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Branched networks in a discrete framework

Take some points xi , yj in Ω ⊂ Rd . Inject a mass ai at xi and absorb bj at yj .
Consider weighted oriented graphs G = (eh, êh, θh)h (eh are the edges, êh their
orientations, θh the weights), satisfying Kirchhoff’s law : at each node

incoming + injected mass = outcoming + absorbed mass

For 0 ≤ α < 1, among these graphs we minimize the energy

Eα(G ) :=
∑
h

θαhH1(eh).

The inequality (m1 + m2)α < mα
1 + mα

2 makes a branching behavior optimal.

Particular cases : α = 1 Monge optimal transport (no joint-trasportation in-
centive is present) ; α = 0 : Steiner’s minimal connection.

E. N. Gilbert, Minimum cost communication networks, Bell System Tech. J., 1967.
E. N. Gilbert and H. O. Pollak, Steiner minimal trees. SIAM J. Appl. Math., 1968.
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From the discrete to the continuous framework

With every G we can associate a vector measure representing the flow

uG :=
∑
h

θhêhH1
|eh .

Kirchhoff’s law is satisfied if and only if ∇·uG = f +−f −, where f + =
∑m

i=1 aiδxi
and f − =

∑n
j=1 bjδyj .

For general f +, f − ∈ P(Ω), Q. Xia proposed to extend Eα by relaxation

Mα(u) = inf
{

lim inf
n

Eα(Gn) : Gn finite graph, uGn → u
}
,

and to minimize Mα under the constraint ∇ · u = f + − f −. We also have

Mα(u) =

{∫
M
θαdH1 if u = U(M, θ, ξ),

+∞ otherwise.

where U(M, θ, ξ) is the rectifiable vector measure u = θξ · H1
|M (θ : M → R+ is

a real multiplicity and ξ : M → Rd , |ξ| = 1 an orientation of M).

Q. Xia, Optimal Paths related to Transport Problems. Comm. Cont. Math., 2003.
F. Maddalena, S. Solimini, J.M. Morel, A variational model of irrigation patterns. Int.
Free Bound., 2003.
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Branched transport distances

The cost is not proportional to the “mass” θ but to θα ; small masses are pena-
lized and singular measures are easier to reach.
On a bounded domain Ω, if α = 1 we can always connect with finite Monge cost
any pair of probabilities, but here it is the case only for α close to 1. Set

dα(f +, f −) := min{Mα(u) : ∇ · u = f + − f −}.

If α > 1− 1
d , then dα < +∞ for any f +, f − ∈ P(Ω) and dα is a distance over

P(Ω) metrizing weak topology. Sharp comparison results with the Wasserstein
distances Wp also exist :

W1/α ≤ dα ≤W β
1 , for β = d(α− (1− 1

d
)).

If α ≤ 1− 1
d , only “low dimensional” measures are reachable by branched trans-

port (the best ones being atomic measures, the worst Lebesgue).

J.-M. Morel, F. S., Comparison of distances between measures, Appl. Math. Lett., 2007.
F. Maddalena, S. Solimini, Transport distances and irrigation models, J. Conv. An, 2009.
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Elliptic approximations

Γ−convergence for singular energies
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Preliminaries : Γ−convergence

On a metric space X let Fn : X → R ∪ {+∞} be a sequence of functions. We
define the two lower-semicontinuous functions F− and F+ (called Γ− lim inf and
Γ− lim sup F+ of this sequence, respectively) by

F−(x) := inf{lim inf
n→∞

Fn(xn) : xn → x},F+(x) := inf{lim sup
n→∞

Fn(xn) : xn → x}.
If F− = F+ = F coincide, then we say Fn

Γ→ F .
Among the properties of Γ−convergence we have the following :

if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any n,
then F attains its minimum and inf Fn → minF ;

if (xn)n is a sequence of minimizers for Fn admitting a subsequence
converging to x , then x minimizes F

if Fn is a sequence Γ−converging to F , then Fn + G will Γ−converge to
F + G for any continuous function G : X → R ∪ {+∞}.

E. De Giorgi, T. Franzoni. Su un tipo di convergenza variazionale. Atti Lincei, 1975.
A. Braides. Γ-convergence for beginners. 2002
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Elliptic approximation of the perimeter functional

Theorem (Modica-Mortola)

Define the functional Fε on L1(Ω) through

Fε(u) =

{
1
ε

∫
W (u(x))dx + ε

∫
|∇u(x)|2dx if u ∈ H1(Ω);

+∞ otherwise.

Then, if W (0) = W (1) = 0 and W (t) > 0 for any t 6= 0, 1, we have Fε
Γ→ F ,

where F is given by

F (u) =

{
c Per(S) if u = IS and S is a finite perimeter set;

+∞ otherwise,

and the constant c is given by c = 2
∫ 1

0

√
W (t)dt.

