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A general model

A particle population needs to move, and each particle - if alone - would
follow its own velocity u (depend on time, position. . .) Yet, particles are
rigid disks that cannot overlap, hence, the actual velocity v will not be
u if u is too concentrating. Let us suppose v = Padm(q)(u), where q is
the particle configuration, adm(q) the set of velocities that do not induce
overlapping, Padm(q) the projection on this set.
If every particle is a disk with radius R, located at qi , we have

q ∈ K := {q = (qi )i ∈ ΩN : |qi − qj | ≥ 2R}

adm(q) = {v = (vi )i : (vi − vj) · (qi − qj) ≥ 0 ∀(i , j) : |qi − qj | = 2R}

.and we solve q′(t) = Padm(q(t))u(t) (with q(0) given).

B. Maury, J. Venel, Handling of contacts in crowd motion simulations, Traffic

and Granular Flow, 2007.
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Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints



Deterministic - models
Determinsitic - solutions

Strategical - MFG
Stochastic - perspectives

Pressures and duality

The set adm(ρ) may be better described by duality :

adm(ρ) = {v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p : p ≥ 0, p(1− ρ) = 0}.

In this way we can characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0}

This function p plays the role of the pressure affecting the movement.

�
�
�
�
��

@
@
@
@

@@�
�

�
� adm(ρ)

∇press(ρ)

u

∇p

v

�
�
�
��

@@I

∂tρt +∇ ·
(
ρt(ut −∇pt)

)
= 0

ρt ∈ K , pt ∈ press(ρt)
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Deterministic - solutions
Using optimal transport and Wasserstein distance
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A splitting scheme for the PDE

Fix a time step τ > 0. We look for a sequence (ρτn)n where ρτn stands for
ρ at time nτ . We first define

ρ̃τn+1 = (id + τunτ )#ρ
τ
n ; ρτn+1 = PK (ρ̃τn+1)

where the projection PK is in the sense of the Wasserstein distance, induced
by optimal transport.
The key point is actually using the W2 projection (instead of L2 or other
projections). It corresponds to the L2 projection of velocity fields.

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic
crowd motion model of gradient flow type, Math. Mod. Meth. Appl. Sci.

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Hand-

ling congestion in crowd motion modeling Net. Het. Media
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Optimal transport and Wasserstein distances

If two probabilities µ, ν ∈ P(Ω) are given on a compact domain, the
Monge-Kantorovitch problem reads

W 2
2 (µ, ν) = inf

{∫
|x − T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}
= inf

{∫
|x − y |2dγ : γ ∈ P(Ω2), (πx)#γ = µ, (πy )#γ = ν

}
= 2 sup

{∫
φ dµ+

∫
ψ dν : φ(x) + ψ(y) ≤ 1

2
|x − y |2

}
.

Under suitable assumptions, there exist an optimal transport T and an
optimal function φ, called Kantorovich potential, which is Lipschitz conti-
nuous. They are linked by T (x) = x −∇φ(x).

Moreover, W2(µ, ν), the square root of the minimal value, is a distance on
P(Ω) which metrizes the weak-* convergence of probabilities (on compact
domains).
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Projections and pressures

Fix a measure ν ∈ P(Ω) and solve

min
1

2
W 2

2 (ρ, ν) : ρ ∈ K = min
ρ≤1

sup
φ,ψ

∫
φ dρ+

∫
ψ dν.

By duality and inf-sup exchange arguments, the optimal ρ must also solve

min

∫
φ dρ : ρ ≤ 1,

where φ is the Kantorovich potential in the transport from ρ to ν. This
implies

∃t : ρ =


1 on φ < t,

0 on φ > t,

∈ [0, 1] on φ = t

⇒ p := (t − φ)+ ≥ 0, p(1− ρ) = 0.

Hence, p ∈ press(ρ) and, passing to gradients, we have

ρ− a.e. ∇p = −∇φ = T (x)− x .

Filippo Santambrogio Deterministic, stochastic and strategical dynamics under density constraints
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Getting back to the PDE

T (x) = x +∇p(x) is the optimal transport from ρτn+1 to ρ̃τn+1. Notice

||∇p||L2(ρτn+1) = W2(ρτn+1, ρ̃
τ
n+1) ≤W2(ρτn , ρ̃

τ
n+1) ≤ τ ||unτ ||L2(ρτn ).

