
VERY SHORT LECTURE NOTES ON CONVEX DUALITY

AND REGULARITY IN CALCULUS OF VARIATIONS

FILIPPO SANTAMBROGIO

1. Convex duality

Given H : X → R∪{+∞}, let us recall the definition of H∗, Legendre transform of H, defined
on the dual space X ′

H∗(w) = sup
v∈X
〈w, v〉 −H(v).

We will use reflexive spaces for simplicitiy. In this case it is clear that H∗∗ is also defined on X.
We recall the important result stating that, if H : X → R is convex and l.s.c.,then H∗∗ = H.
For the main facts about conjugate convex functions, see for instance [9].

Finally, we also recall the formula for the Legendre transform of H(v) = 1
q |v|

q, defined on Rd,
where we get H∗(w) = 1

p |w|
q, where q is the conjugate exponent of p, i.e. q = p′ = p/(p − 1),

wharacterized by 1
p + 1

q = 1.

Now, consider a function H : Ω× Rd → R which is convex in the second variable

(Hyp1) for every x v 7→ H(x, v) is convex

and satisfying the following uniform bounds:

(Hyp2)
c0

q
|v|q − h0(x) ≤ H(x, v) ≤ c1

q
|v|q + h1(x),

where h0, h1 are L1 functions on Ω and c0, c1 > 0 are given finite constants, and p ∈]1,+∞[ is
a given exponent. For functions of this form, when we write H∗(x,w) we mean the Legendre
transform in the second variable, i.e. H∗(x,w) = supv w · v −H(x, v).

These notes will be devoted to the study of duality in calculus of variations problems, and to
its applications to the regularity of the minimizers. The starting problem that we will consider
will be of the form

min

{∫
Ω
H(x, v(x))dx : ∇ · v = f

}
.

Before giving rigorous results, we want to show how to build its dual problem, with an informal
derivation. This can be done in the following way: the constraint ∇ · v = f can be written, in
weak form, as −

∫
v · ∇u =

∫
fu for every u (let us be sloppy about the regularity of the test

functions now). This means that we can rewrite the above problem in the min-max form

min

{∫
H(x, v) + sup

u
−
∫
fu−

∫
v · ∇u

}
,

since the last sup is 0 is the constraint is satisfied and +∞ if not. Now, we have a min-max
problem and the dual problem can be obtained (without claiming any relation with the original
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problem, or equality of the two values) just by inverting inf and sup. In this case we get

sup

{
−
∫
fu+ inf

v

∫
H(x, v)−

∫
v · ∇u

}
.

Since infv
∫
H(x, v)−

∫
v ·∇u = − supv

∫
∇u·v−

∫
H(x, v) =

∫
H∗(x,∇u), the problem becomes

sup

{
−
∫
fu−

∫
H∗(x,∇u)

}
.

In the following, we will see precise statements about the duality between the two problems,
and also provide a variant for the case of Dirichlet conditions. The duality proof, based on the
above conve analysis tools, is essentially inspired to the method used in [6] . Other proofs are
obviously possible.

1.1. Neumann boundary conditions. We define the space W 1,p
� (Ω) as the vector subspace

of W 1,p(Ω) composed by functions with zero mean and the space (W 1,p)′�(Ω) as the subspace of
the dual of W 1,p composed by those f such that 〈f, 1〉 = 0 (i.e. those f with zero mean as well).

Note that for every v ∈ Lq(Ω;Rd), the distribution ∇ · v, defined through

〈∇ · v, φ〉 := −
∫

Ω
v · ∇φ

belongs naturally to (W 1,p)′�(Ω). This will be by the way the definition we will use of the
divergence operator (in weak form), and it includes a natural Neumann boundary condition on
∂Ω. However, consider that we will often use Ω to be the torus, which gets rid of many boundary
issues.

We will prove the following duality result.

Theorem 1.1. Suppose that Ω is smooth enough and that H satisfies Hyp1 and Hyp2. Then,
for any f ∈ (W 1,p)′�(Ω), we have

min

{∫
Ω
H(x, v(x))dx : v ∈ Lq(Ω;Rd),∇ · v = f

}
= max

{
−
∫

Ω
H∗(x,∇u(x))dx− 〈f, u〉 : u ∈W 1,p(Ω)

}
Proof. We will define a function F : (W 1,p)′ → R in the following way

F(p) := min

{∫
Ω
H(x, v(x))dx : v ∈ Lq(Ω;Rd),∇ · v = f + p

}
.

Note that if p /∈ (W 1,p)′� ⊂ (W 1,p)′, then F(p) = +∞, as there is no v ∈ Lq with ∇·v = f+p. On
the other hand, if p ∈ (W 1,p)′�, then F(p) is well-defined and real-valued since

∫
ΩH(x, v(x))dx

is comparable to the Lq norm, and we use the following fact: for every f ∈ (W 1,p)′� there exists
v ∈ Lq such that f = ∇ · v and ||v||Lq ≤ ||f ||(W 1,p)′� (see next lemma).
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We now compute F∗ : W 1,p → R:

F∗(u) = sup
p
〈p, u〉 − F(p)

= sup
p,v :∇·v=f+p

〈p, u〉 −
∫

Ω
H(x, v(x))dx

= sup
p,v :∇·v=f+p

〈p+ f, u〉 − 〈f, u〉 −
∫

Ω
H(x, v(x))dx

= sup
v
−〈f, u〉 −

∫
Ω
H(x, v(x))dx−

∫
(v · ∇u)dx

= −〈f, u〉+

∫
Ω
H∗(x,−∇u(x))dx.

