
M2 Optimization and AMS
–

Calculus of Variations
–

Exercises

Exercise 1. Solve the problem

min{J(f) :=
∫ 1

0

[1
2f
′(t)2 + tf(t) + 1

2f(t)2
]
dt ; f ∈ A}, où A := {f ∈ C1([0, 1]) : f(0) = 0}.

Find the minimal value of J on A and the function(s) f which attain it, proving that they are actually
minimizers

Exercise 2. Consider the problem

min{J(u) :=
∫ 1

0

[1
2u
′(t)2 + u(t)f(t)

]
dt ; u ∈W 1,2([0, 1])}.

Find a necessary and sufficient condition on f so that this problem admits a solution.

Exercise 3. Given f ∈ C2(R), consider the problem

min{F (u) :=
∫ 1

0

[
(u′(t)2 − 1)2 + f(u(t))

]
dt ; u ∈ C1([0, 1]), u(0) = a, u(1) = b}.

Prove that the problem does not admit any solution if |b− a| ≤ 1√
3 .

Exercise 4. Consider a minimization problem of the form

min{F (u) :=
∫ 1

0
L(t, u(t), u′(t))dt ; u ∈W 1,1([0, 1]), u(0) = a, u(1) = b},

where L ∈ C2([0, 1]× R× R). We denote as usual by (t, x, v) the variables of L. Suppose that ū is a solution
to the above problem. Prove that we have

∂2L

∂v2 (t, ū(t), ū′(t)) ≥ 0 a.e.

Exercise 5. Consider the problem

min
{∫ 1

0

[
|u′(t)|2 + arctan(u(t))

]
dt : u ∈ C1([0, 1])

}
,

and prove that it has no solutions. Prove the existence of a solution if we add the boundary condition u(0) = 0,
write the optimality conditions and discuss the regularity of the solution.

Exercise 6. Prove existence and uniqueness of the solution of

min
{∫

Ω

(
f(x)|u(x)|+ |∇u(x)|2

)
dx ; u ∈ H1(Ω),

∫
Ω
u = 1

}
,

when Ω is an open, connected and bounded subset of Rn and f ∈ L2(Ω), f ≥ 0 (the sign of f is not important
for existence). Where do we use connectedness ? Also prove that, if Ω is not connected (but has a finite
number of connected components and we keep the assumption f ≥ 0), then we have existence but maybe not
uniqueness, and that if we withdraw both connectedness and positivity of f , then maybe we don’t even have
existence.
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Exercise 7. Fully solve

min
{∫

Q

(
|∇u(x, y)|2 + u(x, y)2

)
dx dy : u ∈ C1(Q), u = φ sur ∂Q

}
,

where Q = [−1, 1]2 ⊂ R2 and φ : ∂Q→ R is given by

φ(x, y) =


0 si x = −1, y ∈ [−1, 1]
2(ey + e−y) if x = 1, y ∈ [−1, 1]
(x+ 1)(e+ e−1) if x ∈ [−1, 1], y = ±1.

Find the minimizer and the value of the minimum. Writing the Euler-Lagrange equation is not compulsory,
but could help.

Exercise 8. Show that for every function f : R→ R+ l.s.c. there exists a sequence of functions fk : R→ R+,
each k−Lipschitz, such that for every x ∈ R the sequence (fk(x))k increasingly converges to f(x).
Use this fact and the theorems we saw in class to prove semicontinuity, wrt to weak convergence in H1(Ω), of
the functional

J(u) =
∫

Ω
f(u(x))|∇u(x)|p dx,

where p ≥ 1 and f : R→ R+ is l.s.c.

Exercise 9. Let Ω ⊂ Rn be bounded and open, and φ : ∂Ω → R be Lipschitz continuous. Prove that there
exists at least a function ū which is Lipschitz on Rn and such that ū = φ on ∂Ω.
Consider the problem

min
{∫

Ω

(
|∇u|2 − ε0u

2
)
dx : u ∈ H1(Ω), u− ū ∈ H1

0 (Ω)
}
,

where the condition u− ū ∈ H1
0 (Ω) is a way of saying u = φ on ∂Ω.

