M2 Optimization and AMS

Calculus of Variations

Exercises

Exercise 1. Solve the problem

min{J(f) = /01 Bf’(t)2+tf(t)+;f(t)2] dt: feAl, ot A= {feC0,1]) : £(0) =0}

Find the minimal value of J on A and the function(s) f which attain it, proving that they are actually
minimizers

Exercise 2. Consider the problem
11
min{J(u) = / [QU'@? + u(t)f(t)} dt: we W20, 1))},
0
Find a necessary and sufficient condition on f so that this problem admits a solution.

Exercise 3. Given f € C?(R), consider the problem

min{ F(u) := /

0

1 (W) = D)2+ flu(t))] dt; w e C'([0,1]),u(0) = a, u(1) = b}.

Prove that the problem does not admit any solution if b — a| < %

Exercise 4. Consider a minimization problem of the form
1
min{F(u) i= [ L(t,ult), o (0)dt5 w e W0, 1]),u(0) = a, u(1) = b},
0

where L € C?([0,1] x R x R). We denote as usual by (¢, z,v) the variables of L. Suppose that 4 is a solution

to the above problem. Prove that we have
0’L, . . _
W(t, a(t),d'(t)) > Oa.e.

Exercise 5. Consider the problem

min {/01 Uu’(t)\Q + arctan(u(t))} dt : ue CY|o, 1])} ,

and prove that it has no solutions. Prove the existence of a solution if we add the boundary condition u(0) = 0,
write the optimality conditions and discuss the regularity of the solution.

Exercise 6. Prove existence and uniqueness of the solution of

min{/Q(f(:v)]u(x)]—l—|Vu(:U)]2) dm;ueHl(Q),/Quzl},

when  is an open, connected and bounded subset of R” and f € L%(Q), f > 0 (the sign of f is not important
for existence). Where do we use connectedness? Also prove that, if € is not connected (but has a finite
number of connected components and we keep the assumption f > 0), then we have existence but maybe not
uniqueness, and that if we withdraw both connectedness and positivity of f, then maybe we don’t even have
existence.
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Exercise 7. Fully solve
min {/ (|Vu(x,y)|2 + u(m,y)2) drdy : ueCHQ), u= ¢ sur 8@} ,
Q
where Q = [~1,1]> C R? and ¢ : 9Q — R is given by
0 six=-1,y€[-1,1]
Bley) = {2V +e¥)  tta=lye[-1,1]
(x+1)(e+et) ifxe[-1,1],y==+l

Find the minimizer and the value of the minimum. Writing the Euler-Lagrange equation is not compulsory,
but could help.

Exercise 8. Show that for every function f : R — R, Ls.c. there exists a sequence of functions f; : R — R,
each k—Lipschitz, such that for every x € R the sequence (fi(z))x increasingly converges to f(x).

Use this fact and the theorems we saw in class to prove semicontinuity, wrt to weak convergence in H'(Q), of

the functional
w) = [ f(u(a)) V() d.

where p > 1 and f: R — R, is Ls.c.

Exercise 9. Let Q C R™ be bounded and open, and ¢ : 92 — R be Lipschitz continuous. Prove that there
exists at least a function u which is Lipschitz on R™ and such that 4 = ¢ on 0f2.

Consider the problem
min {/ (\Vu|2 - 50u2> de : ue€ H(Q), u—1u¢€ H&(Q)} ,
Q

where the condition u — u € HJ(£2) is a way of saying u = ¢ on 9.

Prove that, at least for small ¢y > 0 the above problem admits a solution, and give an example with large ¢qg
where the solution does not exist. Also prove that, for small €9 > 0, the solution is unique. What does the
smallness of €p depend on ? Write the PDE satisfied by the minimizer (if you attended Elliptic equations, also
prove u € C*(Q)).

Exercise 10. Find the Poincaré constant of the interval (—A, A), i.e. the smallest constant C' such that
/ x)dx < C /

What is the largest value of A such that H}((—A4,4)) > u — ffA[(u’)Q(az) — u?(z)]dz is a convex functional ?
What about strict convexity ?

for every function in HE((—A, A)).

Exercise 11. If f: R™ — R is given by f(x) = |z|log|z|, compute f* and f**.

Exercise 12. Let f : R®™ — R be convex. Prove that f is strictly convex if and only if f* is C' and that f is
C1!if and only if f* is elliptic (meaning that there exists ¢ > 0 such that f(x) — c|z|? is convex).