Now we want to use the fact that F∗∗(0) = sup−F∗. Note that sup−F∗ = +∞ if f /∈ (W 1,p)′�,
as it is possible to add an arbitrary constant to u, without changing the gradient term, and letting
the term −〈f, u〉 tend to −∞. On the other hand, if f ∈ (W 1,p)′�, then in the above optimization

u can be taken in W 1,p or in W 1,p
� and the result does not change, as adding a constant does

not change neither the integral term (which only depends on ∇u) nor the duality term (as
〈f, 1〉 = 0).

By taking the sup on −u instead of u we also have

F∗∗(0) = sup
u
−〈f, u〉 −

∫
Ω
H∗(x,∇u(x))dx = − inf

u
〈f, u〉+

∫
Ω
H∗(x,∇u(x))dx.

Finally, if we prove that F is convex and l.s.c., then we also have F∗∗(0) = F(0), which gives
the thesis.

Convexity of F is easy. We just need to take p0, p1 ∈ (W 1,p)′�(Ω) and define pt := (1−t)p0+tp1.
Let v0, v1 be optimal in the definition of F(p0) and F(p1), i.e.

∫
H(x, vi(x))dx = F(pi) and

∇ · vi = f + pi. Let vt := (1− t)v0 + tv1. Of course we have ∇ · vt = f + pt and, by convexity of
H(x, ·) we have

F(pt) ≤
∫
H(x, vt(x))dx ≤ (1−t)

∫
H(x, v0(x))dx+t

∫
H(x, v1(x))dx ≤ (1−t)F(p0)+tF(p1),

and the convexity is proven.
For the semicontinuity, we take a sequence pn → p in (W 1,p)′. We can suppose that F(pn) <

+∞ otherwise there is nothing to prove, hence pn ∈ (W 1,p)′�(Ω). Take the corresponding optimal
vector fields vn ∈ Lq, i.e.

∫
H(x, vn(x))dx = F(pn). We can extract a subsequence such that

limk F(pnk
) = lim infnF(pn). Moreover, from the bound on H we can see that the Lq norm

of vn is bounded in terms of the values of F(pn), which are (use Lemma 1.2) bounded by the
(W 1,p)′� norms of pn. Since pn converges, then we get a bound on ||vn||Lq . Hence, up to an
extra subsequence extraction, we can assume vnk

⇀ v. Obviously we have ∇ · v = f + p and, by
semicontinuity of the integral functional v 7→

∫
H(x, v)dx, we get

F(p) ≤
∫
H(x, v(x))dx ≤ lim inf

k

∫
H(x, vnk

(x))dx = lim
k
F(pnk

) = lim inf
n
F(pn),

which gives the desired result. �
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The duality result that we proved will be used in the rest of these notes written in the following
form

(1.1) min{A(v)}+ min{B(u)} = 0,

where A is defined on Lq(Ω;Rd) and B on W 1,p(Ω) via

A(v) :=

{∫
ΩH(x, v(x))dx if ∇ · v = f,

+∞ otherwise,

and

B(u) =

∫
Ω
H∗(x,∇u(x))dx+ 〈f, u〉.

Lemma 1.2. Given f ∈ (W 1,p)′�(Ω) there exists v ∈ Lq(Ω;Rd) such that f = ∇· v and ||v||Lq ≤
C||f ||(W 1,p)′.

Proof. Consider the minimization problem

min

{
1

p

∫
Ω
|∇φ|pdx+ 〈f, φ〉 : φ ∈W 1,p(Ω)

}
.

It is easy to prove that this problem admits a solution, as the minimization can be restricted to
the set W 1,p

� . This solution φ satisfies

−
∫

Ω
(∇φ)p−1 · ∇ψ = 〈f, ψ〉

for all ψ ∈ W 1,p(Ω) (pay attention to the notation: for every vector v we denote by wα the
vector with modulus equal to |w|α, and same direction as w, i.e. wα := |w|α−1w). This exactly
means ∇ · v = f for v = (∇φ)p−1. Moreover, testing against φ, we get

||v||qLq =

∫
Ω
|v|q =

∫
Ω
|∇φ|p = 〈f, φ〉 ≤ ||f ||(W 1,p)′ ||φ||W 1,p

≤ C||f ||(W 1,p)′ ||∇φ||Lp = C||f ||(W 1,p)′ ||v||
q−1
Lq ,

which gives the desired bound on ||v||Lq . �

1.2. Dirichlet boundary conditions. We also want to provide a variant of Theorem 1.1 in
the case where the values of u are prescribed on ∂Ω. In this case we besides the space W 1,p

and its dual (W 1,p)′, we also need to consider the space X(∂Ω) defined as those elements π of

(W 1,p)′ such that 〈ρ, u〉 = 0 for all u ∈ W 1,p
0 (Ω) (in practice, these are the elements of (W 1,p)′

which are concentrated on the boundary ∂Ω).
We first note the following fact: for every f ∈ (W 1,p)′ there exists π ∈ X(∂Ω) such that

(1.2) f + π ∈ (W 1,p)′�, ||π||(W 1,p)′ ≤ C|f ||(W 1,p)′ .

This can be done either explicitly, by taking

〈π, φ〉 := −
∫
∂Ω φdH

d−1

Hd−1(∂Ω)
〈f, 1〉,

or by using the Hahn-Banach Theorem (see for instance the first chapter in [9]) in the following
way: there exists an element π ∈ (W 1,p)′ with the following properties 〈π, φ〉 = 0 for every
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φ ∈ W 1,p
0 , 〈π, 1〉 = −〈f, 1〉 and ||π||(W 1,p)′ ≤ |〈f, 1〉|/||1||W 1,p (the only condition which is

necessary to do this is 1 /∈W 1,p
0 , which is a very mild assumption on Ω).

