
Calculus of Variations and Elliptic PDEs
–

Exercises
Exercise 1. Solve the problem

min{J(f) :=
∫ 1

0

[1
2f
′(t)2 + tf(t) + 1

2f(t)2
]
dt ; f ∈ A}, où A := {f ∈ C1([0, 1]) : f(0) = 0}.

Find the minimal value of J on A and the function(s) f which attain it, proving that they are actually
minimizers

Solution. Take fn a minimizing sequence in A′ := {f ∈ H1([0, 1]) : f(0) = 0} – it makes sense since H1

functions on [0, 1] are continuous. We may assume that J(fn) ≤ 0 since J(0) = 0. We have

J(f) ≥ 1
2‖f

′‖2L2 − C‖f‖L2 + 1
2‖f‖

2
L2 ≥ C‖f‖2H1 − C ′‖f‖H1

so that fn is bounded in H1([0, 1]). We may extract a subsequence such that fn
H1
−−⇀ f hence fn → f in C([0, 1])

by compact injection. Hence f(0) = 0. The function J is lsc for the H1 weak convergence (for example one
recognizes the squared H1 norm and a continuous linear part), so that J(f) ≤ lim infn J(fn) = infA′ J . One
needs to check that f is C1. Let us write the Euler-Lagrange equation. Take any test function φ ∈ C1

c (]0, 1[).
One has

0 = d

dε |ε=0
J(f + εφ) =

∫ 1

0
f ′φ′ + tφ+ fφ,

so that in the distribution sense
f ′′ = t+ f.

Consequently f ∈ Ck =⇒ f ∈ Ck+2 and because f ∈ H1 ⊂ C0, it is actually in all the Ck spaces and is C∞.
Hence

J(f) = inf
A
J = inf

A′
J.

Uniqueness is clear by the strict convexity of J . Now the Euler-Lagrange equation allows us to find the solution.
We know that f is of the form f(t) = Ach(t) + Bsh(t) − t. The condition f(0) = 0 yields A = 0. An extra
condition is given by the implicit Neumann condition at t = 1. Indeed one may take any test function φ ∈ A
and write as before

0 = d

dε |ε=0
J(f + εφ) =

∫ 1

0
f ′φ′ + tφ+ fφ

since f is a minimizer of J on A. Now by integrating by parts

0 =
∫ 1

0
(−f ′′ + t+ f)φ+ [f ′φ]10 = 0 + f ′(1)φ(1)− 0 = f ′(1)φ(1).

Consequently f ′(1) = 0 and thus Bch(1) = 1, giving f(t) = sh(t)
ch(1) − t. Now to compute the actual minimum, it

is easier to do an integration by parts

J(f) = 1
2

∫ 1

0
(−f ′′ + f + t)f + [f ′f ]10 +

∫ 1

0

tf(t)
2 dt =

∫ 1

0

tf(t)
2 dt = . . . .

Exercise 2. Consider the problem

min
{∫ T

0
e−t

(
u′(t)2 + 5u(t)2

)
dt : u ∈ C1([0, T ]), u(0) = 1

}
.

Prove that it admits a minimizer, that it is unique, find it, compute the value of the minimum, and the limit
of the minimizer (in which sense ?) and of the minimal value as T → +∞.
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Exercise 3. Consider the problem

min{J(u) :=
∫ 1

0

[1
2u
′(t)2 + u(t)f(t)

]
dt ; u ∈W 1,2([0, 1])}.

Find a necessary and sufficient condition on f so that this problem admits a solution.

Solution. We are going to show that it admits a minimizer if and only if f has zero mean. If its mean is
positive, say, take u equal to a constant C arbitrarily negative, giving J(u) = C

∫
f

C→−∞−−−−−→ −∞ and the
infimum is −∞. Now suppose

∫
f = 0. Note that the functional is well defined since W 1,2 ⊂ L∞ hence the

term
∫
fu has a meaning. Now, take a minimizing sequence un in H1([0, 1]). One may add a constant to un

without changing the value of the functional since f a zero mean, thus we may assume
∫
un = 0 for all n.

Using Hölder’s inequality first, then Poincaré-Wirtinger’s inequality, one gets∣∣∣∣∫ 1

0
fu

∣∣∣∣ ≤ ‖f‖L2‖u‖L2 ≤ C‖f‖L2‖u′‖L2

so that J(u) ≥ C‖u′‖2L2 − C ′‖u′‖L2 . Thus u′n is bounded in L2 which implies that un is bounded in H1. We
can extract a converging subsequence un ⇀ u in H1. J is lsc for weak H1 since it is convex and continuous on
H1 thus u is a minimizer.

