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A general model

A particle population needs to move, and each particle - if alone - would
follow its own velocity u (depend on time, position. . .) Yet, particles are
rigid disks that cannot overlap, hence, the actual velocity v will not be u
if u is too concentrating. Let us suppose v = Padm(q)(u), where q is the
particle configuration, adm(q) the set of velocities that do not induce
overlapping, Padm(q) the projection on this set.
If every particle is a disk with radius R, located at qi , we have

q ∈ K := {q = (qi )i ∈ ΩN : |qi − qj | ≥ 2R}

adm(q) = {v = (vi )i : (vi − vj) · (qi − qj) ≥ 0 ∀(i , j) : |qi − qj | = 2R}

.and we solve q′(t) = Padm(q(t))u(t) (with q(0) given).

Typical case : ui (q) = −∇D(qi ), where D(x) = d(x , Γ) and Γ ⊂ ∂Ω ; if
Ω is not convex we consider as d the geodesic distance.
B. Maury, J. Venel, Handling of contacts in crowd motion simulations,

Traffic and Granular Flow, 2007.
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Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or on
ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on ρ = 1},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂
∂t ρt +∇ ·

(
ρt
(
Padm(ρt)ut

))
= 0.

The equation ∂
∂t ρt +∇ ·

(
ρtvt

)
= 0 (continuity equation) is exactly the

equation satisfied by the evolution of a density ρ when each particle
follows the velocity field v (with v · n = 0 on ∂Ω, so that the density
does not exit Ω).

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.
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Pressures and duality

The set adm(ρ) may be better described by duality :

adm(ρ) = {v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p : p ≥ 0, p(1− ρ) = 0}.

In this way we can characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0}

This function p plays the role of a pressure affecting the movement.

�
�
�
�
��

@
@
@
@

@@�
�

�
� adm(ρ)

press(ρ)

u

∇p

v

�
�
�
��

@@I

∂
∂t ρt +∇ ·

(
ρt(ut −∇pt)

)
= 0

ρt ∈ K , pt ∈ press(ρt)
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Gradient-flow
Gradient-flow formulation

Filippo Santambrogio Crowd motion and optimal transport



Models
Gradient-flow

Our PDE
Perspectives

What is a gradient-flow ?

A gradient-flow in Rn is an evolution equation of the kind

x ′(t) = −∇F (x(t))
(we follow the steepest descent lines of a function F ). In order to
discretize in time such an equation we can recursively solve

xτk+1 ∈ argminx F (x) +
1

2τ
|x − xτk |2, τ > 0 fixed.

Actually, the optimal xτk+1 satisfies
xτk+1 − xτk

τ
+∇F (xτk+1) = 0

which corresponds to an implicit Euler scheme to solve x ′ = −∇F (x),
the solution being found as a limit τ → 0.
This formulation may easily be adapted to a general metric space. . .
it allows to study evolution problems for a density ρ when we use the
space P(Ω) endowed with a suitable distance.
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(we follow the steepest descent lines of a function F ). In order to
discretize in time such an equation we can recursively solve

xτk+1 ∈ argminx F (x) +
1

2τ
|x − xτk |2, τ > 0 fixed.

Actually, the optimal xτk+1 satisfies
xτk+1 − xτk

τ
+∇F (xτk+1) = 0

which corresponds to an implicit Euler scheme to solve x ′ = −∇F (x),
the solution being found as a limit τ → 0.
This formulation may easily be adapted to a general metric space. . .
it allows to study evolution problems for a density ρ when we use the
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Optimal transport and Wasserstein distances

If two probabilities µ, ν ∈ P(Ω) are given on a compact domain, the
Monge-Kantorovitch problem reads

W 2
2 (µ, ν) = inf

{∫
|x − T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}
W2(µ, ν), the square root of the minimal value, is a distance on P(Ω).

Kantorovitch potential : for every (µ, ν) with µ << Ld there exists a
Lipschitz function φ : Ω→ R with the following properties

there exists an optimal T and T (x) = x −∇φ(x),

we have d
dε

1
2 W 2

2 (µ+ εχ, ν)|ε=0 =
∫
φdχ

Notation : for G : P(Ω)→ R we call δG
δρ

(ρ), if it exists, the only function such

that d
dε

G(ρ+ εχ)|ε=0 =
∫
δG
δρ

(ρ)dχ. Hence, we say
δ
(

1
2
W 2

2 (·,ν)
)

δρ
= φ
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Gradient-flows in W2

Let F be a functional over P(Ω) endowed with the W2 distance. Let us
solve

ρτk+1 ∈ argminρ F (ρ) +
W 2

2 (ρ, ρτk )