Theorem 1.3. Suppose that Ω is smooth enough and that H satisfies Hyp1 and Hyp2. Then,
for any f ∈ (W 1,p)′(Ω) and ū ∈W 1,p(Ω), we have

min

{∫
Ω
H(x, v(x))dx+ 〈π, ū〉 : v ∈ Lq(Ω;Rd), π ∈ X(∂Ω),∇ · v = f + π

}
= max

{
−
∫

Ω
H∗(x,∇u(x))dx− 〈f, u〉 : u ∈W 1,p(Ω), u− ū ∈W 1,p

0 (Ω)

}
Proof. The proof will be very similar to that of Theorem 1.1. We define

F(p) := min

{∫
Ω
H(x, v(x))dx+ 〈π, ū〉 : v ∈ Lq(Ω;Rd), π ∈ X(∂Ω),∇ · v = f + p+ π

}
.

We now compute F∗ : W 1,p → R:

F∗(u) = sup
p
〈p, u〉 − F(p)

= sup
p,v,π :∇·v=f+p+π

〈p, u〉 −
∫

Ω
H(x, v(x))dx− 〈π, ū〉

= sup
p,v,π :∇·v=f+p

〈p+ f + π, u〉 − 〈f, u〉 −
∫

Ω
H(x, v(x))dx− 〈π, u+ ū〉

= sup
v,π
−〈f, u〉 −

∫
Ω
H(x, v(x))dx−

∫
(v · ∇u)dx− 〈π, u+ ū〉

= sup
π
−〈f, u〉+

∫
Ω
H∗(x,−∇u(x))dx− 〈π, u+ ū〉

=

{
−〈f, u〉+

∫
ΩH

∗(x,−∇u(x))dx if u+ ū ∈W 1,p
0 (Ω),

+∞ if not.

Agains, we will conclude by using F∗∗(0) = sup−F∗ and taking the sup on −u instead of u.
We need to prove that F is convex and l.s.c.
Convexity of F follows the same scheme as in Theorem 1.1. Take p0, p1 ∈ (W 1,p)′(Ω) and

define pt := (1 − t)p0 + tp1. Let (v0, π0) and (v1, π1) be optimal in the definition of F(p0) and
F(p1) and use vt := (1− t)v0 + tv1, πt := (1− t)π0 + tπ1.

For the semicontinuity, we take a sequence pn → p in (W 1,p)′, with the corresponding optimal
(vn, πn). We also define π̃n as the element of X(∂Ω) defined by (1.2) and corresponding to f+pn.
Then we can use the vector viend ṽn provided by Lemma 1.2 corresponding to f + pn + π̃n and
obtain a bound on F(pn) ≤ C||ṽn||pLq + C + C||π̃n|| ≤ C.

From this bound we want to deduce bound on vn and πn, which would allow to extract
converging subsequences and conclude as in Theorem 1.1.

For these bounds, it is enough to observe that we have

〈πn, ū〉 = −〈f + pn, ū〉 −
∫
vn · ∇ū dx ≥ −C − C||vn||Lq

and
c0

p
||vn||qLq − C ≤

∫
H(x, vn(x))dx,
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which allows to give a bound on ||vn||Lq in terms of F(pn). Once we have a bound on vn, the
bound on πn comes from the constraint ∇ · vn = f + pn + πn.

The proof can be completed as in Theorem 1.1. �

2. Regularity via duality

In this section we will use the relation (1.1) to produce Sobolev regularity results for solutions
of the minimization problems minA or minB.

We will start by describing the general strategy. We consider a function H not explicitly
depending on x, and we suppose that an inequality of the following form is true

(Hyp3) H(v) +H∗(w) ≥ v · w + c|F (v)−G(w)|2

for some given functions F,G : Rd → Rd. This is an improvement of the Young inequality
H(v) + H∗(w) ≥ v · w(which is just a consequence of the definition of H∗). Of course this
is always true taking F = G = 0, but the interesting cases are the ones where F and G are
non-trivial.

To simplify the computations, we will suppose that Ω is the flat d-dimensional torus Td (and
we will omit the indication of the domain). We start from the following observations, tha we
collect in a lemma. For the sake of the notations, we call v∗ and u∗ the minimizers (or some
minimizers, in case there is no uniqueness) of A and B, respectively, and we denote by uh the
function uh(x) : u(x+ h). We define a function g : Rd → R given by

g(h) :=

∫
f(x)u∗(x+ h)dx−

∫
f(x)u∗(x)dx.

Lemma 2.1. Suppose H satisfies Hyp1, 2, 3 and let v∗ and u∗ be optimal. Then

(1) F (v∗) = G(∇u∗).
(2) c

∫
|G(∇uh)−G(∇u∗)|2dx ≤ g(h).

(3) If g(h) = O(|h|2), then G(∇u∗) ∈ H1.
(4) If g is C1,1, then g(h) = O(|h|2) and G(∇u∗) ∈ H1.

(5) If f ∈W 1,p
� (Ω), then g ∈ C1,1 and hence G(∇u∗) ∈ H1

Proof. First, we compute for arbitrary v and u admissible in the primal and dual problems (i.e.
we need ∇ · v = f), the sum A(v) +B(u):

A(v)+B(u) =

∫
(H(v)+H∗(∇u)+fu)dx =

∫
(H(v)+H∗(∇u)−v·∇u)dx ≥ c

∫
|F (v)−G(∇u)|2dx.

If we take v : v∗ and u = u∗, then A(v) = minA, B(u) = minB and A(v) + B(u) = 0. Hence,
we deduce F (v∗) = G(∇u∗), i.e. the Part (1) in the statement.

Now, let us fix v = v∗ but u = uh. We obtain

c

∫
|G(∇u∗)−G(∇uh)|2dx = c

∫
|F (v∗)−G(∇uh)|2dx ≤ A(v∗) +B(uh) = B(uh)−B(u∗).

