Analysis of a gradient flow scheme

April 12, 2011

We consider here the case study that we saw in class, namely the gradient flow of the functional

F(p)z/planr/Vdp,
Q Q

where V' is a Lipschitz function on the compact domain €2, starting from a given measure py € P(2)
such that F(pg) < 400.
We stress from the beginning that the first term of the functional is defined as

Jopl@)np(x)de if p << LY,
J(p) = .
400 otherwise,

where we identify the measure p with its density, when it is absolutely continuous.
We will use the following property.

Lemma 0.1. If a sequence p,, satifsfies J(pn) < C and p, weakly converges to p as measures, then
p << L and py, also weakly converges to p in L' (in the duality with L>).
Moreover, J is l.s.c. on P(Q2) w.r.t. the weak convergence of probabilities.

This lemma is an exercise based on the concept of equi-integrability (for the first part) and on
the equality zlnz = sup, zy — eY~1. We will not prove it.
The computation of the variational derivative 6 F'/dp gives the the PDE that should be satisfied
by a gradient flow of F, i.e.
oF

6tp -V (pV
op

The previous lemma allows to establish the following

>:0 = Op—Ap—V-(pVV)=0.

Proposition 0.2. The functional F' has a minimum over P(Q). In particular F is bounded from
below. Moreover, for each T > 0 the following sequences of optimization problems recursively defined
18 well-posed

W3 (p, p" (k)

p"(k+1) € argmin, F(p) + ,
2T

(0.1)
which means that there is a minimizer at every step.

Proof. Just apply the direct method, noticing that P(2) is compact for the weak convergence, which
is the same as the convergence for the Wy distance. And for this convergence J is l.s.c. and the
other terms are continuous. O



Optimality conditions at each time step We first need the following lemma.

Lemma 0.3. Let v be a fized probabilz'ty measure; consider u € P() such that in the optimal
transport from p to v for the cost \x — y|? the Kantorovitch potential is unique (up to additive
constants). This means that there is only one pair (¢,7) solving

1
max [ dy+ v+ 6lan) =0, 6(a) +¥(0) < 5o~ ol

where xq is any fixed point in Q, so as to get rid of additive constants.
Then, for ay p1 € P(QY), setting pe = (1 —e)u + ep1, we have

d% (;Wf(ug,l/))le_o = /cf?d(m — ).

Proof. Let us try to estimate the ratio (W3 (uve,v) — §WZ(p,v))/e. First, by using that (¢, ) is
optimal for p but not for u., we have

éwg(ug,y)g— sW3 (1, v) > /Q—SdMEJr/&dy_/@du_/&dus:/qu(ul = 1),

which gives a lower bound. This means that lim inf._o(3 W2 (uve, v) — sW3(p,v)) /e > [ ¢d(p1 — p).
To look at the limsup, first fix a sequence of values of e; such that limy(3W3(pve,,v) —

W3 (p,v))/ex = limsup._o(3W3(pve,v) — W3 (u,v))/e. Then we can estimate the same ratio

using the optimality of a pair (¢, ), Kantorovitch potentials in the transport from p., to v.

W3 (pey,v) — sW3 (v /gbkd,ugk /¢kdu/¢kdﬂ /7/1de5k_/¢kd = p). (02)

€k

The problem in this estimate is that we need to pass to the limit in k. To do this, first notice that
the families of functions (¢y)r and (Y )x are both equicontinuous, since the expressions

Be(w) = it Sl —yf? — va(y) and Grly) = inf Sz — o — o4() 03

allow to give Lipschitz bounds (both ¢ and vy are hence Lipschitz continuous with constant
diam(€2)). Moreover, the condition ¢(xg) = 0 gives a bound on ¢ and (0.3) turns it into a
bound on % as well. Hence, Ascoli’s Theorem allows to pass to the limit up to a subsequence
(not relabeled). This gives (¢x, ¥r) — (¢,1) uniformly, and it is easy to check that (¢, 1) must be
optimal in the duality formula for the transport between p and v. Actually, from

W2 Hey s V /¢kdu€k /wkd’/
it is easy to pas t the limit and get
3 W) = [ oau+ [ wa,

which implies ¢ = ¢ and ¥ = ¥ by uniqueness. Finally, passing to the limit in (0.2) we get also
limsup, o (W3 (pe, v) = W3 (p,v)) /e < [ dd(p1 — p). O



The previous result is useful when one can guarantee uniqueness of the Kantorovitch potential,
which is the case in the following proposition.

Proposition 0.4. If at least one of the measures p or v is equivalent to the Lebesque measure (i.e. it
is absolutely continuous and has non-zero density), then the Kantorovitch potential in the transport
from p to v for the cost %|x —y|? is unique up to additive constants.

Proof. Suppose for simplicity that p is a.c. with positive density. It is sufficient to notice that the
optimal transport map 7" sending p onto v is unique and that we have T'(x) = x — Vo(x) p—a.e.
(this comes from the general formula T'(z) = z — Vh*(Vé(z)) but in this case h(z) = 1[2|> and VA*
is the identity). Yet, in this case u—a.e. means Lebesgue-a.e. and this allows to know V¢ a.e. ¢
being Lipschitz, on a connected domain, this implies uniqueness up to additive constants for ¢. [

Let us come back to Problem (0.1).
Lemma 0.5. Any minimizer p in (0.1) must satisfy p > 0 a.e.