Exercise 13. Consider the problem
1
min{/ 1;\v]pdx+ (g, mo) + (u1,m) = Vo=f+m— 7r1} ,
Q

where the minimization is done on the triplets (v, 7o, 711) with v € L2(Q;R?), m; € (H'(R)) satisfying (7, ¢) =
0 for every ¢ € H}(Q) and (m;, ¢) > 0 for every ¢ > 0. Here f € (H'(Q)) and u; € H*(Q) are given, and
uo + w1 > 0. Find its dual.



Exercise 14. Let H : R™ — R be given by

(4|v| + 1)3/2 — 6|v| — 1
12

a) Prove that H is C! and strictly convex. Is it C11? Is it elliptic ?

b) Compute H*. Is it C!, strictly convex, C*!' and/or elliptic ?

c¢) Consider the problem min{ [ H(v) : V-v = f} (on the d-dimensional torus, for simplicity) and find
its dual.

d) Supposing f € L?, prove that the optimal u in the dual problem is H?.

Hv) =

e) Under the same assumption, prove that the optimal v in the primal problem belongs to W1 for every
p<2ifd=2,forp=d/(d—1)if3<d <5, and for p=6/5if d > 3.

Exercise 15. Consider the problem

min{A(v) := ) H(v(z))dr : ve LAV -v=f}
T
for a function H which is elliptic. Prove that the problem has a solution, provided there exists at least an
admissible v with A(v) < +o0. Prove that, if f is an H! function with zero mean, then the optimal v is also
H'.
Exercise 16. Consider

min {/Td @) [|Vu(:r:)]2 + u(z) + f(x)u(a:)] dx, u € Hl(Td)}
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where ¢, f : T* — R are given C* functions.
a) Prove that the problem admits a unique solution.
b) Write the Euler-Lagrange equation of the problem.

¢) Prove, using this PDE, that the solution is a C*° function.

Exercise 17. Given ug € C([0,1]) consider the problem

B |
min{/ ~|u—uglPdz u/EO},
0 2

which consists in the projection of ug onto the set of monotone increasing functions (where the condition «’ > 0
is intended in the weak sense).

a) Prove that this problem admits a unique solution.
b) Write the dual problem
¢) Prove that the solution is actually the following : define Uy through Uj) = g, set Uy := (Up)*™ to be the

largest convex and l.s.c. function smaller than Up, take u = Uj.

Exercise 18. Given u € I/Vl})’f(]Rd), suppose that we have
/ |VulPdz < Crif(r),
B(zo,r)

where f : Ry — R, is defined as f(r) = —logr for r < e~! and f(r) = 1 for » > e~!. Prove that u is
continuous and that we have

u(z) —u(y)| < Clo —ylf(|z = yl)
(possibly for a different constant C').



Exercise 19. Let Q be an open set in R? and F : H'(Q2) — R be defined through
1
F(u):= [ =(|Vu|-1)3 :
(W= | F(Val= 17 + fu

Suppose f € L4(). Prove that minimizers of F' are perturbative quasi-minimizers for [ |Vu|?. Which regularity
can we deduce for the minimizers of F'?
Exercise 20. Let u € H. _(R?) be a solution of Au = f, where f = V-vand v € C&?(Rd; RY). Prove u € Cllo’ca.
Deduce the result Au = f, f € C** = u € C3°.

loc loc

Exercise 21. Given a bounded open set €2 and a Lipschitz function g : 92 — R, prove that the following
problem admits at least a solution

min {Hg + arctan(u) + |Vu|2]|Loo(Q) : u € Lip(Q), u= g on 89} .
Also prove that the problem
min {|| arctan(u) + |Vu|2||Loo(Q) : u € Lip(Q), u =g on 89}
admits a solution, if we suppose g > 0.
Exercise 22. Set F'(u) := |[u + [u||[ oo ([0,1))- Prove that
inf {F(u) : u € Lip([0,1)), u(0) = u(1) = —1} < inf { F(u) : u € C*([0,1]), u(0) = u(1) = ~1}.

Exercise 23. Prove that the function u : R? — R defined through u(z1, z2) = $11/3 —x§/3 satisfies Agou = 0 in

the viscosity sense. Deduce that, differently from harmonic function, we cannot get C'*° regularity for solutions

of Agou = 0.
Exercise 24. For given f € L'(Q) with [, f(z)dz =0 and p > d consider the functions u, which solve

min{;/|Vu|pdx—|—/fu : uer’p(Q)}.

Prove that the sequence u,, is compact in C%(Q). What can we say about the possible limits as p — oo ? (in
particular, do they minimize something 7).

