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We consider here the case study that we saw in class, namely the gradient flow of the functional

F (ρ) =

∫
Ω
ρ ln ρ+

∫
Ω
V dρ,

where V is a Lipschitz function on the compact domain Ω, starting from a given measure ρ0 ∈ P(Ω)
such that F (ρ0) < +∞.

We stress from the beginning that the first term of the functional is defined as

J(ρ) :=

{∫
Ω ρ(x) ln ρ(x)dx if ρ << Ld,

+∞ otherwise,

where we identify the measure ρ with its density, when it is absolutely continuous.
We will use the following property.

Lemma 0.1. If a sequence ρn satifsfies J(ρn) ≤ C and ρn weakly converges to ρ as measures, then
ρ << Ld and ρn also weakly converges to ρ in L1 (in the duality with L∞).

Moreover, J is l.s.c. on P(Ω) w.r.t. the weak convergence of probabilities.

This lemma is an exercise based on the concept of equi-integrability (for the first part) and on
the equality x lnx = supy xy − ey−1. We will not prove it.

The computation of the variational derivative δF/δρ gives the the PDE that should be satisfied
by a gradient flow of F , i.e.

∂tρ−∇ ·
(
ρ∇δF

δρ

)
= 0 ⇒ ∂tρ−∆ρ−∇ · (ρ∇V ) = 0.

The previous lemma allows to establish the following

Proposition 0.2. The functional F has a minimum over P(Ω). In particular F is bounded from
below. Moreover, for each τ > 0 the following sequences of optimization problems recursively defined
is well-posed

ρτ (k + 1) ∈ argminρ F (ρ) +
W 2

2 (ρ, ρτ (k))

2τ
, (0.1)

which means that there is a minimizer at every step.

Proof. Just apply the direct method, noticing that P(Ω) is compact for the weak convergence, which
is the same as the convergence for the W2 distance. And for this convergence J is l.s.c. and the
other terms are continuous.
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Optimality conditions at each time step We first need the following lemma.

Lemma 0.3. Let ν be a fixed probability measure; consider µ ∈ P(Ω) such that in the optimal
transport from µ to ν for the cost 1

2 |x − y|2 the Kantorovitch potential is unique (up to additive
constants). This means that there is only one pair (φ̄, ψ̄) solving

max

∫
φdµ+ ψdν : φ(x0) = 0, φ(x) + ψ(y) ≤ 1

2
|x− y|2,

where x0 is any fixed point in Ω, so as to get rid of additive constants.
Then, for ay µ1 ∈ P(Ω), setting µε := (1− ε)µ+ εµ1, we have

d

dε

(
1

2
W 2

2 (µε, ν)

)
|ε=0

=

∫
φ̄d(µ1 − µ).

Proof. Let us try to estimate the ratio (1
2W

2
2 (µve, ν)− 1

2W
2
2 (µ, ν))/ε. First, by using that (φ̄, ψ̄) is

optimal for µ but not for µε, we have

1
2W

2
2 (µε, ν)− 1

2W
2
2 (µ, ν)

ε
≥
∫
φ̄dµε +

∫
ψ̄dν −

∫
φ̄dµ−

∫
ψ̄dνε =

∫
φ̄d(µ1 − µ),

which gives a lower bound. This means that lim infε→0(1
2W

2
2 (µve, ν)− 1

2W
2
2 (µ, ν))/ε ≥

∫
φ̄d(µ1−µ).

To look at the lim sup, first fix a sequence of values of εk such that limk(
1
2W

2
2 (µvek , ν) −

1
2W

2
2 (µ, ν))/εk = lim supε→0(1

2W
2
2 (µve, ν) − 1

2W
2
2 (µ, ν))/ε. Then we can estimate the same ratio

using the optimality of a pair (φk, ψk), Kantorovitch potentials in the transport from µεk to ν.

