
Density of transport maps
and relaxation from Monge to Kantorovitch

This document aims at clarifying the fact that the formulation by Kantorovitch of the optimal
transport problem is nothing but the relaxation of the one by Monge. The key point will be the
density of the plans induced by transport maps in the set of all transport plans.

We call transport plans all the elements of Π(µ, ν) := {γ ∈ P(Ω×Ω) : (πx)#γ = µ, (πy)#γ = ν, }.
Among these plans there are those which are induced by a transport map T , i.e. those of the form
γT := (id× T )#µ, where T : Ω× Ω is a transport map from µ to ν, i.e. it satisfies T#µ = ν.

Let us set J(γ) :=
∫

Ω×Ω c dγ. Since we know that
∫

Ω c(x, T (x))dµ =
∫

Ω×Ω c dγT = J(γT ),
Monge’s problem may be re-written as

min J̃(γ) : γ ∈ Π(µ, ν),

where

J̃(γ) =

{
J(γ) if γ = γT ,

+∞ otherwise.

This is simple to understand : the definition of J̃ forces to restrict the minimization to those plan
induced by a transport map. This fact is useful in order to consider Monge’s and Kantorovitch’s
problems as two problems on the same set of admissible objects, where the only difference is the
functional to be minimized, J̃ or J .

The question is now : why did Kantorovitch decided to replace J̃ with J? Can we easily prove
that inf J = inf J̃? this is obviously true when, by chance, the minimizer of J is of the form γ = γT ,
since in this case we would have equality of the two minima. But is it possible to justifiy the
procedure in general?

The main mathematical justification comes from the following notion of relaxation.

Definition 1. Lef F : X → R ∪ {+∞} be a given functional on a metric space X. We define the
relaxation of F as the functional F : X → R∪ {+∞} which is the maximal functional among those
G : X → R ∪ {+∞} hich are lower semicontinuous and such that G ≤ F . This functional exists
since the supremum of an arbitrary family of l.s.c. functions is also l.s.c.. Moreover, we also have a
representation formula, which is easy to prove:

F (x) = inf{lim inf
n

F (xn) : xn → x}.

A consequence of the definition is also that inf F = inf F (this latter infimum, that of F , being
often a minimum, when X is compact). This is easy to check if one considers that F ≥ F , which
implies inf F ≥ inf F , but we also have that F is larger than the constant l := inf F , and a constant
function is l.s.c.. Hence F ≥ l and inf F ≥ inf F .
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Here we claim that, under some assumptions, J is actually the relaxation of J̃ . It will happen,
in this case, by chance, that this relaxation is also continuous, instead of only semi-continuous, and
that it coincides with J̃ on {J̃ < +∞}.

The assumptions are the following: we take Ω ⊂ Rn to be compact, c continuous and µ atomless
(i.e. for every x ∈ Ω we have µ({x}) = 0).

We need some preliminary results.

Lemma 0.1. If µ, ν are two probability measures on the real line R and µ is atomless, then there
exists at least a transport map T such that T#µ = ν.

Proof. Just consider the monotone increasing map T , which is well defined µ−a.e. (thanks to the
absence of atoms) and which, by the way, optimizes the quadratic cost (but here we don’t care about
it).

Lemma 0.2. There exists a Borel map σn : Rn → R which is injective, its image is a Borel subset
of R, and its inverse map is Borel measurable as well.

Proof. First notice that it is sufficient to prove this result for n = 2, since then one can proceed by
induction: if a map σn−1 is given, defined on Rn−1, then one can produce a map σn by considering
σn(x1, x2, dots, xn) = σ2(x1, σn−1(x2, x3, . . . , xn)).

Then, notice also that it is enough to define a map from ]0, 1[2, since one can go from R2 to
]0, 1[2 by considering the map (x, y) 7→ (1

2 + 1
π arctanx, 1

2 + 1
π arctan y).

Then, consider the map which associates to the pair (x, y), where x = 0, x1x2x3 . . . and y =
0, y1y2y3 . . . in decimal (or binary) notation, the point 0, x1y1x2y2x3y3 . . . . In order to avoid ambigu-
ities, we can decide that no decimal notation is allowed to end with a periodic 9 (i.e. 0, 347299999 . . .
is to be written as 0, 3473). This is why the image of this map will not be the whole interval, since
the points like 0, 39393939 . . . are not obtained through this map. But this set of points is actually
Borel measurable.