This suggest to scale the pressure (we call it now τp) and get the following
situation

•
ρτn

id
+
τu

nτ

•
ρ̃τn+1

id +
τ∇p

•
ρτn+1(id + τunτ )−1(id + τ∇p)

Notice that (id + τunτ )−1(id + τ∇p) = id − τ(u(n+1)τ − ∇p) + o(τ)
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Mean Field Games with density penalizations or
constraints
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MFG with density penalization- 1

In a population of agents everybody follows controlled trajectories

y ′(t) = f (t, y(t), α(t)), t ∈ [0,T ].

For every t, the goal of each agent is to maximize

−
∫ T

t

(
|α(s)|2

2
+ g(ρs(y(s)))

)
ds + Φ(y(T )),

where g is a given increasing function of the density ρs at time s. The
agent hence tries to avoid overcrowded regions.
Let ϕ be the value function for this problem : it satisfies

∂tϕ(t, x) + H(t, x ,∇ϕ(t, x)) = 0, ϕ(T , x) = Φ(x) : y(t) = x

for a Hamiltonian function H, depending on f and g(ρt). The optimal
α(t), and hence the evolution of ρt , depends on ∇ϕ(t, x).
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MFG with density penalization- 2

The evolution follows a coupled system : ϕ solves HJB with ρ, which on
turn evolves according to ∂tρ + ∇ · (ρv) = 0, where v(t, x) depends on
∇ϕ(t, x).
Typical example : if f (t, x , α) = α then we have

∂tϕ+ |∇ϕ|2
2 − g(ρ) = 0,

∂tρ+∇ · (ρ∇ϕ) = 0,

ϕ(T , x) = Φ(x), ρ(0, x) = ρ0(x).

Stochastic case : we can also insert random effects dY = f (t,Y , α)dt +
dB, which lets ∆ϕ and ∆ρ appear :

∂tϕ+∆ϕ+
|∇ϕ|2

2
− g(ρ) = 0 : ∂tρ−∆ρ+∇ · (ρ∇ϕ) = 0.

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007

P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
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MFG with density constraints - 1

How to define a mean field game if we want to replace the penalization
+g(ρ) with the constraint ρ ≤ 1 ?

Naif idea : when (ρs)s is given, every agent minimizes his own cost paying
attention to the constraint ρs(y(s)) ≤ 1. But if ρ already satisfies ρ ≤ 1,
one extra agent will not violate the constraint (non-atomic game). Hence
the constraint becomes empty.

Good idea : use the pressure. The unnown is now the pair (ρ, α). We
want

∂tρt +∇ ·
(
ρt
(
Padm(ρt)[αt ]

))
= 0.

The projection of αt onto adm(ρt) rises a pressure pt . Every agent tries
to solve

max −
∫ T

t

|α(s)|2

2
ds+Φ(y(T )), : y ′(s) = α(s)−∇ps(y(s)), y(t) = x .

A configuration (ρ, α) will be an equilibrium if the original effort field α is
equal to the optimal one in this problem and if the original densities ρt are
equal to those realized at time t by these optimal trajectories.
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JMFG with density constraints - 2

By computing the Hamiltonian of this problem and the optimal α we get
the equations satisfied by the equilibrium, i.e.

∂tϕ+ |∇ϕ|2
2 −∇ϕ · ∇p = 0,

∂tρ+∇ · (ρ(∇ϕ−∇p)) = 0,

p ≥ 0, p(1− ρ) = 0,

ϕ(T , x) = Φ(x), ρ(0, x) = ρ0(x).

Unfortunately, no result (existence, uniqueness. . .) is available for the mo-
ment.
A PhD thesis (A. Mészáros, Orsay) is ongoing on these questions.

F. Santambrogio, A Modest Proposal for MFG with Density Constraints, Net.

Het. Media, 2012.
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Stochastic Dynamics

Some perspectives and methods
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Which PDE for diffusion and density constraints ?

If we want to model a population which diffuse but is also subject to ρ ≤ 1,
should we apply the projection operator on the drift only or should it also
interact with the Laplacian term ?