1
2W

2
2 (µεk , ν)− 1

2W
2
2 (µ, ν)

εk
≤
∫
φkdµεk +

∫
ψkdν −

∫
φkdµ−

∫
ψkdνεk =

∫
φkd(µ1 − µ). (0.2)

The problem in this estimate is that we need to pass to the limit in k. To do this, first notice that
the families of functions (φk)k and (ψk)k are both equicontinuous, since the expressions

φk(x) = inf
y

1

2
|x− y|2 − ψk(y) and ψk(y) = inf

x

1

2
|x− y|2 − φk(x) (0.3)

allow to give Lipschitz bounds (both φk and ψk are hence Lipschitz continuous with constant
diam(Ω)). Moreover, the condition φk(x0) = 0 gives a bound on φk and (0.3) turns it into a
bound on ψk as well. Hence, Ascoli’s Theorem allows to pass to the limit up to a subsequence
(not relabeled). This gives (φk, ψk)→ (φ, ψ) uniformly, and it is easy to check that (φ, ψ) must be
optimal in the duality formula for the transport between µ and ν. Actually, from

1

2
W 2

2 (µεk , ν) =

∫
φkdµεk +

∫
ψkdν

it is easy to pas t the limit and get

1

2
W 2

2 (µ, ν) =

∫
φdµ+

∫
ψdν,

which implies φ = φ̄ and ψ = ψ̄ by uniqueness. Finally, passing to the limit in (0.2) we get also
lim supε→0(W 2

2 (µε, ν)−W 2
2 (µ, ν))/ε ≤

∫
φ̄d(µ1 − µ).
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The previous result is useful when one can guarantee uniqueness of the Kantorovitch potential,
which is the case in the following proposition.

Proposition 0.4. If at least one of the measures µ or ν is equivalent to the Lebesgue measure (i.e. it
is absolutely continuous and has non-zero density), then the Kantorovitch potential in the transport
from µ to ν for the cost 1

2 |x− y|
2 is unique up to additive constants.

Proof. Suppose for simplicity that µ is a.c. with positive density. It is sufficient to notice that the
optimal transport map T sending µ onto ν is unique and that we have T (x) = x − ∇φ(x) µ−a.e.
(this comes from the general formula T (x) = x−∇h∗(∇φ(x)) but in this case h(z) = 1

2 |z|
2 and ∇h∗

is the identity). Yet, in this case µ−a.e. means Lebesgue-a.e. and this allows to know ∇φ a.e. φ
being Lipschitz, on a connected domain, this implies uniqueness up to additive constants for φ.

Let us come back to Problem (0.1).

Lemma 0.5. Any minimizer ρ̄ in (0.1) must satisfy ρ̄ > 0 a.e.

Proof. Consider the measure ρ̃ with constant positive density c in Ω (i.e. the density equals |Ω|−1).
Let us define ρε as (1− ε)ρ̄+ ερ̃ an compare ρ̄ to ρε.

We write

J(ρ̄)− J(ρε) ≤
∫
V dρε −

∫
V dρ̄+

W 2
2 (ρε, ρk)

2τ
− W 2

2 (ρ̄, ρ(k))

2τ
.

The Wasserstein term in the right hand side may be estimated by convexity, which gives

W 2
2 (ρε, ρk)

2τ
≤ (1− ε)W

2
2 (ρ̄, ρk)

2τ
+ ε

W 2
2 (ρ̄, ρk)

2τ
.

This shows that the right hand side is estimated by Cε and we get∫
f(ρ̄)− f(ρε) ≤ Cε

where we use f(t) = t ln t. Since f is convex we write, on the set A = {x ∈ Ω : ρ̄(x) > 0},
f(ρ̄(x)) − f(ρε(x)) ≥ (ρ̄(x) − ρε(x))f ′(ρε(x)) = ε(ρ̄(x) − ρ̃(x))(1 + ln ρε(x)). On the set B = {x ∈
Ω : ρ̄(x) = 0} we simply write f(ρ̄(x))− f(ρε(x)) = −εc ln(εc). This allows to write

−εc ln(εc)|B|+ ε

∫
(ρ̄(x)− c)(1 + ln ρε(x))dx ≤ Cε.