2τ

Discrete optimality conditions :
δF

δρ
(ρτk+1) +

φ

τ
= const

which implies

−v(x) :=
T (x)− x

τ
= −∇φ(x)

τ
= ∇

(δF

δρ
(ρ)
)

and, since v represents the discrete velocity (displacement / time step),
at the limit the continuity equation ∂ρ/∂t +∇ · (ρv) = 0 gives

∂ρ

∂t
−∇ ·

(
ρ∇
(δF

δρ
(ρ)
))

= 0.
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Examples

Take F (ρ) =
∫

f (ρ(x))dx . Then δF
δρ (ρ) = f ′(ρ). The equation becomes

∂ρ

∂t
−∇ ·

(
ρ∇f ′(ρ)

)
= 0.

For instance, for f (t) = t log t we get ∇f ′(ρ) = ∇ρ
ρ , which gives the heat

equation ∂ρ
∂t −∆ρ = 0.

For F (ρ) =
∫

V (x)dρ we get δF
δρ (ρ) = V . We can obtain the

Fokker-Planck equation in the case F (ρ) =
∫

V (x)dρ+
∫
ρ log(ρ). . .

Advantages of this formulation/interpretation : existence results and
uniqueness (under some convexity assumptions on F ) in a general
framework, moreover, we also directly have a time-discretization
algorithm.
Ffor all the details on this theory, see for instance

L. Ambrosio, N. Gigli, G. Savaré Gradient Flows, Birkäuser, 2005,
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Filippo Santambrogio Crowd motion and optimal transport



Models
Gradient-flow

Our PDE
Perspectives

Examples

Take F (ρ) =
∫

f (ρ(x))dx . Then δF
δρ (ρ) = f ′(ρ). The equation becomes

∂ρ

∂t
−∇ ·

(
ρ∇f ′(ρ)

)
= 0.

For instance, for f (t) = t log t we get ∇f ′(ρ) = ∇ρ
ρ , which gives the heat

equation ∂ρ
∂t −∆ρ = 0.

For F (ρ) =
∫

V (x)dρ we get δF
δρ (ρ) = V . We can obtain the

Fokker-Planck equation in the case F (ρ) =
∫

V (x)dρ+
∫
ρ log(ρ). . .

Advantages of this formulation/interpretation : existence results and
uniqueness (under some convexity assumptions on F ) in a general
framework, moreover, we also directly have a time-discretization
algorithm.
Ffor all the details on this theory, see for instance

L. Ambrosio, N. Gigli, G. Savaré Gradient Flows, Birkäuser, 2005,
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The functional

Let’s come back to the case we are interested in, with u = −∇D et
ρ ∈ K = {ρ ∈ P(Ω) : ρ ≤ 1}. Let’s take F defined by

F (ρ) =

{∫
D(x)dρ if ρ ∈ K ,

+∞ if ρ /∈ K .

The discrete iterative method is, as usual,

ρτk+1 ∈ argminρ F (ρ) +
W 2

2 (ρ, ρτk )

2τ
= argminρ∈K

∫
D(x)dρ+

W 2
2 (ρ, ρτk )

2τ
It happens that the limit of these trajectories for τ → 0, hence the
gradient-flow of F , exactly provides the PDE we are looking at.

Why ? come back to the discrete optimality condition, which would be
(if the constraint ρ ∈ K is ignored) D + φ

τ = const.

How did we get it ? Set ψ = D + φ
τ and χ = ρ̃− ρ : we would have∫

ψdχ ≥ 0 and hence
∫
ψd ρ̃ ≥

∫
ψdρ ∀ρ̃ ∈ P(Ω). This implies that ρ

is concentrated on argminψ and hence ψ = const ρ−a.e.

But here we need to take into account ρ ∈ K !
Filippo Santambrogio Crowd motion and optimal transport
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= argminρ∈K

∫
D(x)dρ+

W 2
2 (ρ, ρτk )

2τ
It happens that the limit of these trajectories for τ → 0, hence the
gradient-flow of F , exactly provides the PDE we are looking at.

Why ? come back to the discrete optimality condition, which would be
(if the constraint ρ ∈ K is ignored) D + φ

τ = const.

How did we get it ? Set ψ = D + φ
τ and χ = ρ̃− ρ : we would have∫

ψdχ ≥ 0 and hence
∫
ψd ρ̃ ≥

∫
ψdρ ∀ρ̃ ∈ P(Ω). This implies that ρ

is concentrated on argminψ and hence ψ = const ρ−a.e.