Proof. Consider the measure  with constant positive density c in  (i.e. the density equals |[Q|71).
Let us define p. as (1 —€)p + €p an compare p to pe.

We write o S
9~ Ipe) < [Vape — [vapy P2 WG oH),

The Wasserstein term in the right hand side may be estimated by convexity, which gives

W3 (pe, pi) (-0 W3 (p, pr) +EW22(ﬁ, Pr)
27 27 2T

This shows that the right hand side is estimated by Ce and we get

/f@%—ﬂ%)éca

where we use f(t) = tlnt. Since f is convex we write, on the set A = {z € Q : p(z) > 0},

F(p(x)) = fpe(2)) =2 (p(x) = pe(x)) [ (p=()) = e(p(x) = p(x))(1 + Inpe(x)). On the set B = {x €
Q : p(x) =0} we simply write f(p(x)) — f(pe(x)) = —ecln(ec). This allows to write

—ecln(ec)|B| + 8/(p(ac) —¢)(1+1Inpe(x))de < Ce.

Dividing by e and letting e — 0 provides a contradiction, unless |B| = 0. O
We can now compute the first variation and give optimality conditions on the optimal p” (k+1).
Proposition 0.6. The optimal measure p™(k + 1) in (0.1) satisfies

In(p"(k+1))+V + $_ constant a.e.
T

3



where ¢ is the (unique) Kantorovitch potential from p™(k + 1) to p7(k). In particular, it T{ is the

optimal transport from p”(k + 1) to p”(k), then it satisfies

id —T]
T

v (k) =

=~V (In(p(k +1)) + V) ae. (0.4)

Proof. Take the optimal measure p := p” (k+1) and compute variations with respect to perturbations
of the form p. := (1 — €)p + p, where p is any other probability measure, with L density (so as
to ensure every integrability condition). This means choosing a perturbation x = p — p, which
guarantees that, for € > 0, the measure p. is actually a probability over €.

We now compute the first variation and, due to optimality, we have

- % <F(ﬁ+é_x)+iWQQ(ﬁJrZX,pT(k)))5O:/<‘;§(5)+f) dx.

0

If we set for a while ¢ = %(ﬁ) + % we would have

/wdx>0 i.e./wdﬁ> /wdﬁ for all p € L*°(Q). (0.5)

Set | = essinf 1 : on the one hand, the right hand side in (0.5) is larger than [, on the other hand,
choosing p concentrated on a set {¢) < [+ ¢} (which has positive measure), we can get the left hand
side smaller than [ 4+ . Hence, we finally get

l:/wdﬁ and Y >1 p—a.e.

This gives ¢ = la.e. w.r.t. p, but since we know p > 0 a.e., this gives that 1) is constant a.e.
This gives the first part of the thesis if we replace % with f/(p)+V =1In(p)+1+V. In particular
it implies that p(k -+ 1) is Lipschitz continuous, since it holds
b(x
p (k+1)(z) =exp <C —V(z)— (Z)(T)> .
Then, one differentiates and gets the equality

o dd-T

Vo(x) —V(In(p"(k+1))+V) ae.

T

and this allows to conclude. O

Interpolation between time steps and uniform estimates. Let us collect some other tools

Proposition 0.7. For any T > 0, the sequence of minimizers satisfies

Z Wg(PT(k + 1),p7—(]€)) <C= Q(F(,Oo) _ ian)’

T
k

where the constant C' is finite and independent of p.



Proof. This is obtained by comparing the optimizer p”(k + 1) to the previous measure pj,. We get

W3 (p"(k +1),p7 (k)

Flp"(k+1))+ o=

< F(pp),

which implies

2( T T
3 W3 (p" (k J; D). p"(k) _ ST 2F(pf) — F(p™(k +1))),
& k

and this last sum is telescopic and gives the thesis. O

Let us define two interpolations between the measures pj.
With this time-discretized method, we have obtained, for each 7 > 0, a sequence (p” (k))r. We
can use it to build at least two interesting curves in the space of measures:

e first we can define some piecewise constant curves, i.e. pj := p"(k + 1) for t €]kr, (k + 1)7];
associated to this curve we also define the velocities v] = v"(k+ 1) for ¢t €]k, (k+ 1)7], where
v7 (k) is defined as in (0.4): v"(k) = (id — T} )/7, taking as T} the optimal transport from
p"(k+1) to p”(k); we also define the momentum variable E7 = p"v";

e then, we can also consider the densities p] that interpolate the discrete values (p” (k))i along
geodesics:

pr = (kTT_ tUT(kz) + id># p"(k), forte€]|(k— 1)1 k[ (0.6)

the velocities 0] are defined so that (p7,07) satisfy the continuity equation, taking
o7 = o] o ((kr — )07 (k) +id) ™",
as before, we define: F, = proT.