In computing B(uh) − B(u∗), we see that the terms
∫
H∗(∇uh) and

∫
H∗(∇u∗) are equal, as

one can see from an easy change-of-variable x 7→ x+ h. Hence,

B(uh)−B(u∗) =

∫
fuh −

∫
fu∗ = g(h),

which gives part (2).
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Part (3) of the statement is an easy consequence of classical characterization of Sobolev spaces.
Part (4) comes from the optimality of u∗, which means that g(0) = 0 and g(h) ≥ 0 for all h.
This implies, as soon as g ∈ C1,1, ∇g(0) = 0 and g(h) = O(|h|2).

For Part (5), we first differentiate g(h), thus getting

∇g(h) =

∫
f(x)∇u∗(x+ h)dx.

If we want to differentiate once more, we use the regularity assumption on f : we write∫
f(x)∇u∗(x+ h)dx =

∫
f(x− h)∇u∗(x)dx

and then

D2g(h) =

∫
∇f(x− h)⊗∇u∗(x)dx,

which also gives |D2g| ≤ ||∇f ||Lq ||∇u∗||Lp . Note that u∗ naturally belongs to W 1,p, hence the
integral is finite and bounded, and g ∈ C1,1. �

Unfortunately, the last assumption (f ∈ W 1,q) is quite restrictive, but we want to provide a
case where it is reasonable to use it. Before, we find interesting cases of functions H and H∗ for
which we can provide non-trivial functions F and G.

2.1. Pointwise vector inequalities. The first interesting case is the quadratic case. Take
H(v) = 1

2 |v|
2 with H∗(w) = 1

2 |w|
2. In this case we have easily

H(v) +H∗(w) =
1

2
|v|2 +

1

2
|w|2 = v · w +

1

2
|v − w|2,

hnece one can take F (v) = v and G(w) = w.
Then, we pass to another interesting case, the case of the powers. Take H(v) = 1

q |v|
q with

H∗(w) = 1
p |w|

p. We claim that in this case we can take F (v) = vq/2 and G(w) = wp/2 (remember

the notation for powers of vectors).

Lemma 2.2. For any v, w ∈ Rd we have

1

p
|v|p +

1

q
|w|q ≥ v · w +

1

2 max{p, q}
|vp/2 − wq/2|2.

Proof. First we write a = vp/2 and b = wq/2 and we express the inequality in terms of a, b.
Hence we try to prove 1

p |a|
2 + 1

q |b|
2 ≥ a2/p · b2/q + 1

2 max{p,q} |a− b|
2. In this way the inequality is

more homogeneous, as it is of order 2 in all its terms (remember 1/p+ 1/q = 1). Then we notice
that we can also write the expression in terms of |a|, |b| and cos θ, where θ is the angle between

a and b (which is the same as the one between v = a2/p and w = b2/q. Hence, we want to prove

1

p
|a|2 +

1

q
|b|2 ≥ cos θ

(
|a|2/p|b|2/q − 1

max{p, q}
|a||b|

)
+

1

2 max{p, q}
(|a|2 + |b|2).

since this depends linearly in cos θ, it is enough to prove the inequality in the two limit cases
cos θ = ±1.
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For simplicity, ue to the simmetry in p and q of the claim, we suppose p ≤ 2 ≤ q. We start
from the case cos θ = 1, i.e. b = ta, with t ≥ 0 (the case a = 0 is trivial). In this case the l.h.s.
of the inequality becomes

|a|2(
1

p
+

1

q
t2) = |a|2(

1

p
+

1

q
(1 + (t− 1))2) = |a|2(1 +

2

q
(t− 1) +

1

q
(t− 1)2) ≥ |a|2(t2/q +

1

q
(t− 1)2),

where we used the concavity of t 7→ t2/q, which provides 1 + 2
q (t− 1) ≥ t2/q. This inequality is

even stronger than the one we wanted to prove, as we get a factor 1/q instead of 1/(2q) in the
r.h.s..

The factor 1/(2q) appears in the case cos θ = −1, i.e. b = −ta, t ≥ 0 (we do not claim that
this coefficient is optimal, anyway). In this case we start from the r.h.s.

|a|2(
1

2q
(1 + t)2 − t2/q) ≤ |a|2 1

2q
(1 + t)2 ≤ |a|2 2

2q
(1 + t2) ≤ |a|2(

1

p
+

1

q
t2),

which gives the claim. �

Remark 2.1. The above inequality replaces, in this duality-based approach, the usual vector
inequality that PDE methods require to handle equations involving ∆p, i.e.

(wp−1
0 − wp−1

1 ) · (w0 − w1) ≥ c|wp/20 − wp/21 |
2,

which is an improved version of the monotonicity of the gradient of w 7→ 1
p |w|

p. Note on the

other hand that the proofs of this other inequality are quite logn, usually dealing with integration
over suitable segments and refined change-of-variables. See for instance [15]. Here the inequality
we need is proven in half a page.

2.2. Very degenerate PDEs. Consider for instance the case H(v) = |v| + 1
q |v|

q. In this

case, we can use F (v) = vq/2 and G(w) = (w − 1)
p/2
+ (again, we use this weird notation: the

vector (w − 1)
p/2
+ is the vectorn with norm equal to (|w| − 1)

p/2
+ and same direction as w, i.e.

G(w) = (|w| − 1)
p/2
+ w/|w|).

Indeed, we have

H∗(w) = sup
v

v · w − |v| − 1

q
|v|q =

1

p
(|w| − 1)p+

and

H(v) +H∗(w) = |v|+ 1

q
|v|q +

1

p
(|w| − 1)p+ ≥ |v|+ v · (w − 1)+ + c|vq/2 − (w − 1)

p/2
+ |2.