Exercise 4. Let L : R→ R be a strictly convex C1 function, and consider

min{
∫ 1

0
L(u′(t))dt ; u ∈ C1([0, 1]), u(0) = a, u(1) = b}.

Prove that the solution is u(t) = (1− t)a+ tb, whatever is L. What happens if L is not C1 ? and if L is convex
but not strictly convex ?

Exercise 5. Prove that we have

inf{
∫ 1

0
t|u′(t)|2dt ; u ∈ C1([0, 1]), u(0) = 1, u(1) = 0} = 0.

Is the infimum above attained ?
What about, instead

inf{
∫ 1

0

√
t|u′(t)|2dt ; u ∈ C1([0, 1]), u(0) = 1, u(1) = 0} ?

Exercise 6. Consider a minimization problem of the form

min{F (u) :=
∫ 1

0
L(t, u(t), u′(t))dt ; u ∈W 1,1([0, 1]), u(0) = a, u(1) = b},

where L ∈ C2([0, 1]× R× R). We denote as usual by (t, x, v) the variables of L. Suppose that ū is a solution
to the above problem. Prove that we have

∂2L

∂v2 (t, ū(t), ū′(t)) ≥ 0 a.e.

Solution. Take a competitor of the form ū+ εφ here φ ∈W 1,1
0 and write

d2

dε2 |ε=0
F (ū+ εφ) ≥ 0.



Let us compute the directional derivatives :
d

dε
F (ū+ εφ) = d

dε

∫ 1

0
L(t, ū+ εφ, ū′ + εφ′)

=
∫ 1

0
Lu(t, ū+ εφ, ū′ + εφ′)φ+ Lv(t, ū+ εφ, ū′ + εφ′)φ′

, and

0 ≤ d2

dε2 |ε=0
F (ū+ εφ) =

∫ 1

0
Luuφ

2 + 2Luvφφ′ + Lvvφ
′2.

For a, b ∈ [0, 1] fxed, set φn supported in [a, b] and of slope |φ′n| = 1 in that interval, such that |φn| ≤ 1/n.
Passing to the limit, the terms in φ′nφn and φ2

n vanish and one gets

0 ≤ lim
n

∫ 1

0
(Luuφ2

n + 2Luvφnφ′n + Lvvφ
′2
n ) =

∫ b

a
Lvv(t, ū, ū′).

Since this holds for all a, b, one gets the result.

Exercise 7. Given f ∈ C2(R), consider the problem

min{F (u) :=
∫ 1

0

[
(u′(t)2 − 1)2 + f(u(t))

]
dt ; u ∈ C1([0, 1]), u(0) = a, u(1) = b}.

Prove that the problem does not admit any solution if |b− a| ≤ 1√
3 .

Solution. Suppose it has a solution u and take any test function φ ∈ W 1,4. The function ε 7→ F (u + εφ) is
minimal at ε = 0 so that

0 ≤ d2

dε2 |ε=0
F (u+ εφ),

provided this quantity is well defined. Let us compute the first derivative :
d

dε |ε
F (u+ εφ) =

∫ 1

0
4φ′(u′ + εφ′)((u′ + εφ′)2 − 1) + f ′(u+ εφ)φ,

and derive the Euler-Lagrange equation

4(u′(u′2 − 1))′ = f ′(u).

then its second derivative at 0 :
d2

dε2 |0
F (u+ εφ) =

∫ 1

0
4φ′2(u′2 − 1) + 8φ′2u′2 + f ′′(u)φ2 = 12

∫ 1

0

(
u′2 − 1

3

)
φ′2 + φ2f ′′(u).

Now take a suitable φ = φn : supported in [α, β] ⊆ [0, 1] of slope |φ′| = 1 and |φ| ≤ 1/n. Then pass to the limit
n→∞ to yield

0 ≤ 12
∫ β

α

(
u′2 − 1

3

)
.

This is true for all α, β hence |u′| ≥ 1/3 a.e.. Notice that we cannot have |u′| = 1√
3 : in that case the Euler-

Lagrange would become −8u′′/3 = f ′(u) and we could deduce that u is C1 (even C2) thus u′ = ± 1√
3 which is

not a minimizer since it does not satisfy the same E-L equation.. Consequently |b−a| > 1√
3 . By contraposition

one gets the desired result.