Exercise 25. Let A C R? be a bounded measurable set. Let 7(A) C R be defined via 7(A) = {z € R :
LY{y €R : (z,y) € A} > 0}. Prove that we have Per(A) > 2L (7(A)). Appy this result to the isoperimetric
problem in R?, proving the existence of a solution to

min { Per(4) : A C R?, A bounded £(4) =1}.

Exercise 26. Let Q = B(0,1) C RY be the unit ball in dimension N. Consider the following variational
problem :

min {/ |Vul|® + / (u —1)*> 4 Per(A) : u € H}(Q), A C Q of finite perimeter, such that v = 0 a.c. on Ac} .
Q Q
where Per(A) stands for the perimeter of A in the BV sense.
a) Prove that the problem admits a solution (u, A).
b) Prove that for every solution (u, A) we have 0 < u < 1.

d

)
c¢) Prove that the problem admits at least a radial solution (i.e. A = B(0,r) and u = u*).
) Find or characterize the radial solution.



Exercise 27. In the disk B(0,1) C R? we need to place a disk B(wg,r) centered at zo € B(0,1) and of radius
r <1 — |zg| so that we minimize

1 1
J(xg, 7 ::,_,_74_/ T, U x))dz,
( 0 ) r W B0.1) g( z077"( ))
where g : B(0,1) x R — R is a given bounded continuous function and ug,, denotes the solution of
Au=1 dans B(0,1)\ B(xo,r),
u=70 sur 0B(0,1) UdB(xo,r),
that we extend to 0 on B(zo,r). Prove that there exists a solution.

Exercise 28. Let Q be an open connected and smooth subset of R? such that A\;(Q) > 1 and fix u € H'(Q).
Prove that the following minimization problem admits a unique solution

1
min {/ (2\Vu|2 + sin(u)) dr : u—uce€ H&(Q)}
and prove that u is a solution of the above problem if and only if it solves
{Au = cos(u) weakly in €,

U=1u on 0f).

Exercise 29. Let Q = B(0,1) ¢ R? be the d-dimensional ball, with d > 1, g : 9Q — R a given Lipschitz
function and f € L*°(Q). Consider the problem

inf {J(u) = /Q (\xHVu(m)\Q + f(x)u(:c)) dr : uw=gon 89} .

Find a suitable functional space where J is well-defined (valued in RU{+o00}) as well as the boundary condition,
and where the minimization problem has a solution. Can we choose WP ? H!?

Also say whether this solution is unique, and write the Euler-Lagrange equation of the problem. Find the
solution when ¢ and f are constant.

Exercise 30. Let u > 0 be a Lipschitz continuous function with compact support in R? and u* its simmetri-
zation. Prove that u* is also Lipschitz, and Lip(u*) < Lip(u).

Exercise 31. By using the isoperimetric inequality and the coarea formula, prove the inequality
[ as@-1 < ClVul|Ls,
for u € C°(R%) and find the optimal constant C. Deduce the injection BV (R%) ¢ L¥(d=1(R%),

Exercise 32. Let (F),), be a sequence of functionals defined on a common metric space X, such that F),, <

F,4+1. Suppose that each F), is l.s.c. and set F' := sup,, F},. Prove F}, Lr
Exercise 33. Let us define the following functionals on X = L?([—1,1])
1 .
Fouy o {3 P OP+ T Jute) = e it e (1,2,
400 otherwise ;

together with

oy = 35 lu(e) = tPde e H([-1,1)),
(w) = 7
+00 otherwise ;

and F(u) := %fil lu(t) — t|?dt for every u € X.



a) Prove that, for each n, the functional F), is l.s.c. for the L? (strong) convergence ;

b) Prove that also F' is l.s.c. for the same convergence, but not H ;

)

)
¢) Find the minimizer u,, of F, over X ;
d) Find the limit as n — oo of u,. Is it a strong L? limit ? is it a uniform limit ? a pointwise a.e. limit ?
)

e) Find the I'-limit of F,, (which, without surprise, is one of the functionals F' or H), proving I'-convergence ;

f) Does the functional H admit a minimizer in X 7

Exercise 34. Consider the functions a, : [0,1] — given by a,(x) = a(nz) where a = 2377 Log k41 +
> kez Lipk—1,2¢)- Given f € L'([0,1]) with fol f(t)dt =0 and p €]1, +0o0[, compute

Jim min {/01 (;an|u'(t)|pdt + f(t)u(t)) dt : ue WhP([o, 1])} .