We only need to prove |v|+ v · (w − 1)+ ≥ v · w. This can be done by writing

|v|+ v · (w − 1)+ = |v|(1 + (|w| − 1)+ cos θ).

If |w| ≥ 1 then we go on with

|v|(1 + (|w| − 1)+ cos θ) ≥ |v| cos θ(1 + (|w| − 1)+) = |v| cos θ|w| = v · w.
If |w| ≤ 1 then we simply use

|v|(1 + (|w| − 1)+ cos θ) = |v| ≥ v · w.
Has a consequence we get the following result.
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Proposition 2.3. Let H be given by H(v) = |v|+ 1
q |v|

q and H∗(w) = 1
p(|w|−1)p+. Suppose that

Ω is the flat torus and f ∈ W 1,q(Ω). Let v∗ is a solution of minA and u∗ a solution of minB

(equivalently, suppose that u∗ solves ∇· ((∇u∗−1)p−1
+ ) = f). Then v

q/2
∗ = (∇u∗−1)+)p/2 ∈ H1.

This result is the same proven in [7], where it was proven with PDE methods, and does not

seem easy to improve. The equation ∇ · ((∇u− 1)p−1
+ ) = f , which can be written,

∇ · ((|∇u| − 1)p−1
+

∇u
|∇u|

) = f,

is very degenerate in the sense that the coefficient (|∇u| − 1)p−1
+ /|∇u| vanishes on the whole set

where |∇u| ≤ 1.
This equation and these minimization problems arise in traffic congestion (see [3, 11, 7])

and the choice of the function H is very natural: we need a superlinear function of the form
H(v) = |v|h(|v|), with h ≥ 1). This automatically implies the degeneracy.

2.3. The Laplacian case: ∆u = f . The case of the Poisson equation ∆u = f , corresponding
to the minimization of

∫
1
2 |∇u|

2 + fu, and hence to H(v) = 1
2 |v|

2 and H∗(w) = 1
2 |w|

2, deserves
special attention. It is possible to treat this case by the same techniques as in the degenerate
case above, but the result is disappointing. Indeed, from these techniques we just obtain f ∈
H1 ⇒ ∇u ∈ H1, while it is well-known that f ∈ L2 should be enough for the same result. Yet,
with some more attention it is also possible to treat the L2 case.

Proposition 2.4. Suppose that Ω is the flat torus and ∆u∗ = f ∈ L2(Ω). Then ∇u∗ ∈ H1.

Proof. We use the variational framework we presented before, with H(v) = 1
2 |v|

2. We have

(2.1)
1

2
||∇uh −∇u∗||2L2 ≤ g(h).

Now, set ωt := sup{||∇uh −∇u||L2 : |h| ≤ t}. From (2.1) we have

ω2
t ≤ sup

h:|h|≤t
2g(h) ≤ 2t sup

h:|h|≤t
|∇g(h)|.

From ∇g(h)∇g(h) − ∇g(0) =
∫
f(∇uh − ∇u∗) we deduce |∇g(h)| ≤ ||f ||L2 ||∇uh − ∇u∗||L2 ≤

||f ||L2ωt, hence ω2
t ≤ 2t||f ||L2ωt, which implies ωt ≤ 2t||f ||L2 and hence ∇u∗ ∈ H1. �

2.4. The p−Laplacian case: ∆pu = f . If we look at the case H(v) = 1
q |v|

q, we have H∗(w) =
1
p |w|

p and the solutions of ∆pu = f (where ∆pu := ∇·(∇up−1)) are the minimizers of
∫

1
p |∇u|

p+

fu. Classical references on the p-Laplacian regularity question are, for instance, [5, 12].
From the consideration of the previous sections we easily obtain the following.

Proposition 2.5. Suppose that Ω is the flat torus and ∆pu∗ = f ∈W 1,q(Ω). Then (∇u∗)p/2 ∈
H1.

This result is quite classical (see for instance [15]). Yet, it is not very satisfactory, since if we
set p = q = 2 we get the result ∆u ∈ H1 ⇒ ∇u ∈ H1 which, as we said, is very disappointing.

This is why we also look at the following other classical result. We recall before stating it
some useful definitions of fractional Sobolev spaces (see, for instance, [1]).
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Definition 2.1. When Ω is bounded and its diameter is R, if 1 < p < +∞ and 0 < s < 1, the
space W s,p(Ω) is defined as

W s,p(Ω) =

{
u ∈ Lp(Ω) : [u]ps,p :=

∫
B(0,R)

||uδ − u||pLp

δd+sp
dδ < +∞

}
and its norm is given by ||u||Lp + [u]s,p. The space Hs is defined as W s,2.

Note that an inequality of the form ||uδ − u||Lp ≤ C|δ|s implies u ∈ W s′,p for every s′ < s.
Also note that the Hilbert case p = 2 also enjoys an alternative definition in terms of the Fourier
transform. indeed, we have u ∈ Hs if and only if ξ 7→ |ξ|sû(ξ) ∈ L2 and [u]s,2 is equivalent to
the L2 norm of ξ 7→ |ξ|sû(ξ).

Proposition 2.6. Suppose that Ω is the flat torus and ∆pu∗ = f ∈ Lq(Ω), with p > 2.Then

||(∇uh)p/2− (∇u∗)p/2||L2 ≤ C|h|q/2, which implies in particular (∇u∗)p/2 ∈ Hs for s < q/2 < 1.

Proof. We use the same strategy as in Proposition 2.4. For simplicity, we set G := (∇u)p/2. As
in Proposition 2.4, we set ωt := suph:|h|≤t ||Gh − G||L2 . We have ||Gh − G||2L2 ≤ Cg(h), which
implies

ω2
t ≤ Ct sup

h:|h|≤t
|∇g(h)−∇g(0)| ≤ Ct||f ||Lq sup

h:|h|≤t
||∇uh −∇u∗||Lp .