Exercise 8. Consider the problem

min
{∫ 1

0

[
|u′(t)|2 + arctan(u(t))

]
dt : u ∈ C1([0, 1])

}
,

and prove that it has no solutions. Prove the existence of a solution if we add the boundary condition u(0) = 0,
write the optimality conditions and discuss the regularity of the solution.

Solution. If u ≡ C constant, one has J(u) = arctan(C), thus

inf J ≤ inf
C∈R

arctan(C) = −π2
but on the other hand for all u,

J(u) =
∫ 1

0

[
|u′(t)|2 + arctan(u(t))

]
dt ≥

∫ 1

0
arctan u(t)dt ≥ −π2 .

Consequently the infimum is−π
2 and u is a minimizer if and only if we have equalities n the previous inequalities,

which implies that u is constant equal to some C satisfying arctan(C) = −π
2 which cannot happen.

Now if one imposes u(0) = 0, let us set A = {u ∈ H1([0, 1]) : u(0) = 0} and look for minimizers of J on A.
One has

J(u) ≥ ‖u′‖2L2 −
π

2
hence u′ is bounded in L2, but u(x) =

∫ x
0 u
′(t)dt thus ‖u‖L∞ ≤ ‖u′‖L2 and u is bounded in H1([0, 1]).

Exercise 9. Consider the functional F : H1([0, T ])→ R defined through

F (u) =
∫ T

0

(
u′(t)2 + arctan(u(t)− t)

)
dt.

Prove that
a) the problem (P ) := min{F (u) : u ∈ H1([0, T ])} has no solution ;
b) the problem (Pa) := min{F (u) : u ∈ H1([0, T ]), u(0) = a} admits a solution for every a ∈ R ;
c) we have F (−|u|) ≤ F (u) ;
d) the solution of (Pa) is unique as soon as a ≤ 0 ;
e) there exists L0 < +∞ such that for every T ≤ L0 the solution of (Pa) is unique for every a ∈ R
f) the minimizers of (P ) and (Pa) are C∞ functions.

Exercise 10. Prove existence and uniqueness of the solution of

min
{∫

Ω

(
f(x)|u(x)|+ |∇u(x)|2

)
dx ; u ∈ H1(Ω),

∫
Ω
u = 1

}
,

when Ω is an open, connected and bounded subset of Rn and f ∈ L2(Ω), f ≥ 0 (the sign of f is not important
for existence). Where do we use connectedness ? Also prove that, if Ω is not connected (but has a finite
number of connected components and we keep the assumption f ≥ 0), then we have existence but maybe not
uniqueness, and that if we withdraw both connectedness and positivity of f , then maybe we don’t even have
existence.

Solution. Suppose that Ω is connected. Thus by Poincaré-Wirtinger’s inequality one has ‖u−c‖L2 ≤ C‖∇u‖L2

where c = 1/|Ω| is the mean of u (note that this inequality is not true for Ω disconnected). Hence∣∣∣∣∫
Ω
f |u|

∣∣∣∣ ≤ ‖f‖L2‖u‖L2 = ‖f‖L2‖u− c+ c‖L2 ≤ C + C‖∇u‖L2 ,



which implies that
J(u) ≥ ‖∇u‖2L2 − C − C‖∇u‖L2

thus if un is a minimizing sequence, J(un) ≤ C for some finite C and ∇un is bounded in L2. Consequently u−c
is bounded in L2, so is u and therefore u is bounded in H1. One may extract a weakly converging subsequence
un ⇀ u in H1 and by compact injection un → u in L2. The first part in the integrand is continuous in L2

strong, and the second part is weakly lsc in H1, which implies that J(u) ≤ lim infn J(un) and u is a minimizer.
Now assume that we have the following decomposition Ω =

⊔n
i=1 Ωi into open connected subsets, and that

f ≥ 0. If u ∈ H1 is admissible, one may build a better competitor ũ which is positive. Take v = |u|. One has
|∇v| = |∇u| and