Dividing by ε and letting ε→ 0 provides a contradiction, unless |B| = 0.

We can now compute the first variation and give optimality conditions on the optimal ρτ (k+ 1).

Proposition 0.6. The optimal measure ρτ (k + 1) in (0.1) satisfies

ln(ρτ (k + 1)) + V +
φ̄

τ
= constant a.e.
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where φ̄ is the (unique) Kantorovitch potential from ρτ (k + 1) to ρτ (k). In particular, it T τk is the
optimal transport from ρτ (k + 1) to ρτ (k), then it satisfies

vτ (k) :=
id− T τk

τ
= −∇ (ln(ρ(k + 1)) + V ) a.e. (0.4)

Proof. Take the optimal measure ρ̄ := ρτ (k+1) and compute variations with respect to perturbations
of the form ρε := (1 − ε)ρ̄ + ερ̃, where ρ̃ is any other probability measure, with L∞ density (so as
to ensure every integrability condition). This means choosing a perturbation χ = ρ̃ − ρ̄, which
guarantees that, for ε > 0, the measure ρε is actually a probability over Ω.

We now compute the first variation and, due to optimality, we have

0 ≤ d

dε

(
F (ρ̄+ εχ) +

1

τ

W 2
2 (ρ̄+ εχ, ρτ (k))

2

)
|ε=0

=

∫ (
δF

δρ
(ρ̄) +

φ̄

τ

)
dχ.

If we set for a while ψ = δF
δρ (ρ̄) + φ̄

τ we would have∫
ψ dχ ≥ 0 i.e.

∫
ψ dρ̃ ≥

∫
ψ dρ̄ for all ρ̃ ∈ L∞(Ω). (0.5)

Set l = ess inf ψ : on the one hand, the right hand side in (0.5) is larger than l, on the other hand,
choosing ρ̃ concentrated on a set {ψ < l+ ε} (which has positive measure), we can get the left hand
side smaller than l + ε. Hence, we finally get

l =

∫
ψ dρ̄ and ψ ≥ l ρ̄− a.e.

This gives ψ = la.e. w.r.t. ρ̄, but since we know ρ̄ > 0 a.e., this gives that ψ is constant a.e.
This gives the first part of the thesis if we replace δF

δρ with f ′(ρ)+V = ln(ρ)+1+V . In particular
it implies that ρ(k + 1) is Lipschitz continuous, since it holds

ρτ (k + 1)(x) = exp

(
C − V (x)− φ̄(x)

τ

)
.

Then, one differentiates and gets the equality

∇φ̄(x) =
id− T τk

τ
= −∇ (ln(ρτ (k + 1)) + V ) a.e.

and this allows to conclude.

Interpolation between time steps and uniform estimates. Let us collect some other tools

Proposition 0.7. For any τ > 0, the sequence of minimizers satisfies∑
k

W 2
2 (ρτ (k + 1), ρτ (k))

τ
≤ C = 2(F (ρ0)− inf F ),

where the constant C is finite and independent of ρ.
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Proof. This is obtained by comparing the optimizer ρτ (k + 1) to the previous measure ρτk. We get

F (ρτ (k + 1)) +
W 2

2 (ρτ (k + 1), ρτ (k))

2τ
≤ F (ρτk),

which implies ∑
k

W 2
2 (ρτ (k + 1), ρτ (k))

τ
≤
∑
k

2(F (ρτk)− F (ρτ (k + 1))),

and this last sum is telescopic and gives the thesis.