From the α-Hölder behaviour of the vector map w 7→ wα in Rd (see Lemma 2.7 below), with
α = 2/p < 1, we deduce, using ∇u = Gα,

||∇uh −∇u∗||pLp =

∫
|∇uh −∇u∗|pdx ≤

∫
|Gh −G|2dx = ||Gh −G||2L2 .

Hence, we have

ω2
t ≤ Ct||f ||Lqω

2/p
t ,

which implies

ω
2/q
t ≤ Ct||f ||Lq ,

i.e. the claim �

Lemma 2.7. For 0 < α < 1, the map w 7→ wα is α-Hölder continuous in Rd.

Proof. Let a, b ∈ Rd. We write

|aα − bα| =
∣∣∣∣|a|α a|a| − |a|α b|b| + |a|α b

|b|
− |b|α b

|b|

∣∣∣∣ ≤ |a|α ∣∣∣∣ a|a| − b

|b|

∣∣∣∣+ ||a|α − |b|α| .

For the second term in the r.h.s., we use the α-Hölder behaviour of t 7→ tα in R+ and get

||a|α − |b|α| ≤ ||a| − |b||α ≤ |a− b|α.
For the first term in the r.h.s., we use the inequality∣∣∣∣ a|a| − b

|b|

∣∣∣∣ =

∣∣∣∣ a|a| − b

|a|
+

b

|a|
− b

|b|

∣∣∣∣ ≤ |a− b||a|
+ |b| ||b| − |a||

|a||b|
≤ 2
|a− b|
|a|

and get

|a|α
∣∣∣∣ a|a| − b

|b|

∣∣∣∣ ≤ 2|a|α−1|a− b|.

If we choose a to be such |a| ≥ |b| (which is possible w.l.o.g.), we have 2|a| ≥ |a− b| and hence
2α−1|a|α−1 ≤ |a− b|α−1, i.e. 2|a|α−1|a− b| ≤ 22−α|a− b|α.
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Summing up, we have (without pretending that this constant is optimal)

|aα − bα| ≤ (22−α + 1)|a− b|α. �

Remark 2.2. Note that the result of Proposition 2.6 is also classical, and quite sharp. Indeed,
one can informally consider the following example. Take u(x) ≈ |x|r as x ≈ 0 (and then multiply
times a cut-off function out of 0). In this case we have

∇u(x) ≈ |x|r−1, (∇u(x))p−1 ≈ |x|(r−1)(p−1), f(x) := ∆pu(x) ≈ |x|(r−1)(p−1)−1.

Hence, f ∈ Lq if and only if ((r − 1)(p − 1) − 1)q > −d, i.e. (r − 1)p − q > −d. On the
other hand, the fractional Sobolev regularity can be observed by considering that “differentiating
s times” means subtracting s from the exponent, hence

(∇u(x))p/2 ≈ |x|p(r−1)/2 ⇒ (∇u)p/2 ∈ Hs ⇔ |x|p(r−1)/2−s ∈ L2 ⇔ p(r − 1)− 2s > −d.
If we want this last condition to be true for arbitrary s < q/2, then it amounts to p(r−1)−q > −d,
which is the same condition as above.

2.5. Variant – Local regularity. In the previous sections, we only provided global Sobolev
regularity results on the torus. This guaranteed that we could do translations without boundary
problems, and that by change-of-variable, the term

∫
H(∇uh)dx did not actually depend on h.

We now provide a result concerning local regularity. As the result is local, boundary conditions
should not be very important. Yet, as the method stays anyway global, we need to fix them and
be precise on the variational problems that we use. We will use Dirichlet boundary conditions.

We will only provide the following result, in the easiest case p = 2.

Theorem 2.8. Let H,H∗, F and G satisfy Hyp1, 2, 3 with p = 2. Suppose f ∈ H1. Suppose
also H∗ ∈ C1,1 and G ∈ C0,1. Suppose ∇ · (∇H∗(∇u∗)) = f in Ω. Then, G(∇u∗) ∈ H1

loc.

Proof. The condition ∇ · ∇H∗(∇u∗) = f is equivalent to the fact that u∗ is solution of

min

{∫
Ω
H∗(∇u)dx+

∫
fu dx : u ∈W 1,p(Ω), u− ū ∈W 1,p

0 (Ω)

}
,

for ū = u∗ (i.e. u∗ minimizes under its own optimality conditions. We will also use the dual
problem presented in Theorem 1.3. We set A(v, π) :=

∫
H(v) + 〈π, ū〉 with the constraint

∇·v = f+π. As usual, we sum A(v, π)+B(u) and we get A(v, π)+B(u) =
∫

(H(v)+H∗(∇u)−
v · ∇u)dx ≥ c

∫
|F (v)−G(∇u)|2dx.

The strategy is the same: use the optimal v and π together with a translation of u. Yet, in
order not to have boundary problems, we need to use a cut-off function η ∈ C∞c (Ω) and define

uh(x) = u∗(x+ hη(x))

(note that for small h this does not change the boundary value ū). In this case it is no longer
true that g̃(h) :=

∫
H∗(∇uh)dx =

∫
H∗(∇u∗)dx. If this term is not constant in h, then we need

to prove that it is a C1,1 function of h. to do this, and to avoid differentiating ∇u∗, we use a
change-of-variable. Set y = x+ hη(x). We have ∇(uh)(x) = (∇u∗)(y)(I + h⊗∇η(x)), hence

g̃(h) =

∫
H∗(∇uh)dx =

∫
H∗(∇u∗(y) + (∇u∗(y) · h)∇η(x))

1

1 + h · ∇η(x)
dy,

where x = X(h, y) is a function of h and y obtained by inverting x 7→ x + hη(x) and we used
det(I + h ⊗ ∇η(x)) = 1 + h · ∇η(x). The function X is C∞ by the implicit function theorem,
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and all the other ingredient of the above integral are at least C1,1 in h. This proves that g̃ is
C1,1. The regularity of the term g(h) =

∫
fuh should also be considered. Differentiating once

we get ∇g(h) =
∫
f(x)∇u∗(x + hη(x))η(x)dx. To differentiate once more, we use the same

change-of-variable, thus getting

∇g(h) =

∫
f(X(h, y))∇u∗(y)η(X(h, y))

1

1 + h · ∇η(x)
dy.