∫
Ω v ≥

∫
Ω u = 1 thus we divide by ||v||L1 ≥ 1, setting ũ = v/v̄. Since f is positive, one can

see that J(ũ) ≤ J(v) = J(u). Thus we may take a minimizing sequence un which is nonnegative. For any v,

we denote vi = v|Ωi
and v̄i its mean : v̄i =

∫
Ωi
f

|Ωi| . One has by positivity of f

J(v) ≥
∫

Ωi

vif + |∇vi|2,

the first term on the right being bounded from above∣∣∣∣∫
Ωi

vif

∣∣∣∣ ≤ ‖f‖L2‖vi − v̄i‖L2 + ‖f‖L2 v̄i.

and we know that v̄i ≤
∫

Ω v

|Ωi| = 1
|Ωi| . Consequently∣∣∣∣∫

Ωi

vif

∣∣∣∣ ≤ C‖vi − v̄i‖L2 + C ≤ C‖∇vi‖L2 + C.

Consequently the bound J(un) ≤ C gives a uniform bound on ‖∇uin‖L2 and thus on ‖uin‖L2 since the mean is
bounded. Thus we may conclude as before, uin being bounded in H1(Ωi), extracting a converging subsequence
for all i and using the lsc of J . We may not have uniqueness however (even for nonnegative u) : just consider
f = 0 and Ω the disjoint union of 2 balls with unit volume. You may take u to be either 1/2 on all Ω or 1 on
one ball and 0 on the other : they are both minimizers. If you do not have neither positivity nor connectedness,
we may not have existence. Take this time f to be equal to +1 on the first ball and −2 on the second one.
Choose uα to be equal to a constant α on the first ball and 1 − α on the other, so that it has integral 1.
J(uα) = α− 2|1− α| = −α+ 2 for α large enough, and J(uα) may be arbitrarily small.

Exercise 11. Fully solve

min
{∫

Q

(
|∇u(x, y)|2 + u(x, y)2

)
dx dy : u ∈ C1(Q), u = φ sur ∂Q

}
,

where Q = [−1, 1]2 ⊂ R2 and φ : ∂Q→ R is given by

φ(x, y) =


0 si x = −1, y ∈ [−1, 1]
2(ey + e−y) if x = 1, y ∈ [−1, 1]
(x+ 1)(e+ e−1) if x ∈ [−1, 1], y = ±1.

Find the minimizer and the value of the minimum. Writing the Euler-Lagrange equation is not compulsory,
but could help.

Exercise 12. Show that for every function f : R→ R+ l.s.c. there exists a sequence of functions fk : R→ R+,
each k−Lipschitz, such that for every x ∈ R the sequence (fk(x))k increasingly converges to f(x).
Use this fact and the theorems we saw in class to prove semicontinuity, wrt to weak convergence in H1(Ω), of
the functional



J(u) =
∫

Ω
f(u(x))|∇u(x)|p dx,

where p ≥ 1 and f : R→ R+ is l.s.c.

Solution. Set fk(x) = infy f(y) + kd(x, y) for k ≥ 1. Clearly, the sequence (fk) is increasing and fk ≤ f (take
y = x in the infimum). For x fixed, let us show that fk(x) → f(x). For all k, there exists some yk such that
f(yk) + kd(x, yk) − 1

k ≤ fk(x) ≤ f(x). By positivity of f , kd(x, yk) ≤ 1
k − f(x) ≤ 1, thus d(x, yk) → 0 i.e.

yk → x. Passing to the lim infk in the inequality f(yk)− 1
k ≤ fk(x) one gets

lim
k
fk(x) ≥ lim inf

k
f(yk)−

1
k

= lim inf
k

f(yk) ≥ f(x)

by lsc of f . The converse inequality is clear since fk ≤ f .
Take fk ↑ f as above, set

Jk(u) =
∫

Ω
fk(u(x))|∇u(x)|pdx,

and Lk(x, u, v) = f(u)|v|p. The functional Jk is lsc weak in H1 since Lk is measurable in x (it does not depend
on it !), continuous in u and convex in v. Now by the monotone convergence theorem Jk = limk ↑ J and thus
J is lsc in H1 weak as a supremum of lsc functions.

Exercise 13. Find the Poincaré constant of the interval (−A,A), i.e. the smallest constant C such that∫ A

−A
u2(x)dx ≤ C

∫ A

−A
(u′)2(x)dx

for every function in H1
0 ((−A,A)).

What is the largest value of A such that H1
0 ((−A,A)) 3 u 7→

∫ A
−A[(u′)2(x)− u2(x)]dx is a convex functional ?