Prove that, at least for small ε0 > 0 the above problem admits a solution, and give an example with large ε0
where the solution does not exist. Also prove that, for small ε0 > 0, the solution is unique. What does the
smallness of ε0 depend on ? Write the PDE satisfied by the minimizer (if you attended Elliptic equations, also
prove u ∈ C∞(Ω)).

Exercise 10. Find the Poincaré constant of the interval (−A,A), i.e. the smallest constant C such that∫ A

−A
u2(x)dx ≤ C

∫ A

−A
(u′)2(x)dx

for every function in H1
0 ((−A,A)).

What is the largest value of A such that H1
0 ((−A,A)) 3 u 7→

∫ A
−A[(u′)2(x)− u2(x)]dx is a convex functional ?

What about strict convexity ?

Exercise 11. If f : Rn → R is given by f(x) = |x| log |x|, compute f∗ and f∗∗.

Exercise 12. Let f : Rn → R be convex. Prove that f is strictly convex if and only if f∗ is C1 and that f is
C1,1 if and only if f∗ is elliptic (meaning that there exists c > 0 such that f(x)− c|x|2 is convex).

Exercise 13. Consider the problem

min
{∫

Ω

1
p
|v|pdx+ 〈ū0, π0〉+ 〈ū1, π1〉 : ∇v = f + π0 − π1

}
,

where the minimization is done on the triplets (v, π0, π1) with v ∈ L2(Ω;Rd), πi ∈ (H1(Ω))′ satisfying 〈πi, φ〉 =
0 for every φ ∈ H1

0 (Ω) and 〈πi, φ〉 ≥ 0 for every φ ≥ 0. Here f ∈ (H1(Ω))′ and ūi ∈ H1(Ω) are given, and
ū0 + ū1 ≥ 0. Find its dual.



Exercise 14. Let H : Rn → R be given by

H(v) = (4|v|+ 1)3/2 − 6|v| − 1
12 .

a) Prove that H is C1 and strictly convex. Is it C1,1? Is it elliptic ?
b) Compute H∗. Is it C1, strictly convex, C1,1 and/or elliptic ?
c) Consider the problem min{

∫
H(v) : ∇ · v = f} (on the d-dimensional torus, for simplicity) and find

its dual.
d) Supposing f ∈ L2, prove that the optimal u in the dual problem is H2.
e) Under the same assumption, prove that the optimal v in the primal problem belongs to W 1,p for every
p < 2 if d = 2, for p = d/(d− 1) if 3 ≤ d ≤ 5, and for p = 6/5 if d ≥ 3.

Exercise 15. Consider the problem

min{A(v) :=
∫
Td
H(v(x))dx : v ∈ L2,∇ · v = f}

for a function H which is elliptic. Prove that the problem has a solution, provided there exists at least an
admissible v with A(v) < +∞. Prove that, if f is an H1 function with zero mean, then the optimal v is also
H1.

Exercise 16. Consider

min
{∫

Td
ec(x)

[
|∇u(x)|2

2 + u2(x)
2 + f(x)u(x)

]
dx, u ∈ H1(Td)

}
where c, f : Td → R are given C∞ functions.

a) Prove that the problem admits a unique solution.
b) Write the Euler-Lagrange equation of the problem.
c) Prove, using this PDE, that the solution is a C∞ function.

Exercise 17. Given u0 ∈ C1([0, 1]) consider the problem

min
{∫ 1

0

1
2 |u− u0|2dx : u′ ≥ 0

}
,

which consists in the projection of u0 onto the set of monotone increasing functions (where the condition u′ ≥ 0
is intended in the weak sense).

a) Prove that this problem admits a unique solution.
b) Write the dual problem
c) Prove that the solution is actually the following : define U0 through U ′0 = u0, set U1 := (U0)∗∗ to be the

largest convex and l.s.c. function smaller than U0, take u = U ′1.

