Compléments d'Optimisation

Examen de 1ère Session

durée : 2h

tous les documents papier (cours, notes personnelles...) sont autorisés

Exercice 1 (3 points). Trouver l'expression (en distinguant éventuellement plusieurs cas) pour la projection P_K sur le convexe $K \subset \mathbb{R}^2$ donné par $K = \overline{B(0,1)} \cup [-1,0] \times [-1,0]$.

Exercice 2 (5 points). Considérer la fonction $f: \mathbb{R}^n \to \mathbb{R}$ donnée par $f(x) = \sqrt{1+|x|^4}$. Dire si elle est C^1 , convexe, strictement convexe, elliptique et si ∇f est Lipschitzien. Si f est elliptique, calculer la constante $\alpha > 0$ d'ellipticité, et si ∇f est Lipschitzien en calculer la constante de Lipschitz.

Exercice 3 (8 points). Considérer le problème

$$\min\left\{\int_0^1 \left(\frac{1}{2}|u'(t)|^2 + \sin(t+u(t))\right) \, dt \quad : \quad u \in H^1([-1,1]), \ u(0) = 0, \ u(1) = 1\right\}.$$

- 1. Prouver que ce problème admet une solution.
- 2. Écrire l'équation d'Euler-Lagrange du problème.
- 3. Prouver que toute solution de cette équation est en fait une fonction C^{∞} .
- 4. Plus difficile : prouver que la solution du problème, tout comme de l'équation d'Euler-Lagrange, est unique.

Exercice 4 (10 points). Considérer le problème de minimisation

$$\min \left\{ \int_0^1 \left(\frac{1}{2} (u'(t))^2 + f(t)u(t)) \right) dt : u \in H^1([0,1]), \ u(0) = u(1) = 0, \ u \ge \psi \right\},$$

où $f, \psi \in C^0([0,1])$ sont deux fonctions données.

- 1. Prouver que ce problème admet une solution.
- 2. Prouver que la solution est unique.
- 3. Prouver que \bar{u} est solution si et seulement si on a

$$\int_{0}^{1} \left(\bar{u}'(t)(u'(t) - \bar{u}'(t)) + f(t)(u(t) - \bar{u}(t)) \right) dt \ge 0$$

pour toute fonction $u \in H^1([0,1])$ telle que u(0) = u(1) = 0 et $u \ge \psi$.

- 4. Prouver que la solution \bar{u} satisfait $\bar{u}'' = f$ dans l'ouvert $\{\bar{u} > \psi\}$ et qu'elle est donc C^2 dans cet ouvert.
- 5. Suggérer une discrétisation du problème et un ou plusieurs algorithmes pour le résoudre.