What about strict convexity ?
Exercise 14. Let Ω ⊂ Rn be bounded and open, and φ : ∂Ω → R be Lipschitz continuous. Prove that there
exists at least a function ū which is Lipschitz on Rn and such that ū = φ on ∂Ω.
Consider the problem

min
{∫

Ω

(
|∇u|2 − ε0u

2
)
dx : u ∈ H1(Ω), u− ū ∈ H1

0 (Ω)
}
,

where the condition u− ū ∈ H1
0 (Ω) is a way of saying u = φ on ∂Ω.

Prove that, at least for small ε0 > 0 the above problem admits a solution, and give an example with large ε0
where the solution does not exist. Also prove that, for small ε0 > 0, the solution is unique. What does the
smallness of ε0 depend on ? Write the PDE satisfied by the minimizer.
Exercise 15. Let Ω be an open connected subset in Rd, a ∈ L∞(Ω) be a function with a ≥ a0 where a0 > 0 is
a positive constant, and b ∈ L2(Ω) be another function, which is not identically zero. Prove that the following
minimization problem admits a solution

min
{∫

Ω a|∇u|2dx
|
∫
Ω bu dx|

2 : u ∈ H1
0 (Ω) :

∫
Ω
bu dx 6= 0

}
,

and write the PDE that such a solution satisfies. Finally, compute the value of the above minimum in the case
Ω = B(0, 1) ⊂ R2, a(x) = 1 and b(x) = |x|.
Exercise 16. If f : Rn → R is given by f(x) = |x| log |x|, compute f∗ and f∗∗.

Solution. Notice that x 7→ |x| log|x| is not convex. Indeed φ : r 7→ r log r is convex on R+ but it is not
increasing : it decreases till e−1 then increases.



Computation of f?. One has
f?(y) = sup

x
x · y − |x| log|x|

= sup
λ>0

λr − λ log(λ),

where r = |y|, since the expression in the sup is greater if y is taken in the same direction as x. Set g(λ) =
r−λ log λ. One has g′(λ) = r−log λ−1 hence g is maximal at its critical point λ such that g′(λ) = 0⇔ λ = er−1,
which is positive. Consequently

f?(y) = g(e|y|−1) = e|y|−1.

Computation of f??. One could use the fact that φ (as a function from R) is convex, decreasing from 0 to e−1

then increasing, and say that φ?? should be is convex lsc envelope, hence

φ??(x) =
{
−e−1 if |x| ≤ e−1

|x| log|x| otherwise.
The invariance under rotation allows us to say f?? has the same expression.
But let us do it by direct calculation :

f??(x) = sup
y
y · xe|y|−1

= sup
λ>0

λr − eλ−1

where r = |x|. Set h(λ) = λr − eλ−1 and find it maximal value on R?+. One has h′(λ) = r − eλ−1 and
h′(λ) = 0⇔ r = eλ−1 ⇔ λ = 1 + log(r), so that h increases up to 1 + log(r) then decreases, but this quantity
may be negative.
If |x| = r ≤ e−1 then f?? = h(0) = −e−1. On the other hand if |x| = r > e−1 then f??(x) = h(1 + log(r)) =
|x| log|x|. Hence we get

f??(x) =
{
−e−1 if |x| ≤ e−1

|x| log|x| otherwise.

Exercise 17. Let f : Rn → R be convex. Prove that f is strictly convex if and only if f∗ is C1 and that f is
C1,1 if and only if f∗ is elliptic (meaning that there exists c > 0 such that f(x)− c|x|2 is convex).

Solution. We recall the following facts about finite-valued functions.
— Convex functions are locally Lipschitz.
— Convex functions are C1 if and only if they are differentiable at each point, which is in turn equivalent

to the subdifferntial being a singleton.
— p ∈ ∂f(x)⇔ f∗(p) + f(x) = x · p⇔ x ∈ ∂f∗(p).
— f is convex if and only if ∂f(x) 6= ∅ for every x (i.e., for every x there is p s.t. f(y) ≥ f(x) + p · (y − x)

for all y).
— f is strictly convex if and only if the inequality f(y) ≥ f(x) + p · (y − x) above is trict for all y 6= x.
— f is elliptic if and only if in the inequality f(y) ≥ f(x) + p · (y − x) above we can add a quadratic rest,

i.e. f(y) ≥ f(x) + p · (y− x) + c|y− x|2. More precisely, this last fact is equivalent to f(x)− c|x|2 being
convex.