L. Modica, S. Mortola, Un esempio di Γ-convergenza. Boll. UMI, 1977.
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Other approximations of singular energies

Vector framework : Ginzburg-Landau approximation (Bethuel-Brezis-Helein)

min
1

ε

∫
(1− |u|)2 + ε

∫
|∇u|2, u ∈ H1(Ω;Rd).

Gradient framework : Aviles-Giga, Ambrosio-DeLellis-Mantegazza (Modica-
Mortola results for higher order energies)

min
1

ε

∫
F (∇u) + ε

∫
|D2u|2.

Mumford-Shah : Ambrosio-Tortorelli

min
u,v

∫
Ω

(v2 +
√
ε)|∇u|2 + α

∫
Ω

(1− v)2

4ε
+ ε|∇v |2 + β

∫
Ω

(u − g)2.

Atomic energies on the line : Bouchitté-Dubs-Seppecher

min
1

ε

∫
W (u) + ε

∫
|u′|2, with lim

t→∞

W (t)

t
= 0.
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Modica-Mortola for Branched Transport

Γ−convergence results
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Ideas, conjectures and goals

It would be natural to approximate the minimization of Mα with some minimi-
zation problems defined on regular vector fields u (instead of singular measures)
having a “true” divergence. What about

min
1

ε

∫
|u|α + ε

∫
|∇u|2, u ∈ H1(Ω;Rd), ∇ · u = f ?

Two goals :

(theory) make a bridge with the theory of elliptic approximation for
singular energies

(applications) produce an efficient numerical method for finding optimal
branched structures.
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Heuristics for the exponents

1
ε

∫
|u|α + ε

∫
|∇u|2 is not the correct choice. We consider more generally

Mα
ε (u) = εγ1

∫
|u|p + εγ2

∫
|∇u|2.

Consider a measure U(S , θ, ξ), concentrated on a segment S with constant mul-
tiplicity θ, and approximate it with a smooth uA on a strip of width A :

Mα
ε ≈ εγ1Ad−1

(
θ

Ad−1

)p

H1(S) + εγ2Ad−1

(
θ

Ad

)2

H1(S).

Minimizing over possible widths A gives the optimal values

A ≈ ε
γ2−γ1

2d−p(d−1) θ
2−p

2d−p(d−1) ; Mα
ε ≈ ε

γ2−(γ2−γ1) d+1
2d−p(d−1) θ2−(2−p) d+1

2d−p(d−1)H1(S).

The correct choice for approximating Mα is

p=
2− 2d + 2αd

3− d + α(d − 1)
;

γ1

γ2
=

(d − 1)(α− 1)

3− d + α(d − 1)
< 0.

We get p ∈]0, 1[ as soon as α ∈]1− 1
d , 1[.

Filippo Santambrogio Phase-field approximation of branched transport



Branched Transport
Elliptic approximations

Modica-Mortola for Branched Transport
Numerics

A Γ−convergence theorem

Let M(Ω) be the space of finite vector measures on Ω with values in Rd and
such that their divergence is a finite scalar measure. On this space we consider
the weak convergence of both u and ∇·u.We stick to the case d = 2 and define

Mα
ε (u) =

{
εα−1

∫
Ω
|u(x)|pdx + εα+1

∫
Ω
|∇u(x)|2dx if u ∈ H1(Ω),

+∞ otherwise,

for p = 4α−2
α+1 (using the exponent we found before).

Theorem

Suppose d = 2 and α ∈] 1
2 , 1[ : then we have Γ−convergence of the functionals

Mα
ε to cMα, with respect to the convergence of M(Ω), as ε→ 0. Here c is a

finite and positive constant, given by c = α−1 (4c0α/(1− α))1−α, where

c0 =
∫ 1

0

√
tp − tdt.

F.S. A Modica-Mortola approximation for branched transport, CRAS, 2010.
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What lacks in the theorem

We should prove compactness of the minimizers sequence uε, if we want
to deduce uε → uopt .

We only adressed Γ−convergence of the energies, but ignored the
divergence constraint.

It is only stated for dimension 2.