It is not difficult neither to check that the map is Borel measurable, as well as its inverse,
since the pre-image of every interval defined by prescribing the first 2k digits of a number in R is
just a rectangle in R2, the product of two intervals defined by prescribing the first k digits of every
component. These particular intervals being a base for the Borel tribe, this proves the measurability
we need.

Corollary 0.3. If µ, ν are two probability measures on Rn and µ is atomless, then there exists at
least a transport map T such that T#µ = ν.

Proof. This is just obtained by considering a transport map T from (σn)#µ to (σn)#µ and then
composing with σn and σ−1

n .

A last lemma

Lemma 0.4. Consider on a compact metric space X, endowed with a probability λ ∈ P(X), a
sequence of partitions Gn, each Gn being a family of disjoint subsets Ci,n such that

⋃
i∈In Ci,n = X for

every n. Suppose that size(Gn) := maxi diam(Ci,n) tends to 0 and consider a sequence of probability
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measures λn on X such that, for every n and i ∈ In, the equality λn(Ci,n) = λ(Ci,n) = mi,n. Then
λn ⇀ λ.

Proof. It is sufficient to take a continuous function φ ∈ C(X) and notice that∣∣∣∣∫
X
φdλn −

∫
X
φdλ

∣∣∣∣ ≤ ∑
i∈In

∣∣∣∣∣
∫
Ci,n

φdλn −
∫
Ci,n

φdλ

∣∣∣∣∣
≤ ω(diam(Ci,n))

∑
i∈In

mi,n = ω(diam(Ci,n))→ 0,

where ω is the modulus of continuity of φ. This is justified by the fact that, whenever two measures
have the same mass on a set C ⊂ X, since the oscillation of φ on the same set does not exceed
ω(diam(C)), the difference of the two integrals is no more than this number times the common mass.

This proves
∫
φdλn →

∫
φdλ and hence λn → λ.

We can now prove the following

Theorem 0.5. On a compact subset of Rn, the set of plans γT induced by a transport is dense in
the set of plans Π(µ, ν) whenever µ is atomless.

Proof. Fix n, and consider any partition of Ω into sets Ki,n of diameter smaller than 1/(2n) (for
instance, small cubes). The sets Ci,j,n := Ki,n ×Kj,n make a partition of Ω × Ω with size smaller
than 1/n.

Let us now take any measure γ ∈ Π(µ, ν) ⊂ P(Ω × Ω). Thanks to Lemma 0.4, we will get the
desired density if we are able to build a transport T sending µ to ν such that γT gives the same
mass as γ to each one of the sets Ci,j,n. To do this, define the columns Coli,n := Ki,n × Ω and
denote by γi,n the restriction of γ on Coli,n. Its marginal will be denoted by µi,n and νi,n. Consider
now, for each i, a transport map Ti,n sending µi,n to νi,n. It exists thanks to Corollary 0.3, since
each µi,n is a submeasure of µ and is atomless as well. Since the µi,n are concentrated on disjoint
sets, by “gluing” the transports Ti,n we get a transport T sending µ to ν (using

∑
i µi,n = µ and∑

i νi,n = ν).
It is enough to check that γT gives the same mass as γ to every Ci,j,n, but it is easy to prove.

Actually, this mass equals that of γTi,n and γTi,n(Ci,j,n) = µi,n({x : x ∈ Ki,n, Ti,n(x) ∈ Kj,n}) =
µi,n({x : Ti,n(x) ∈ Kj,n}) = νi,n(Kj,n) = γ(Ki,n ×Kj,n).

The relaxation result is just a consequence.

Theorem 0.6. Under the abovementioned assumptions, J is the relaxation of J̃ .

Proof. First notice that, since J is continuous, then it is l.s.c. and since, due to the definition, we
have J ≤ J̃ , then J is necessarily smaller than the relaxation of J̃ . We only need to prove that,
for each γ, we can find a sequence of transports Tn such that γTn ⇀ γ and J̃(γTn) → J(γ), so
that the infimum in the sequential characterization of the relaxed functional (see definition) will be
smaller than J , thus proving the equality. Actually, since for γ = γTn the two functionals J and J̃
coincide, and since J is continuous, we only need to produce a sequence Tn such that γTn ⇀ γ. This
is possible thanks to Theorem 0.5
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