The last three fact are all proven in the same way : take x0, x1 and xt = (1− t)x0 + tx1 and use the tangent
(with vector pt) at point xt.
Now, to prove f ∈ C1 ⇒ f∗ strictly convex we use the fact that the subdifferential of f are singleton, i.e.
for every x there is only one p such that p ∈ ∂f(x). Now, suppose that f∗ is not strictly convex. Then there



is a tangent f∗(p) + x · (p′ − p) (with x ∈ ∂f∗(p)) which touches f∗, i.e. f∗(p′) ≥ f∗(p) + x · (p′ − p) for all
p′ but f∗(p0) = f∗(p) + x · (p0 − p) for some p0 6= p. But then, p′ 7→ f∗(p′) − f∗(p) − x · (p′ − p) is minimal
at p′ = p0 and we get x ∈ ∂f∗(p0), which is a contradiction as x would belong to the subdifferential of two
different points.
The opposite implication, f∗ strictly convex ⇒ f ∈ C1 is easy : from f(x) = supp p · x− f∗(p) and the strict
convexity of f∗ we see that there is at most one unique vector p such that f(x) = p · x− f∗(p), i.e. such that
p ∈ ∂f(x).
We pass now to f ∈ C1,1 ⇒ f∗ elliptic. Set L = Lip(∇f). We will prove that we have the estimate f∗(p′) ≥
f∗(p) + x · (p′ − p) + 1

2L |p
′ − p|2 for x ∈ ∂f∗(p). To do this, take ε, δ > 0 and consider

min
p′

f∗(p′)− f∗(p)− x · (p′ − p)− 1
2(L+ ε) |p

′ − p|2 + δ

4 |p
′ − p|4.

This minimum exists because f∗(p′)− f∗(p)− x · (p′ − p) ≥ 0, and the last term grows more than the prevous
one. Let us call p0 a minimum point. At this point we have

x0 ∈ ∂f∗(p0), where x0 = x+
( 1
L+ ε

−A
)

(p0 − p), A = δ|p0 − p|2.

Note that, by optimality of p0, comparing to p′ = p, we have f∗(p0)− f∗(p)− x · (p0 − p)− 1
2(L+ε) |p0 − p|2 +

δ
4 |p
′ − p|4 ≤ 0, which implies 1

2(L+ε) |p0 − p|2 ≥ δ
4 |p
′ − p|4, i.e. A ≤ 2

L+ε . In particular, | 1
L+ε −A| ≤

1
L+ε and

|x0 − x| ≤
1

L+ ε
|p0 − p|.

Yet, from x0 ∈ ∂f∗(p0) and x ∈ ∂f∗(p) we get p0 ∈ ∂f(x0) and p ∈ ∂f(x), and, from the Lipschitz condition
on ∇f , we also have |p0 − p| ≤ L|x0 − x|. This is a contradiction unless p0 = p. Hence, the minimum problem
above is solved y p′ = p0, which means

f∗(p′)− f∗(p)− x · (p′ − p)− 1
2(L+ ε) |p

′ − p|2 + δ

4 |p
′ − p|4 ≥ 0 for all p′, ε > 0, δ > 0.

By letting ε, δ → 0 we get the desired estimate and f∗ is elliptic.
For the converse implication, consider two points x0, x1 and pi ∈ ∂f(xi). This means that pi maximizes
xi · p− f∗(p), hence

f∗(p0)− x0 · p0 ≤ f∗(p1)− x0 · p1.

Using the fact that f∗ is supposed to be elliptic, this inequality can be strengthened, and we can get

f∗(p0)− x0 · p0 + C

2 |p0 − p1|2 ≤ f∗(p1)− x0 · p1.

Using again the ellipticity of f∗ we also have f∗(p0) ≥ f∗(p1) + x1 · (p0 − p1) + C
2 |p1 − p0|2, hence

f∗(p1)− x0 · p1 + C

2 |p0 − p1|2 ≥ f∗(p1) + x1 · (p0 − p1) + C|p1 − p0|2 − x0 · p0,

which gives
C|p1 − p0|2 ≤ (x0 − x1) · (p0 − p1) ≤ |x0 − x1||p0 − p1|,

hence |p0 − p1| ≤ C−1|x0 − x1|, which means that ∇f is C−1Lipschitz.