Let us define two interpolations between the measures ρτk.
With this time-discretized method, we have obtained, for each τ > 0, a sequence (ρτ (k))k. We

can use it to build at least two interesting curves in the space of measures:

• first we can define some piecewise constant curves, i.e. ρτt := ρτ (k + 1) for t ∈]kτ, (k + 1)τ ];
associated to this curve we also define the velocities vτt = vτ (k+ 1) for t ∈]kτ, (k+ 1)τ ], where
vτ (k) is defined as in (0.4): vτ (k) = (id − T τk )/τ , taking as T τk the optimal transport from
ρτ (k + 1) to ρτ (k); we also define the momentum variable Eτ = ρτvτ ;

• then, we can also consider the densities ρ̃τt that interpolate the discrete values (ρτ (k))k along
geodesics:

ρ̃τt =

(
kτ − t
τ

vτ (k) + id

)
#

ρτ (k), for t ∈](k − 1)τ, kτ [; (0.6)

the velocities ṽτt are defined so that (ρ̃τ , ṽτ ) satisfy the continuity equation, taking

ṽτt = vτt ◦ ((kτ − t)vτ (k) + id)−1 ;

as before, we define: Ẽτ = ρ̃τ ṽτ .

After these definitions we consider some a priori bounds on the curves and the velocities that
we defined. We start from some estimates which are standard in the framework of Minimizing
Movements (this is the name of the discrete procedure which minimizes the funtional plus a quadratic
penalization on the distance, see [1, 4]).

Notice that the velocity (i.e., metric derivative) of ρ̃τ is constant on each interval ]kτ, (k +
1)τ [ and equal to W2(ρτ (k + 1), ρτ (k))/τ . This distance also equals (

∫
|id − T τk |2dρτ (k + 1))1/2 =

τ ||vτk+1||L2(ρτ (k+1)), which gives

||ṽτt ||L2(ρ̃τt ) = |(ρ̃τ )′|(t) =
W2(ρτ (k + 1), ρτ (k))

τ
= ||vτt ||L2(ρτt ),

where we used the fact that the velocity field ṽτ has been choses so that its L2 norm equals the
metric derivative of the curve ρ̃τ .
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In particular we can obtain

|Eτ |([0, T ]× Ω) =

∫ T

0
dt

∫
Ω
|vτt |dρτt =

∫ T

0
||vτt ||L1(ρτt ) ≤

∫ T

0
||vτt ||L2(ρτt )

≤ T 1/2

∫ T

0
||vτt ||2L2(ρτt ) = T 1/2

∑
k

τ

(
W2(ρτ (k + 1), ρτ (k))

τ

)2

≤ C.

The estimate on Ẽτ is completely analogous

|Ẽτ |([0, T ]×Ω) =

∫ T

0
dt

∫
Ω
|ṽτt |dρ̃τt ≤ T 1/2

∫ T

0
||ṽτt ||2L2(ρ̃τt ) = T 1/2

∑
k

τ

(
W2(ρτ (k + 1), ρτ (k))

τ

)2

≤ C.

This gives compactness of Eτ and Ẽτ in the space of vector measures on space-time, or the weak
convergence. As far as ρ̃τ is concerned, we can obtain more than that. Consider the following
estimate, for t < t

W2(ρ̃τt , ρ̃
τ
s) ≤

∫ t

s
|(ρ̃τ )′|(r)dr ≤ (t− s)1/2

(∫ t

s
|(ρ̃τ )′|(r)2dr

)1/2

.

From the previous computations, we have again∫ T

0
|(ρ̃τ )′|(r)2dr =

∑
k

τ

(
W2(ρτ (k + 1), ρτ (k))

τ

)2

≤ C,

and this implies
W2(ρ̃τt , ρ̃

τ
s) ≤ C(t− s)1/2, (0.7)

which means that the curves ρ̃τ are uniformly Hölder continuous. Since they are defined on [0, T ]
and valued in P(Ω) which is compact, when endowed with the Wasserstein distance, we can apply
Ascoli’s Theorem. This means that, up to subsequences, we have

Eτ ⇀ E in M([0, T ]×Ω;Rd), Ẽτ ⇀ Ẽ in M([0, T ]×Ω;Rd); ρ̃τ → ρ uniformly for the W2 distance.

As far as the curves ρτ are concerned, they also converge uniformly to the same curve ρ, since
W2(ρτt , ρ̃

τ
t ) ≤ C

√
τ (a consequence of (0.7), of the fact that ρ̃τ = ρτ on the points of the form kτ

and of the fact that ρτ is constant on each interval ]kτ, (k + 1)τ ].
Let us now prove that Ẽ = E.

