Math203 – Analyse et Convergence II

Feuille d'Exercices 1

Exercice 1.1.— Dans chacun des cas suivants, déterminer l'ensemble où la suite de fonctions (f_n) converge simplement

- a) $f_n(x) = x^n$ b) $f_n(x) = \frac{x^n}{n^2}$ c) $f_n(x) = n^x$ d) $f_n(x) = x^n e^n$

- e) $f_n(x) = \frac{\sin(n^2 x)}{n}$ f) $f_n(x) = n \sin(\frac{x}{n})$ g) $f_n(x) = n^2(\cos(\frac{x}{n}) 1)$

Exercice 1.2.— Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur \mathbb{R}^+ par $f_n(x)=\frac{x}{x+n^2}$

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f à déterminer.
- 2. Pour $n \ge 1$ quelconque fixé, dresser le tableau de variations de la fonction f_n .
- 3. Est-ce que la suite (f_n) converge uniformément sur \mathbb{R}^+ ? Même question sur [0, a] avec a > 0?

Exercice 1.3.— Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur \mathbb{R}^+ par $f_n(x)=\frac{1}{1+nx^2}$.

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f (préciser f).
- 2. Pour $n \ge 1$, dresser le tableau de variations de la fonction f_n .
- 3. Pour quels $a \in \mathbb{R}^+$ la suite (f_n) converge-t-elle uniformément sur $[a, +\infty[$?

Exercice 1.4.— Etudier la convergence simple puis la convergence uniforme de la suite de fonctions (f_n) définie sur \mathbb{R}^+ par $f_n(x) = \frac{nx^2}{1+nx}$

Exercice 1.5.— Soit $\alpha > 0$. Etudier la convergence simple puis la convergence uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ définie sur \mathbb{R}^+ par $f_n(x)=n^{\alpha}xe^{-nx}$ (discuter selon α).

Exercice 1.6.— Soit (f_n) une suite de fonctions réelles définies sur l'intervalle I.

- 1. Montrer que si chaque f_n est bornée sur I et si la suite (f_n) converge uniformément sur Ivers une fonction f, alors f est bornée sur I.
- 2. Donner un exemple de suite (f_n) de fonctions bornées sur un intervalle I admettant une limite simple f non bornée sur I.

Exercice 1.7.— Soit (f_n) une suite de fonctions qui converge uniformément sur l'intervalle I vers une fonction continue f et soit (x_n) une suite d'éléments de I qui converge vers $x \in I$. Montrer qu'on a $\lim_{n\to +\infty} f_n(x_n) = f(x)$. Est-ce toujours le cas si (f_n) converge seulement simplement?

Exercice 1.8.— Soit $\alpha > 0$ et soit $(f_n)_{n \ge 1}$ la suite définie sur \mathbb{R}^+ par $f_n(x) = \frac{\sin(nx)}{1 + n^{\alpha}x^2}$

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R}^+ vers une fonction f (préciser f).
- 2. Calculer $f_n(\frac{1}{n})$. En déduire que si $\alpha \leq 2$ la suite (f_n) ne converge pas uniformément sur \mathbb{R}^+ .
- 3. Montrer que si $\alpha > 2$ la suite (f_n) converge uniformément sur \mathbb{R}^+ . (Indication: étant donné un réel $\beta \geq 1$, majorer $|f_n|$ sur $\left[0, \frac{1}{n^{\beta}}\right]$ et sur $\left[\frac{1}{n^{\beta}}, +\infty\right[$, puis fixer convenablement β .)