Exercise 18. Given a bounded, smooth and connected domain Ω ⊂ Rd, and f ∈ L2(Ω), set X(Ω) = {v ∈
L2(Ω;Rd) : ∇ · v ∈ L2(Ω)} and consider the minimization problems

(P ) := min
{
F (u) :=

∫
Ω

(1
2 |∇u|

2 + 1
2 |u|

2 + f(x)u
)
dx : u ∈ H1(Ω)

}
(D) := min

{
G(v) :=

∫
Ω

(1
2 |v|

2 + 1
2 |∇ · v − f |

2
)
dx : v ∈ X(Ω)

}
,

a) Prove that (P ) admits a unique solution ;

b) Prove min(P ) + inf(D) ≥ 0 ;

c) Prove that there exist v ∈ X(Ω) and u ∈ H1(Ω) such that F (u) +G(v) = 0 ;

d) Deduce that min(D) is attained and min(P ) + inf(D) = 0 ;

e) Justify by a formal inf-sup exchange the duality minF (u) = sup−G(v) ;

f) Prove minF (u) = sup−G(v) via a duality proof based on convex analysis.

Exercise 19. Consider the problem

min
{∫

Ω

1
2 |v|

2dx+ 〈ū0, π0〉+ 〈ū1, π1〉 : ∇ · v = f + π0 − π1

}
,

where the minimization is done on the triplets (v, π0, π1) with v ∈ L2(Ω;Rd), πi ∈ (H1(Ω))′ satisfying 〈πi, φ〉 =
0 for every φ ∈ H1

0 (Ω) and 〈πi, φ〉 ≥ 0 for every φ ≥ 0. Here f ∈ (H1(Ω))′ and ūi ∈ H1(Ω) are given.
Find its dual, distinguishing the case ū0 + ū1 ≥ 0 or not.

Solution. First, let us derive « formally » the dual problem by an inf − sup interversion. To do that, let us
encode the constraints in our minimization problem as (convex) functionals which take value 0 if the constraint
is satisfied, +∞ otherwise.
For the constraint ∇v = f + π0 − π1, one has

sup
u∈H1

−〈f + π0 − π1, u〉 −
∫
v · ∇u =

{
0 if ∇v = f + π0 − π1

+∞ otherwise.

The constraint πi ≥ 0 is encoded by

sup
ψi∈(H1)+

−〈πi, ψi〉

(every time we write πi in a functional we mean a sum for i = 0, 1). Finally the constraint πi ⊥ H1
0 is encoded

by

sup
φi∈H1

0

−〈πi, φi〉.



Consequently

inf
v∈L2,πi∈(H1)′

{∫
Ω

|v|2

2 + 〈ū0, π0〉+ 〈ū1, π1〉 : ∇v = f + π0 − π1, πi ≥ 0, πi ⊥ H1
0

}

= inf
v∈L2,πi∈(H1)′

(∫
Ω

|v|2

2 + 〈ū0, π0〉+ 〈ū1π1〉

+ sup
u∈H1,φi∈H1

0 ,ψi∈(H1)+
−〈f + π0 − π1, u〉 −

∫
v · ∇u− 〈πi, ψi〉 − 〈πi, φi〉


≥ sup

u,φi,ψi

inf
v,πi

(∫
Ω

|v|2

2 + 〈ū0, π0〉+ 〈ū1π1〉 − 〈f + π0 − π1, u〉 −
∫
v · ∇u− 〈πi, ψi〉 − 〈πi, φi〉

)

= sup
u,φi,ψi

[
inf
v

(∫
Ω

|v|2

2 − v · ∇u
)

+ inf
π0
〈π0, ū0 − u− ψ0 − φ0〉+ inf

π1
〈π1, ū1 + u− ψ1 − φ1〉

]

= sup
u,φi,ψi

[
−
∫

Ω

|∇u|2

2 +
{

0 if ū0 − u− ψ0 − φ0 = 0 and ū1 + u− ψ1 − φ1 = 0
−∞ otherwise.

]

= − inf
u∈H1:

ū0−u∈(H1)++H1
0

u+ū1∈(H1)++H1
0

∫
Ω

|∇u|2

2 .

The constraint w ∈ (H1)+ +H1
0 is a way of saying that w ≥ 0 on ∂Ω, hence the dual problam is :

− inf
u∈H1

∫
Ω

|∇u|2

2 : −ū1 ≤ u ≤ ū0 on ∂Ω.