Exercise 18. Given u ∈W 1,p
loc (Rd), suppose that we have∫

B(x0,r)
|∇u|pdx ≤ Crdf(r),

where f : R+ → R+ is defined as f(r) = − log r for r ≤ e−1 and f(r) = 1 for r ≥ e−1. Prove that u is
continuous and that we have

|u(x)− u(y)| ≤ C|x− y|f(|x− y|)
(possibly for a different constant C).



Exercise 19. Let Ω be an open set in Rd and F : H1(Ω)→ R be defined through

F (u) :=
∫

Ω

1
2(|∇u| − 1)2

+ + fu.

Suppose f ∈ Ld(Ω). Prove that minimizers of F are perturbative quasi-minimizers for
∫
|∇u|2. Which regularity

can we deduce for the minimizers of F ?

Exercise 20. Let u ∈ H1
loc(Rd) be a solution of ∆u = f , where f = ∇·v and v ∈ C0,α

loc (Rd;Rd). Prove u ∈ C1,α
loc .

Deduce the result ∆u = f , f ∈ C0,α
loc ⇒ u ∈ C2,α

loc .

Exercise 21. Given a bounded open set Ω and a Lipschitz function g : ∂Ω → R, prove that the following
problem admits at least a solution

min
{
||π2 + arctan(u) + |∇u|2||L∞(Ω) : u ∈ Lip(Ω), u = g on ∂Ω

}
.

Also prove that the problem

min
{
|| arctan(u) + |∇u|2||L∞(Ω) : u ∈ Lip(Ω), u = g on ∂Ω

}
admits a solution, if we suppose g ≥ 0.

Exercise 22. Set F (u) := ||u+ |u′|||L∞([0,1]). Prove that

inf {F (u) : u ∈ Lip([0, 1]), u(0) = u(1) = −1} < inf
{
F (u) : u ∈ C1([0, 1]), u(0) = u(1) = −1

}
.

Exercise 23. Prove that the function u : R2 → R defined through u(x1, x2) = x
4/3
1 −x4/3

2 satisfies ∆∞u = 0 in
the viscosity sense. Deduce that, differently from harmonic function, we cannot get C∞ regularity for solutions
of ∆∞u = 0.

Exercise 24. For given f ∈ L1(Ω) with
∫
Ω f(x)dx = 0 and p > d consider the functions up which solve

min
{1
p

∫
|∇u|pdx+

∫
fu : u ∈W 1,p(Ω)

}
.

Prove that the sequence up is compact in C0(Ω). What can we say about the possible limits as p → ∞ ? (in
particular, do they minimize something ?).

Exercise 25. Let A ⊂ R2 be a bounded measurable set. Let π(A) ⊂ R be defined via π(A) = {x ∈ R :
L1({y ∈ R : (x, y) ∈ A} > 0}. Prove that we have Per(A) ≥ 2L1(π(A)). Appy this result to the isoperimetric
problem in R2, proving the existence of a solution to

min
{
Per(A) : A ⊂ R2, A bounded L2(A) = 1

}
.

Exercise 26. Let Ω = B(0, 1) ⊂ RN be the unit ball in dimension N . Consider the following variational
problem :

min
{∫

Ω
|∇u|2 +

∫
Ω

(u− 1)2 + Per(A) : u ∈ H1
0 (Ω), A ⊂ Ω of finite perimeter, such that u = 0 a.e. on Ac

}
.

where Per(A) stands for the perimeter of A in the BV sense.
a) Prove that the problem admits a solution (u,A).
b) Prove that for every solution (u,A) we have 0 ≤ u ≤ 1.
c) Prove that the problem admits at least a radial solution (i.e. A = B(0, r) and u = u∗).
d) Find or characterize the radial solution.