From y = X(h, y) + hη(X(h, y)) we get a formula for DhX(h, y), i.e. 0 = DhX(h, y) +
η(X(h, y))I + h ⊗ ∇η(η(X(h, y))DhX(h, y). This allows to differentiate once more the func-
tion g and proves g ∈ C1,1.

Finally, we come back to the duality estimate. What we can easily get is

c||G(∇(uh))−G(∇u∗)||2L2 ≤ g(h) + g̃(h) = O(|h|2).

The problem is that G(∇(uh)) is not the translation of G(∇u∗)! Yet, it is almost true. Indeed,
if we put the subscript h every time that we compose with x+ hη(x), we have

∇(uh) = (∇u∗)h + h · (∇u∗)hη.
Since G is supposed to be Lipschitz continuous, then

|G(∇(uh))−G((∇u∗)h)| ≤ C|h||∇u∗|hη.
Hence, we have

||G((∇u∗)h)−G(∇u∗)||L2 ≤ ||G(∇(uh))−G(∇u∗)||L2 + C|h|||∇u||L2 ,

which is enough to show that this increment si of order |h|, since u∗ ∈ H1 (this depends on the
fact that H∗ is quadratic). Hence, as in Lemma 2.1 (4), we get G(∇u∗) ∈ H1. �

2.6. Variant – Dependence on x. The duality theory has been presented in the case where H
and H∗ could also depend on x, while for the moment regularity results have only be prensented
under the assumption that they not. In this section, we will see how to handle the following
particular case, corresponding to the minimization problem

(2.2) min

{
1

p

∫
Ω
a(x)|∇u(x)|pdx+

∫
f(x)u(x)dx : u ∈W 1,p(Ω)

}
.

We will use Ω = Td to avoid cumulating difficulites (boundary issues and dependence on x).
Note that the PDE corresponding to the above minimization problem is ∇ · (a(∇u)p−1) = f .

First, we need to compute the transform of w 7→ H∗(w) := a
p |w|

p. Set b = a1/(p−1). It is easy

to obtain H(v) = 1
bq |v|

q. Also, we can check (just by scaling the inequality of Lemma 2.2, that

we have

1

bq
|v|q +

bp−1

p
|w|p ≥ v · w + bp−1

∣∣∣∣∣wp/2 − vq/2

bp/2

∣∣∣∣∣
2

.

In particular, if we suppose that a(x) is bounded from below by a positive constant, and we set

H∗(x,w) = a(x)
p |w|

p then we get

H(x, v) +H∗(x,w) ≥ v · w + c|F (x, v)−G(w)|2

where G(w) = wp/2.
We can now prove the following theorem.
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Theorem 2.9. Suppose f ∈ W 1,q and a ∈ Lip, a ≥ a0, and let u∗ be the minimizer of (2.2).

Then G = ∇up/2∗ ∈ H1.

Proof. Our usual computations show that

c||Gh −G||2L2 ≤ g(h) + g̃(h),

where g(h) =
∫
fuh −

∫
fu∗ and g̃(h) =

∫ a(x)
p |∇uh|

p −
∫ a(x)

p |∇u∗|
p. With our assumptions,

g ∈ C1,1. As for g̃(h), we write∫
a(x)

p
|∇uh|p =

∫
a(x− h)

p
|∇u∗|p

and hence

∇g̃(h) =

∫
∇a(x− h)

p
|∇u∗|p =

∫
∇a(x)

p
|∇uh|p.

Hence,

|∇g̃(h)−∇g̃(0)| ≤
∫
|∇a(x)|

p
||∇uh|p − |∇u∗|p| ≤ C

∫
||Gh|2−|G|2| ≤ C||Gh−G||L2 ||Gh+G||L2 .

Here we used the L∞ bound on |∇a|. Then, from the lower bound on a, we also know G ∈ L2,
hence we get |∇g̃(h)−∇g̃(0)| ≤ C||Gh −G||L2 .

Now, we define as usual ωt := suph=|h|≤t ||Gh −G||L2 and we get

ω2
t ≤ C sup

h=|h|≤t
g(h) + g̃(h) ≤ Ct sup

h=|h|≤t
|∇g(h) +∇g̃(h)|

= Ct sup
h=|h|≤t

|∇g(h)−∇g(0) +∇g̃(h)−∇g̃(0)| ≤ Ct2 + Ctωt,

which allows to deduce ωt ≤ Ct and hence G ∈ H1. �

We also provide the following theorem, which is also interesting for p = 2.

Theorem 2.10. Suppose p ≥ 2, f ∈ Lq and a ∈ Lip, a ≥ a0, and let u∗ be the minimizer of

(2.2). Then G = ∇up/2∗ satisfies ||Gh − G||L2 ≤ C|h|q/2. In particular, G ∈ H1 for p = 2 and
G ∈ Hs for all s < q/2 for p > 2.

Proof. The only difference with the previous case is that we cannot say that g is C1,1 but we
should stick to the computation of ∇g. We use as usual

|∇g(h)−∇g(0)| ≤ ||f ||Lq ||∇uh −∇u∗||Lp .