One should assume that ū0 + ū1 ≥ 0 on ∂Ω.
Proving that the duality holds, i.e. that we have an equality instead of an inequality, is actually not clear, but
you may try to prove it to see which arguments of the lectures work and where problems remain. The idea is
to set

F(p) = min
{∫

Ω

1
2 |v|

2dx+ 〈ū0, π0〉+ 〈ū1, π1〉 : ∇v = f + π0 − π1 + p

}
,

prove that F is convex lsc, compute F? and write F(0) = F??(0).

Exercise 20. Let Ω be the d−dimensional flat torus (just to avoid boundary conditions, think at a cube),
p, q > 1 two given exponents, a > 0 and f : Ω → R a given Lipschitz continuous function. Consider the
following minimization problem

inf
{∫

Ω

(1
p
|∇u|p − a

q
|u|q + fu

)
dx : u ∈W 1,p(Ω) ∩ Lq(Ω),

∫
Ω
u = 0

}
.

a) Prove that, if q > p, the inf is −∞ and the minimization problem has no solution.
b) Prove that, if q < p, the infimum is attained.
c) Prove that, if q = p, the infimum is attained, provided a is small enough.
d) In the cases where the infimum is attained, write the Euler-Lagrange equation solved by the minimizers.
e) Recall the condition on f which guarantee that solutions of ∆pu = f , satisfy (∇u)p/2 ∈ H1 (remember

that, for a vector v, the expression vα is to be intended as equal to a vector w with |w| = |v|α and
w ∈ R+v).

f) For p ≥ 2 and 2 ≤ q ≤ p, prove that the solution ū satisfies (∇ū)p/2 ∈ H1.



Exercise 21. Let H : Rn → R be given by

H(v) = (4|v|+ 1)3/2 − 6|v| − 1
12 .

a) Prove that H is C1 and strictly convex. Is it C1,1? Is it elliptic ?
b) Compute H∗. Is it C1, strictly convex, C1,1 and/or elliptic ?
c) Consider the problem min{

∫
H(v) : ∇ · v = f} (on the d-dimensional torus, for simplicity) and find

its dual.
d) Supposing f ∈ L2, prove that the optimal u in the dual problem is H2.
e) Under the same assumption, prove that the optimal v in the primal problem belongs to W 1,p for every
p < 2 if d = 2, for p = d/(d− 1) if 3 ≤ d ≤ 5, and for p = 6/5 if d ≥ 3.

Exercise 22. Consider the problem

min{A(v) :=
∫
Td
H(v(x))dx : v ∈ L2,∇ · v = f}

for a function H which is elliptic. Prove that the problem has a solution, provided there exists at least an
admissible v with A(v) < +∞. Prove that, if f is an H1 function with zero mean, then the optimal v is also
H1.
Exercise 23. Given a function g ∈ L2([0, L]), consider the problem

min
{∫ L

0

1
2 |u(t)− g(t)|2dt : u(0) = u(L) = 0, u ∈ Lip([0, L]), |u′| ≤ 1 a.e.

}
.

a) Prove that this problem admits a solution.
b) Prove that the solution is unique.
c) Find the optimal solution in the case where g is the constant function g = 1 in the terms of the value

of L, distinguishing L > 2 and L ≤ 2.
d) Computing the value of

sup
{
−
∫ L

0
(u(t)z′(t) + |z(t)|)dt : z ∈ H1([0, L])

}
find the dual of the previous problem by means of a formal inf-sup exchange.

e) Assuming that the equality inf sup = sup inf in the duality is satisfied, write the necessary and sufficient
optimality conditions for the solutions of the primal and dual problem. Check that these conditions are
satisfied by the solution found in the case g = 1.

f) Prove the the equality inf sup = sup inf (more difficult).
Exercise 24. Given u0 ∈ C1([0, 1]) consider the problem

min
{∫ 1

0

1
2 |u− u0|2dx : u′ ≥ 0

}
,

which consists in the projection of u0 onto the set of monotone increasing functions (where the condition u′ ≥ 0
is intended in the weak sense).

a) Prove that this problem admits a unique solution.
b) Write the dual problem
c) Prove that the solution is actually the following : define U0 through U ′0 = u0, set U1 := (U0)∗∗ to be the

largest convex and l.s.c. function smaller than U0, take u = U ′1.