Lemma 0.8. Suppose that we have two families of vector measures Eτ and Ẽτ such that

• Ẽτ = ρ̃τ ṽτ ; Eτ = ρτvτ ;

• ṽτt = vτt ◦ ((kτ − t)vτ (k) + id)−1; ρ̃τ = ((kτ − t)vτ (k) + id)# ρ
τ ;

•
∫ ∫
|vτ |2dρτ ≤ C (with C independent of τ);
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• Eτ ⇀ E and Ẽτ ⇀ Ẽ as τ → 0

Then Ẽ = E.

Proof. It is sufficient to fix a Lipschitz function f : [0, T ]×Ω→ Rd and to prove
∫
f ·dE =

∫
f ·dẼ.

To do that, we write∫
f · dẼτ =

∫ T

0
dt

∫
Ω
f · ṽτt dρ̃τ =

∫ T

0
dt

∫
Ω
f ◦ ((kτ − t)vτ + id) · vτt dρτ ,

which implies∣∣∣∣∫ f · dẼτ −∫ f · dEτ ∣∣∣∣ ≤ ∫ T

0
dt

∫
Ω
|f ◦ ((kτ − t)vτ+id)− f | |vτt |dρτ ≤ Lip(f)τ

∫ T

0

∫
Ω
|vτt |2dρτ ≤ Cτ.

This estimate proves that the limit of
∫
f · dẼτ and

∫
f · dEτ is the same, i.e. E = Ẽ.

Relation between ρ and E. We can obtain the following

Proposition 0.9. The pair (ρ,E) satisfies, in distributional sense

∂tρ+∇ · E = 0, E = −∇ρ− ρ∇V.

In particular we have found a solution to{
∂tρ+ ∆ρ+∇ · (ρ∇V ),

ρ(0) = ρ0 given.

Proof. First, consider the weak convergence (ρ̃τ , Ẽτ ) ⇀ (ρ,E) (which is a consequence of Ẽ = E).
Weak convergences let easily any linear condition pass to the limit and the continuity equation
∂tρ̃

τ +∇ · Ẽτ = 0 satisfied in the sense of distributions stays true at the limit (it is enough to test
the equations against any C1 function on [0, T ]× Ω).

Then, use the convergence (ρτ , Eτ ) ⇀ (ρ,E). Actually, using the optimality conditions of
Proposition 0.6 and the defintiion of Eτ = vτρτ , we have, for each τ > 0, Eτ = −∇ρτ − ρτ∇V . It
is not difficult to pass this condition to the limit neither. Take f ∈ C1([0, T ]× Ω;Rd) and test:∫

f · dEτ = −
∫
f · ∇ρτ −

∫
f · ∇V ρτ =

∫
∇ · fdρτ −

∫
f · ∇V ρτ .

These terms pass to the limit as ρτ ⇀ ρ, at least if V ∈ C1, since all the test functions above are
continuous. This would give

∫
f · dE =

∫
∇ · fdρ−

∫
f · ∇V ρ, which implies E = −∇ρ− ρ∇V .

To handle the case where V is only Lipschitz continuous, let us notice that for every τ, t we have
F (ρτt ) ≤ F (ρ0). This gives a uniform bound on J(ρτt ) and Lemma 0.1 turns the weak convergence
ρτt ⇀ ρt as measures into a weak convergence in L1. Once we have weak convergence in L1,
multiplying times a fixed L∞ function, i.e. ∇V , preserves the limit.
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Notice that we were quite sloppy about the boundary conditions for the PDE that we got, which
are actually Neumann (a consequence of the fact that we can test against any C1 function, with no
need to vanish on the boundary).

Last remark: this proof is not the main proof used in [2, 3] or [5], and the main different point
is the use of “vertical” perturbations, i.e. ρε := (1− ε)ρ̄+ ερ̃ rather than ρε := (id+ εξ)#ρ̄.
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