But here we need to take into account ρ ∈ K !
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Optimality conditions, velocity and pressure

What changes here ? we only get
∫
ψd ρ̃ ≥

∫
ψdρ ∀ρ̃ ∈ K . This

implies

∃t : ρ =


1 on ψ < t,

0 on ψ > t,

∈ [0, 1] on ψ = t

⇒ p := (t − ψ)+ ≥ 0, p(1− ρ) = 0.

Passing to gradients we have

ρ− a.e. ∇p = −∇ψ = −∇D − ∇φ
τ

= u − v ⇒ v = u −∇p.

Hence, this discrete scheme may be used to build an approximation ρτ

and, at the limit, a solution of the PDE.

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic

crowd motion model of gradient flow type, Math. Mod. Meth. Appl. Sci.
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Warning : in this model the exit is closed

Let’s see the model as a crowd leaving a panic area : D(x) = d(x , Γ)
where Γ ⊂ ∂Ω is the door.

The density evolves by minimizing this mean distance to the door. . .but
never leaves Ω !
For t →∞ it fills a neighborhood of the door with density ρ = 1. This is
the configuration that minimizes F . (If the particles are people trying to
get to the door so as to escape from a fire, they will all die).
Modification of the model : new definition of K

K := {ρ ∈ P(Ω) : ρ = ρΓ + ρΩ, ρΩ ≤ 1 , supp(ρΓ) ⊂ Γ}
Interpretation : as soon as a particle reaches Γ, it is safe (D = 0) ; we
leave it on Γ for simplicity, but this only means that we are no longer
concerned with what happens to it.

Mathematically : analyzing the scheme with this new set K is more
complicated but manage anyway to prove existence of a solution. Yet,
uniqueness is out of reach for the moment.
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An example

Closed door

Open door
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Perspectives

MFG, multiple populations, fluid mechanics
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Adapting Padm(ρ) to other problems – Mean Field Games

Better models for crowd motions : one should insert the possibility for
the agents to choose their strategy (for instance following the ideas of
the so-called mean-field games, by J.-M. Lasry and P.-L. Lions).

∂tϕ+ |∇ϕ|2
2 −∇ϕ · ∇p = 0,

∂tρ+∇ · (ρ(∇ϕ−∇p)) = 0,

p ≥ 0, p(1− ρ) = 0,

ϕ(T , x) = Φ(x), ρ(0, x) = ρ0(x).

These equations describe a game where every player wants to maximize

max −
∫ T

t

|α(s)|2

2
ds +Φ(y(T )), : y ′(s) = α(s)−∇ps(y(s)), y(t) = x .

subject to the pressure given by the density of others and the constraint.
The function φ is the value function of the control problem for each
player.
F. Santambrogio, A Modest Proposal for MFG with Density Constraints, to

appear in a special issue of Net. Het. Media, 2012.
Filippo Santambrogio Crowd motion and optimal transport
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Adapting Padm(ρ) to other problems – Two populations

Many models in biology or in social sciences consider the case of two
populations (with or without density constraints) where each one evolves
so as to minimize its own energy (possibly depending on the interactions
with the other) : {

∂ρ
∂t −∇ ·

(
ρ∇
(
δE
δρ (ρ, µ)) = 0,

∂µ
∂t −∇ ·

(
µ∇
(
δF
δµ (ρ, µ)) = 0.

If E 6= F we do not have in general a gradient flow.
Inserting density constraints is delicate. If the constraint is ρ+ µ ≤ 1
there will be a unique pressure p. Mathematically, it is difficult to let
terms such as ρ∇p pass to the limit (since they are non-linear). When
there was a unique population the crucial point was ρ∇p = ∇p (since
p = 0 on {ρ 6= 1}).
J. Dambrine, B. Maury, N. Meunier, A. Roudneff-Chupin, A

congestion Model for Cell migration, Communications in Pure and Applied

Analysis, 2012.
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Adapting Padm(ρ) to other problems – Two populations

For incompressible fluids : study second order models for pressureless
gas dynamics, such as

∂ρ

∂t
+∇ ·

(
ρv) = 0, with

∂(ρv)

∂t
+∇ ·

(
ρv ⊗ v) +∇p = 0,

où ρ ≤ 1, p ∈ Press(ρ) et v(t+) = Padm(ρt)(v(t−)), generalizing a work
by Bouchut, Brenier, Cortes, Ripoll in 1D.
The difficulty is the fact that here we are more interested in a Cauchy
problem prescribing ρ0 and v0, leading to a non-variational structure.

F. Bouchut, Y. Brenier, J. Cortes, J.-F Ripoll, A hierarchy of models

for two-phase flows, J. nonlinear sci, 2000.
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The End

Thanks for your attention and for your warm welcome in Hefei
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