As we are forced to let the norm ||∇uh − ∇u∗||Lp appear, we will use it also in g̃. Indeed, we
can observe that we can estimate

|∇g̃(h)−∇g̃(0)| ≤
∫
|∇a(x)|

p
||∇uh|p − |∇u∗|p| ≤ C

∫
(|∇uh|p−1 + |∇u∗|p−1)|∇uh −∇u∗|

≤ C||∇up−1
∗ ||Lq ||∇uh −∇u∗||Lp .

We then use ||∇up−1
∗ ||Lq = ||∇u∗||p−1

Lp and conclude

|∇g̃(h)−∇g̃(0)| ≤ C||∇uh −∇u∗||Lp .
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This gives, defining ωt as usual,

ωt ≤ Ct sup
h=|h|≤t

|∇g(h)−∇g(0) +∇g̃(h)−∇g̃(0)| ≤ Ct sup
h=|h|≤t

||∇uh −∇u∗||Lp

and hence

ω2
t ≤ Ctω

2/p
t

as in Proposition 2.6. �

2.7. Time-dependent problems. The technique that we saw in this section to prove Sobolev
regularity provides in general classical results, through a slighty different point of view than the
usual PDE-based tools. Yet, it has the advantage that it requires only the optimality, with no
need to write a PDE, and could be useful in some very degenerate cases. The first use (to the
best of my knowledge) of duality-based methods to prove regularity was in [8] (later improved
by [2]), in the study of variational models for the incompressible Euler Equation. This has been
later adapted in [10] to density-constrained mean-field games. In this last section we only want
to give an idea of where these estimates could be really useful. Without entering into details, we
will see what happens in the case of an easier mean-field game. This takes the following form

Consider the following minimization problem

min

{
A(ρ, v) :=

∫ T

0

∫
Ω

(
1

2
ρt|vt|2 +H(ρt)

)
+

∫
Ω

ΨρT

}
among pairs (ρ, v) such that ∂tρ+∇·(ρv) = 0, with given ρ0, where G is a given convex function.

Note that this problem is convex in the variables (ρ,E := ρv) (while it is not convex in
(ρ, v)) and it recalls the Benamou-Brenier formulation for optimal transport ([4]). And, in
these variables, it exactly corresponds to a probem with constraints on the divergence (indeed,
∂tρ+∇ · E is the space-time divergence of (ρ,E)).

As all convex minimization problem, minA admits a dual problem, formally obtained by
interchanging inf and sup in

min
ρ,v

{
A(ρ, v) + sup

φ

∫ T

0

∫
Ω

(ρ∂tφ+∇φ · ρv) +

∫
Ω
φ0ρ0 −

∫
Ω
φTρT

}
.

We get

sup

{
−B(φ, p) :=

∫
Ω
φ0ρ0 −

∫ T

0

∫
Ω
H∗(p+) : φT ≤ Ψ, −∂tφ+

1

2
|∇φ|2 = p

}
,

where H∗ is the Legendre transform of G (the positive part is due to the constraint ρ ≥ 0).
Note that the problem could be written in terms of φ only (as p depends on φ), but in this way
there is more simmetry with the primal problem, as in both case we have two variables ((ρ, v)
or (φ, p)), linked by a PDE.

Now, we can do our usual computation taking arbitrary (ρ, v) and (φ, p) admissible in the
primal and dual problem. Compute

(2.3) A(ρ, v) + B(φ, p) =

∫
Ω

(Ψ− φT )ρT +

∫ T

0

∫
Ω

(H(ρ) +H∗(p+)− pρ) +
1

2

∫ T

0

∫
Ω
ρ|v +∇φ|2.

Notice (H(ρ) +H∗(p+)− pρ) ≥ λ
2 |ρ− (H ′)−1(p+)|2 where λ = inf H ′′. Suppose λ > 0.
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Supposing for simplicity Ω = Td to be the flat torus, using

A(ρ, v) + B(φ, p) ≥ c
∫ T

0

∫
Ω
|ρ− (H ′)−1(p+)|2

we can deduce, with the same technique as in the rest of the section, ρ ∈ H1 (we can get both
regularity in space and local in time). By the way, using the last term in (2.3), we can also get∫∫

ρ|D2φ|2 <∞.
The above computation is important as it gives regularity for ρ, and hence for p, and p appears

in the Hamilton-Jacobi equation −∂tφ + 1
2 |∇φ|

2 = p. Indeed, the solution (ρ, v) represents the
motion of a population ρ, where each individual follows the velocity v = −∇φ. But φ is the
value function of the control problem

min

{∫ T

0

(
|x′(t)|2

2
+ p(t, x(t))

)
dt+ Ψ(x(T ))

}
.

This explains the name mean-field games: we look for a global configuration of motion, where
each individual chooses his trajectory by optimizing a criterion where p (and hence ρ) appears,
i.e. where the criterion depends, through a sort of mean-field effect, on the choice of the others.
The mathematical difficulty is that we need to integrate p over the different trajectories, which
requires a little bit of regularity.

The situation is even more complicated when we try to study the case where the density
penalization H(ρ) is replaced by the constraint ρ ≤ 1 ?

If we look at the variational problem

min

{∫ T

0

∫
Ω

1

2
ρt|vt|2 +

∫
Ω

ΨρT : ρ ≤ 1

}
we can compute the dual

sup

{∫
Ω
φ0ρ0 −

∫ T

0

∫
Ω
p+ : φT ≤ Ψ, −∂tφ+

1

2
|∇φ|2 = p

}
.

Here p is a pressure arising from the incompressibility constraint ρ ≤ 1 but finally acts as a
price. In order to give a meaning to the above problem we need a bit of regularity. The situation
is much trickier, but the same kind of duality arguments, as in [2, 8], allow to get

p ∈ L2
loc((0, T );BV (Ω)).
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