It only works for α > 1− 1
d
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Some questions and answers – I

Compactness of uε : is it possible to prove an L1 bound on the minimizers ?
Mα
ε (uε) ≤ C is not sufficient (as in the limit problem, bounded energy confi-

gurations don’t have mass bounds, but optimal configurations do have, due
to no-cycles conditions), but the minimizers should have extra properties (no
cycles). Also, it is possible to artifically add a constraint

∫
|u| ≤ C which does

not affect the limit, but that’s not satisfactory.OPEN
Divergence constraint : can we find a sequence fε ⇀ f and add the constraint
∇ · u = fε in the approximating problems ? (notice that we need fε ∈ L2). We
have to adapt the divergence of the vector field uε that we build in the previous
Γ−convergence proof. This can be done thanks to the following estimate : define
dεα as dα, but with the approximated energy Mα

ε instead of Mα ; then

dεα(f +, f −) ≤ ω
(
W1(f +, f −)β + εγ2 ||f ||2L2

)
(ω(t) ≈ t + tα).

This allows to control the cost for modifying the divergence and allows to add the
divergence constraints into the functional and the Γ-convergence result.SOLVED

A. Monteil Uniform estimates for a Modica-Mortola type approximation of branched trans-
portation, ESAIM COCV, 2017

Filippo Santambrogio Phase-field approximation of branched transport



Branched Transport
Elliptic approximations

Modica-Mortola for Branched Transport
Numerics

Some questions and answers – I

Compactness of uε : is it possible to prove an L1 bound on the minimizers ?
Mα
ε (uε) ≤ C is not sufficient (as in the limit problem, bounded energy confi-

gurations don’t have mass bounds, but optimal configurations do have, due
to no-cycles conditions), but the minimizers should have extra properties (no
cycles). Also, it is possible to artifically add a constraint

∫
|u| ≤ C which does

not affect the limit, but that’s not satisfactory.OPEN
Divergence constraint : can we find a sequence fε ⇀ f and add the constraint
∇ · u = fε in the approximating problems ? (notice that we need fε ∈ L2). We
have to adapt the divergence of the vector field uε that we build in the previous
Γ−convergence proof. This can be done thanks to the following estimate : define
dεα as dα, but with the approximated energy Mα

ε instead of Mα ; then

dεα(f +, f −) ≤ ω
(
W1(f +, f −)β + εγ2 ||f ||2L2

)
(ω(t) ≈ t + tα).

This allows to control the cost for modifying the divergence and allows to add the
divergence constraints into the functional and the Γ-convergence result.SOLVED

A. Monteil Uniform estimates for a Modica-Mortola type approximation of branched trans-
portation, ESAIM COCV, 2017

Filippo Santambrogio Phase-field approximation of branched transport



Branched Transport
Elliptic approximations

Modica-Mortola for Branched Transport
Numerics

Some questions and answers – I

Compactness of uε : is it possible to prove an L1 bound on the minimizers ?
Mα
ε (uε) ≤ C is not sufficient (as in the limit problem, bounded energy confi-

gurations don’t have mass bounds, but optimal configurations do have, due
to no-cycles conditions), but the minimizers should have extra properties (no
cycles). Also, it is possible to artifically add a constraint

∫
|u| ≤ C which does

not affect the limit, but that’s not satisfactory.OPEN
Divergence constraint : can we find a sequence fε ⇀ f and add the constraint
∇ · u = fε in the approximating problems ? (notice that we need fε ∈ L2). We
have to adapt the divergence of the vector field uε that we build in the previous
Γ−convergence proof. This can be done thanks to the following estimate : define
dεα as dα, but with the approximated energy Mα

ε instead of Mα ; then

dεα(f +, f −) ≤ ω
(
W1(f +, f −)β + εγ2 ||f ||2L2

)
(ω(t) ≈ t + tα).

This allows to control the cost for modifying the divergence and allows to add the
divergence constraints into the functional and the Γ-convergence result.SOLVED

A. Monteil Uniform estimates for a Modica-Mortola type approximation of branched trans-
portation, ESAIM COCV, 2017

Filippo Santambrogio Phase-field approximation of branched transport



Branched Transport
Elliptic approximations

Modica-Mortola for Branched Transport
Numerics

Some questions and answers – I

Compactness of uε : is it possible to prove an L1 bound on the minimizers ?
Mα
ε (uε) ≤ C is not sufficient (as in the limit problem, bounded energy confi-

gurations don’t have mass bounds, but optimal configurations do have, due
to no-cycles conditions), but the minimizers should have extra properties (no
cycles). Also, it is possible to artifically add a constraint

∫
|u| ≤ C which does

not affect the limit, but that’s not satisfactory.OPEN
Divergence constraint : can we find a sequence fε ⇀ f and add the constraint
∇ · u = fε in the approximating problems ? (notice that we need fε ∈ L2). We
have to adapt the divergence of the vector field uε that we build in the previous
Γ−convergence proof. This can be done thanks to the following estimate : define
dεα as dα, but with the approximated energy Mα

ε instead of Mα ; then

dεα(f +, f −) ≤ ω
(
W1(f +, f −)β + εγ2 ||f ||2L2

)
(ω(t) ≈ t + tα).

