uniform
measures into uniform measures. The ratio between the densities is given by the Jacobian of this map, which is
the same on the two sets. The measure µt is hence uniform on Tt([−1, 1]× [−1, 1]) = ([t, 1]∪ [−1,−t])× [−1, 1],
with density equal to 1

4(1−t) .

Exercice 3 (10 points). Given a, b ∈ [0, 1] with a + b = 1 and t < s consider µ := aδt + bδs as a probability
measure on R, and let ν be the uniform probability measure on the interval [−1, 1]. Compute W2(µ, ν) and find
the values of a, b, t, s for which this distance is minimal.

Consider ow a two-dimensional analogue of the previous situation: µ := aδ(t,0) + bδ(s,0) is a probability measure
on R2, and let ν is the uniform probability measure on the square [−1, 1]2. Again, compute W2(µ, ν) and find
the values of a, b, t, s for which this distance is minimal.

Answer: The optimal map from ν to µ is an increasing map taking values t and s. Hence, it is equal to t on
a first part of the interval [−1, 1] with measure (according to ν) equal to a and to s on the rest. We then have
T (x) = t for x ∈ [−1,−1 + 2a] and T (x) = s on [−1 + 2a, 1]. Then, we compute

W2
2 (µ, ν) =

1
2

∫ −1+2a

−1
|x − t|2dx +

1
2

∫ 1

−1+2a
|x − s|2dx =

a3

3
+ a| − 1 + a − t|2 +

b3

3
+ b|1 − b − s|2,

where we used a + b = 1. It is clear that this result can be minimized by taking t = −1 + a and s = 1 − b (note
that we have s − t = 2 − (a + b) = 1 > 0, so that we do have t < s), so that it becomes equal to a3+b3

3 , a quantity
which is minimal (under the constraint a + b = 1) when a = b = 1/2.



In the two dimensional situation the optimal map will be given by T (x1, x2) = (T̃ (x1, 0)), where T̃ is the optimal
map of the first part of the exercise. In the computation of the Wasserstein distance we then have to add the
integral

∫
|x2|

2dν = 1
2

∫ 1
−1 |x2|

2dx2 = 1
3 . We then have

W2
2 (µ, ν) =

a3 + b3 + 1
3

+ a| − 1 + a − t|2 + b|1 − b − s|2,

and the values of (a, b, t, s) which minimize this are the same as before.