After these definitions we consider some a priori bounds on the curves and the velocities that
we defined. We start from some estimates which are standard in the framework of Minimizing
Movements (this is the name of the discrete procedure which minimizes the funtional plus a quadratic
penalization on the distance, see [1, 4]).

Notice that the velocity (i.e., metric derivative) of p” is constant on each interval |k, (k +
1)7[ and equal to Wa(p (k + 1), p"(k))/7. This distance also equals ([ |id — T7 |>dp™ (k + 1))}/2 =
[|vF 41112 (o (k1)) Which gives

~T ~T Wa(p™(k+1),p" (k T
15l cagap) = 1710y = L2 A DL oy

where we used the fact that the velocity field 9" has been choses so that its L? norm equals the
metric derivative of the curve p”.



In particular we can obtain

T
/ dt / (o] |dp] = / 107 Nl < / 1711220

T1/2/0 or HL2 T1/2Z < ktl) (k))>2§C.

The estimate on E7 is completely analogous

[T r ~T| J~T T ~T k+1 k ?
o) = [Can [ i <7 [ agr =73 (PR <

T

[ETI([0,T] x )

IN

This gives compactness of E7 and E7 in the space of vector measures on space-time, or the weak
convergence. As far as p7 is concerned, we can obtain more than that. Consider the following

estimate, for ¢ < ¢
1/2
ptvps / ‘ d""< 1/2 (/ ‘ ~T ) :

From the previous computations, we have again

T - - 2
/O ’(ﬁT),‘(T)QdT_ZT<W2(p (k—l—l),p (k))> <0,

.
k

and this implies
Wa(pf, p7) < C(t = s)'/2, (0.7)

which means that the curves p” are uniformly Holder continuous. Since they are defined on [0, T
and valued in P(€2) which is compact, when endowed with the Wasserstein distance, we can apply
Ascoli’s Theorem. This means that, up to subsequences, we have

ET — E in M([0,T]xQ;RY), E™ — E in M([0, T]xQ;RY); 57 — p uniformly for the W5 distance.

As far as the curves p” are concerned, they also converge uniformly to the same curve p, since
Wa(pf,pr) < C+/T (a consequence of (0 7), of the fact that p” = p” on the points of the form k7
and of the fact that p” is constant on each interval |k7, (k + 1)7].

Let us now prove that E=E.

Lemma 0.8. Suppose that we have two families of vector measures E™ and ET such that
° ET—p 0T, ET = pTut;
57 = o] o ((kr — )" (k) +id)™"; 57 = (k7 — t)o7 (k) +id) . p";

e v

o [[|vT|2dp™ < C (with C independent of T);



e BT ~Eand E" —~F asT — 0
Then E = E.

Proof. Tt is sufficient to fix a Lipschitz function f : [0, 7] x @ — R? and to prove [ f-dE = [ f-dE.
To do that, we write

/f-dET:/OTdt/Qf.@gdﬁT:/OTdt/Qfo((kTt)vwz'd).u;dpf,

which implies

‘/f-dET—/f-dET

This estimate proves that the limit of [ f-dE™ and [ f - dE" is the same, i.e. E = E. O

T T
< / dt/ |f o ((kr —t)v™+id) — f||v] |dp” < Lip(f)T/ / [T |2dp™ < C.
0 Q 0 Q

Relation between p and E. We can obtain the following

Proposition 0.9. The pair (p, E) satisfies, in distributional sense
op+V-E=0, E=-Vp—pVV.
In particular we have found a solution to

dp+Ap+V-(pVV),
p(0) = po given.

Proof. First, consider the weak convergence (57, E™) — (p, E) (which is a consequence of E = E).
Weak convergences let easily any linear condition pass to the limit and the continuity equation
op” +V - E™ = 0 satisfied in the sense of distributions stays true at the limit (it is enough to test
the equations against any C* function on [0, T] x ).

Then, use the convergence (p”, E™) — (p,E). Actually, using the optimality conditions of
Proposition 0.6 and the defintiion of E™ = v p”, we have, for each 7 > 0, E7 = —Vp™ — p"VV. It
is not difficult to pass this condition to the limit neither. Take f € C1([0,T] x ©;R%) and test:

[rae == [rvw = [rvve= [vogar— [ 1w

These terms pass to the limit as p7 — p, at least if V € C!, since all the test functions above are
continuous. This would give [ f-dE = [V - fdp— [ f-VVp, which implies E = —Vp — pVV.

To handle the case where V' is only Lipschitz continuous, let us notice that for every 7,t we have
F(pf) < F(po). This gives a uniform bound on J(p]) and Lemma 0.1 turns the weak convergence
pI — p; as measures into a weak convergence in L!. Once we have weak convergence in L1,
multiplying times a fixed L*° function, i.e. VV', preserves the limit. O



Notice that we were quite sloppy about the boundary conditions for the PDE that we got, which
are actually Neumann (a consequence of the fact that we can test against any C' function, with no
need to vanish on the boundary).

Last remark: this proof is not the main proof used in [2, 3] or [5], and the main different point
is the use of “vertical” perturbations, i.e. p. := (1 —€)p + €p rather than p. := (id + €&)4p.
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