This allows to control the cost for modifying the divergence and allows to add the
divergence constraints into the functional and the Γ-convergence result.SOLVED

A. Monteil Uniform estimates for a Modica-Mortola type approximation of branched trans-
portation, ESAIM COCV, 2017

Filippo Santambrogio Phase-field approximation of branched transport



Branched Transport
Elliptic approximations

Modica-Mortola for Branched Transport
Numerics

Some questions and answers – II

Exponents α ≤ 1− 1
d : the main issue is p < 0. But this can be fixed

Theorem

Suppose d = 2 and α ∈]0, 1
2 [ ; let B ∈ C 0(R+) such that B(0) = 0, B(t) > 0

for t > 0, limt→∞
B(t)
tp = 1, B ′(0)>0, p = 4α−2

α+1 ∈]− 2, 0[. Define MB
ε through

MB
ε (u) = εα−1

∫
Ω

B(|u(x)|)dx + εα+1

∫
Ω

|∇u(x)|2dx ,

Then we have Γ−convergence of the functionals MB
ε to cMα, with respect to

the convergence of M(Ω), as ε→ 0, where c is the usual constant.

The higher-dimensional case : the problem was the proof, not suitable to
codimension > 1. But it can be done differently, yet only for α > 1− 1

d .
Both : PARTIALLY SOLVED
E. Oudet, F. S., A Modica-Mortola approximation for branched transport and applications,
Arch. Rati. Mech. An., 2011.
A. Monteil PhD thesis, Orsay, 2015.
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d .
Both : PARTIALLY SOLVED
E. Oudet, F. S., A Modica-Mortola approximation for branched transport and applications,
Arch. Rati. Mech. An., 2011.
A. Monteil PhD thesis, Orsay, 2015.
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Some questions and answers – II
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Numerics
Finding “good” local minima
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Idea of the numerical method

The exact identification of global optimal networks in the combinatorial context
is NP hard (with respect to the number of sources and targets). The method we
propose here is, on the contrary, purely continuous : it requires to find a vector
field on the whole Ω and is not influenced by this number. The main difficulties
are related both to the approximation of singular and irregular functions and to
the strongly non-convex cost functional.
Idea : (by E. Oudet, who already used this approach for other problems admitting
Γ−convergence approximations) observe that for ε � 1 the functional Mα

ε is
“almost” convex. Hence we perform a (projected) gradient descent on Mα

ε for ε
large. Then, decreasing the value of ε step by step, we start a new descent for
Mα
εk+1

starting from the uεk found at the previous step.

Projection : Once fixed a suitable fε, L
2 approximation of f , we need to solve

at every step min
{∫

1
2 |u − u0|2 : ∇ · u = fε

}
. By duality, this becomes

max

{
−
∫

1

2
|∇ϕ|2 − ϕ(fε −∇ · u0)

}
and just requires to solve a Laplacian.
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Thick optimal networks

(Numerical computations by E. Oudet, from our joint paper)
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The Steiner limit

We can also attack Steiner problem. If some points x0, . . . , xn are given, take as
a source measure f + = δx0 and as a destination f − =

∑n
i=1

1
nδxi . This imposes

connectedness of the networks. Then use MB
ε and α→ 0.

The angles unfortunately are not close enough to 120◦. The approximation is
not precise enough. . .
An exact phase-field approximation for α = 0 is also possible, but requires a
logarithmic correction in the ε-coefficients (Master thesis work by A. Julia, 2015).
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A variant : the optimal shape to be irrigated

Fix α > 1 − 1/d . What is the best shape to be irrigated, for the branched
transport cost, from δ0 ?

min {dα(IA, δ0) : |A| = 1} .

Equivalently, solve

min
{
dα(f +, δ0) : f + ∈ P(Ω), f + ≤ 1

}
.

Note that, for α = 1, the solution is the ball of unit volume. What about α < 1 ?
How to adapt the numerics when f + is not fixed ? Let f −ε be a suitable approxi-
mation of δ0, and solve

min
{
Mα
ε (u) : 0 ≤ ∇ · u + f −ε ≤ 1

}
.

The main difference is in the projection. We need to solve

min

{∫
1

2
|u − u0|2 : 0 ≤ ∇ · u + f −ε ≤ 1

}
which becomes the non-smooth problem

max

{
−
∫

1

2
|∇ϕ|2 − ϕ(f −ε +∇ · u0) + max{ϕ, 0}

}
.
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A fractal shape

New computations are in progress. This one was obtained by solving the non-
smooth optimization problem in the projection step by a FISTA method (with
very small gradient step).
Numerical computations done by P. Pegon. A collaboration with E. Oudet is in progress.
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. . . the end. . .

thanks for your attention.
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