Good definitions (and existence/uniqueness results) for this notion without
strategical issues are a necessary starting point in order to attack later the
2nd order MFG system with density constraints (which could turn out to
be simpler than the 1st order one, because of higher regularity).

Fortunately, the Laplacian is consistent with the constraint. Moreover

∆ρ = ∇ ·
(
ρ∇ρρ

)
and ∇ρρ = 0 on {ρ = 1}. Hence the equation is

0 = ∂tρt−∆ρt+∇·(Padm(ρt)[ut ]ρt) = ∂tρt+∇·
(
Padm(ρt)

[
ut −

∇ρt
ρt

]
ρt

)
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Different catching-up methods

Take τ > 0 and a density ρτn . How to choose ρτn+1 ?

The cleanest way Take a r.v. X ∼ ρτn and build (id + τunτ ) ◦ X + Bτ
with B a Brownian motion independent of X . Define ρ̃τn+1 as the law of
this new r.v., which is given by

ρ̃τn+1 = ((id + τunτ )#ρ
τ
n) ∗ η√τ ,

where ηr is a standard Gaussian of size r . Then set ρτn+1 = PK (ρ̃τn+1).

A similar one Take the solution ρ of the Fokker-Planck equation{
∂tρt −∆ρt +∇ · (ut+nτρt) = 0

ρ0 = ρτn

Define ρ̃τn+1 = ρτ . Then set ρτn+1 = PK (ρ̃τn+1).
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Different catching-up methods

Estimates as τ → 0 on the two previous methods are difficult, since they
require estimates on the distance W2(ρτn , ρ̃

τ
n+1), which roughly corresponds

to estimate on the Heat equation between time 0 and time τ . They are
available, but under additional regularity assumptions on the initial datum
(namely, it should be at least BV).

Hence here is a less meaningful but easier to handle way of defining the
next step.
The most efficient way First build ρ̃τn+1 := (id + τunτ )#ρ

τ
n . Then set

ρτn+1 = argmin

∫
ρ ln ρ+

1

2τ
W 2

2 (ρ, ρ̃τn+1) : ρ ∈ K .

This problem is strictly convex and admits a unique solution. This recalls
(and actually is taken from) the theory of gradient flows in the Wasserstein
space.

L. Ambrosio, N. Gigli, G. Savaré Gradient Flows, Birkäuser, 2005,

R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the

Fokker-Planck equation, SIAM J. Math. Anal., 1998.
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Where the PDE comes from

The same variational tricks show that the optimality conditions of
minρ∈K

∫
ρ ln ρ+ 1

2τW
2
2 (ρ, ν) are

∃t : ρ =


1 on

(
ln ρ+ φ

τ

)
< t,

0 on
(

ln ρ+ φ
τ

)
> t,

∈ [0, 1] on
(

ln ρ+ φ
τ

)
= t.

We then define p = (t − ln ρ− φ
τ )+ and we get p ∈ press(ρ). Moreover,

ρ− a.e.∇p = −∇ρρ −
∇φ
τ , which shows that we have

•ρτn

id
+
τun

τ

•
ρ̃τn+1 id +

τ(∇p + ∇ρ
ρ )

•ρτn+1
id −τ(u(n+1)τ−∇p−∇ρρ )+o(τ)

⇒ (as τ → 0)

∂tρ−∆ρ+∇·(ρ(u−∇p)) = 0
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Where the PDE comes from

The same variational tricks show that the optimality conditions of
minρ∈K

∫
ρ ln ρ+ 1

2τW
2
2 (ρ, ν) are

∃t : ρ =


1 on

(
ln ρ+ φ

τ

)
< t,

0 on
(

ln ρ+ φ
τ

)
> t,

∈ [0, 1] on
(

ln ρ+ φ
τ

)
= t.

We then define p = (t − ln ρ− φ
τ )+ and we get p ∈ press(ρ). Moreover,

ρ− a.e.∇p = −∇ρρ −
∇φ
τ , which shows that we have

•ρτn

id
+
τun

τ

•
ρ̃τn+1 id +

τ(∇p + ∇ρ
ρ )

•ρτn+1
id −τ(u(n+1)τ−∇p−∇ρρ )+o(τ)

⇒ (as τ → 0)

∂tρ−∆ρ+∇·(ρ(u−∇p)) = 0
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The End

Thanks for your attention
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