Exercise 27. In the disk B(0, 1) ⊂ R2 we need to place a disk B(x0, r) centered at x0 ∈ B(0, 1) and of radius
r ≤ 1− |x0| so that we minimize

J(x0, r) := 1
r

+ 1√
1− |x0|2

+
∫
B(0,1)

g(x, ux0,r(x))dx,

where g : B(0, 1)× R→ R is a given bounded continuous function and ux0,r denotes the solution of{
∆u = 1 dans B(0, 1) \B(x0, r),
u = 0 sur ∂B(0, 1) ∪ ∂B(x0, r),

that we extend to 0 on B(x0, r). Prove that there exists a solution.

Exercise 28. Let Ω be an open connected and smooth subset of Rd such that λ1(Ω) > 1 and fix ū ∈ H1(Ω).
Prove that the following minimization problem admits a unique solution

min
{∫ (1

2 |∇u|
2 + sin(u)

)
dx : u− ū ∈ H1

0 (Ω)
}

and prove that u is a solution of the above problem if and only if it solves{
∆u = cos(u) weakly in Ω,
u = ū on ∂Ω.

Exercise 29. Let Ω = B(0, 1) ⊂ Rd be the d-dimensional ball, with d > 1, g : ∂Ω → R a given Lipschitz
function and f ∈ L∞(Ω). Consider the problem

inf
{
J(u) :=

∫
Ω

(
|x||∇u(x)|2 + f(x)u(x)

)
dx : u = g on ∂Ω

}
.

Find a suitable functional space where J is well-defined (valued in R∪{+∞}) as well as the boundary condition,
and where the minimization problem has a solution. Can we choose W 1,p ? H1 ?
Also say whether this solution is unique, and write the Euler-Lagrange equation of the problem. Find the
solution when g and f are constant.

Exercise 30. Let u ≥ 0 be a Lipschitz continuous function with compact support in Rd, and u∗ its simmetri-
zation. Prove that u∗ is also Lipschitz, and Lip(u∗) ≤ Lip(u).

Exercise 31. By using the isoperimetric inequality and the coarea formula, prove the inequality
||u||Ld/(d−1) ≤ C||∇u||L1 ,

for u ∈ C∞c (Rd) and find the optimal constant C. Deduce the injection BV (Rd) ⊂ Ld/(d−1)(Rd).

Exercise 32. Let (Fn)n be a sequence of functionals defined on a common metric space X, such that Fn ≤
Fn+1. Suppose that each Fn is l.s.c. and set F := supn Fn. Prove Fn

Γ→ F .

Exercise 33. Let us define the following functionals on X = L2([−1, 1])

Fn(u) :=
{

1
2n
∫ 1
−1 |u′(t)|2dt+ 1

2
∫ 1
−1 |u(t)− t|2dt if u ∈ H1

0 ([−1, 1]),
+∞ otherwise ;

together with

H(u) =
{

1
2
∫ 1
−1 |u(t)− t|2dt if u ∈ H1

0 ([−1, 1]),
+∞ otherwise ;

and F (u) := 1
2
∫ 1
−1 |u(t)− t|2dt for every u ∈ X.



a) Prove that, for each n, the functional Fn is l.s.c. for the L2 (strong) convergence ;
b) Prove that also F is l.s.c. for the same convergence, but not H ;
c) Find the minimizer un of Fn over X ;
d) Find the limit as n→∞ of un. Is it a strong L2 limit ? is it a uniform limit ? a pointwise a.e. limit ?
e) Find the Γ-limit of Fn (which, without surprise, is one of the functionals F orH), proving Γ-convergence ;
f) Does the functional H admit a minimizer in X ?

Exercise 34. Consider the functions an : [0, 1] → given by an(x) = a(nx) where a = 2
∑
k∈Z 1[2k,2k+1] +∑

k∈Z 1[2k−1,2k]. Given f ∈ L1([0, 1]) with
∫ 1

0 f(t)dt = 0 and p ∈]1,+∞[, compute

lim
n→∞

min
{∫ 1

0

(1
p
an|u′(t)|pdt+ f(t)u(t)

)
dt : u ∈W 1,p([0, 1])

}
.


